added tests on scale invariance of detectors and descriptors
This commit is contained in:
parent
dc68a56bab
commit
ec23d9bb5e
@ -45,8 +45,8 @@
|
|||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace cv;
|
using namespace cv;
|
||||||
|
|
||||||
const string FEATURES2D_DIR = "features2d";
|
const string IMAGE_TSUKUBA = "/features2d/tsukuba.png";
|
||||||
const string IMAGE_FILENAME = "tsukuba.png";
|
const string IMAGE_BIKES = "/detectors_descriptors_evaluation/images_datasets/bikes/img1.png";
|
||||||
|
|
||||||
#define SHOW_DEBUG_LOG 0
|
#define SHOW_DEBUG_LOG 0
|
||||||
|
|
||||||
@ -127,14 +127,17 @@ void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
|
|||||||
vector<Point2f> points0;
|
vector<Point2f> points0;
|
||||||
KeyPoint::convert(keypoints0, points0);
|
KeyPoint::convert(keypoints0, points0);
|
||||||
Mat points0t;
|
Mat points0t;
|
||||||
perspectiveTransform(Mat(points0), points0t, H);
|
if(H.empty())
|
||||||
|
points0t = Mat(points0);
|
||||||
|
else
|
||||||
|
perspectiveTransform(Mat(points0), points0t, H);
|
||||||
|
|
||||||
matches.clear();
|
matches.clear();
|
||||||
vector<uchar> usedMask(keypoints1.size(), 0);
|
vector<uchar> usedMask(keypoints1.size(), 0);
|
||||||
for(size_t i0 = 0; i0 < keypoints0.size(); i0++)
|
for(size_t i0 = 0; i0 < keypoints0.size(); i0++)
|
||||||
{
|
{
|
||||||
int nearestPointIndex = -1;
|
int nearestPointIndex = -1;
|
||||||
float maxIntersectRatio = -1.f;
|
float maxIntersectRatio = 0.f;
|
||||||
const float r0 = 0.5f * keypoints0[i0].size;
|
const float r0 = 0.5f * keypoints0[i0].size;
|
||||||
for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
|
for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
|
||||||
{
|
{
|
||||||
@ -174,7 +177,7 @@ protected:
|
|||||||
|
|
||||||
void run(int)
|
void run(int)
|
||||||
{
|
{
|
||||||
const string imageFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;
|
||||||
|
|
||||||
// Read test data
|
// Read test data
|
||||||
Mat image0 = imread(imageFilename), image1, mask1;
|
Mat image0 = imread(imageFilename), image1, mask1;
|
||||||
@ -187,8 +190,8 @@ protected:
|
|||||||
|
|
||||||
vector<KeyPoint> keypoints0;
|
vector<KeyPoint> keypoints0;
|
||||||
featureDetector->detect(image0, keypoints0);
|
featureDetector->detect(image0, keypoints0);
|
||||||
|
if(keypoints0.size() < 15)
|
||||||
CV_Assert(keypoints0.size() > 15);
|
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
|
||||||
|
|
||||||
const int maxAngle = 360, angleStep = 15;
|
const int maxAngle = 360, angleStep = 15;
|
||||||
for(int angle = 0; angle < maxAngle; angle += angleStep)
|
for(int angle = 0; angle < maxAngle; angle += angleStep)
|
||||||
@ -266,6 +269,13 @@ protected:
|
|||||||
float minAngleInliersRatio;
|
float minAngleInliersRatio;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
void scaleKeyPoints(const vector<KeyPoint>& src, vector<KeyPoint>& dst, float scale)
|
||||||
|
{
|
||||||
|
dst.resize(src.size());
|
||||||
|
for(size_t i = 0; i < src.size(); i++)
|
||||||
|
dst[i] = KeyPoint(src[i].pt.x * scale, src[i].pt.y * scale, src[i].size * scale);
|
||||||
|
}
|
||||||
|
|
||||||
class DescriptorRotationInvarianceTest : public cvtest::BaseTest
|
class DescriptorRotationInvarianceTest : public cvtest::BaseTest
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
@ -288,7 +298,7 @@ protected:
|
|||||||
|
|
||||||
void run(int)
|
void run(int)
|
||||||
{
|
{
|
||||||
const string imageFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;
|
||||||
|
|
||||||
// Read test data
|
// Read test data
|
||||||
Mat image0 = imread(imageFilename), image1, mask1;
|
Mat image0 = imread(imageFilename), image1, mask1;
|
||||||
@ -302,9 +312,10 @@ protected:
|
|||||||
vector<KeyPoint> keypoints0;
|
vector<KeyPoint> keypoints0;
|
||||||
Mat descriptors0;
|
Mat descriptors0;
|
||||||
featureDetector->detect(image0, keypoints0);
|
featureDetector->detect(image0, keypoints0);
|
||||||
|
if(keypoints0.size() < 15)
|
||||||
|
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
|
||||||
descriptorExtractor->compute(image0, keypoints0, descriptors0);
|
descriptorExtractor->compute(image0, keypoints0, descriptors0);
|
||||||
|
|
||||||
CV_Assert(keypoints0.size() > 15);
|
|
||||||
BFMatcher bfmatcher(normType);
|
BFMatcher bfmatcher(normType);
|
||||||
|
|
||||||
const int maxAngle = 360, angleStep = 15;
|
const int maxAngle = 360, angleStep = 15;
|
||||||
@ -375,6 +386,258 @@ protected:
|
|||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
class DetectorScaleInvarianceTest : public cvtest::BaseTest
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
DetectorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
|
||||||
|
float _minKeyPointMatchesRatio,
|
||||||
|
float _minScaleInliersRatio) :
|
||||||
|
featureDetector(_featureDetector),
|
||||||
|
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
|
||||||
|
minScaleInliersRatio(_minScaleInliersRatio)
|
||||||
|
{
|
||||||
|
CV_Assert(!featureDetector.empty());
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
|
||||||
|
void run(int)
|
||||||
|
{
|
||||||
|
const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
|
||||||
|
|
||||||
|
// Read test data
|
||||||
|
Mat image0 = imread(imageFilename);
|
||||||
|
if(image0.empty())
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
vector<KeyPoint> keypoints0;
|
||||||
|
featureDetector->detect(image0, keypoints0);
|
||||||
|
if(keypoints0.size() < 15)
|
||||||
|
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
|
||||||
|
|
||||||
|
for(int scale = 2; scale <= 4; scale++)
|
||||||
|
{
|
||||||
|
Mat image1;
|
||||||
|
resize(image0, image1, Size(), 1./scale, 1./scale);
|
||||||
|
|
||||||
|
vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
|
||||||
|
featureDetector->detect(image1, keypoints1);
|
||||||
|
if(keypoints1.size() < 15)
|
||||||
|
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
|
||||||
|
|
||||||
|
if(keypoints1.size() > keypoints0.size())
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Strange behavior of the detector. "
|
||||||
|
"It gives more points count in an image of the smaller size.\n"
|
||||||
|
"original size (%d, %d), keypoints count = %d\n"
|
||||||
|
"reduced size (%d, %d), keypoints count = %d\n",
|
||||||
|
image0.cols, image0.rows, keypoints0.size(),
|
||||||
|
image1.cols, image1.rows, keypoints1.size());
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
scaleKeyPoints(keypoints1, osiKeypoints1, scale);
|
||||||
|
|
||||||
|
vector<DMatch> matches;
|
||||||
|
// image1 is query image (it's reduced image0)
|
||||||
|
// image0 is train image
|
||||||
|
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches);
|
||||||
|
|
||||||
|
const float minIntersectRatio = 0.5f;
|
||||||
|
int keyPointMatchesCount = 0;
|
||||||
|
int scaleInliersCount = 0;
|
||||||
|
|
||||||
|
for(size_t m = 0; m < matches.size(); m++)
|
||||||
|
{
|
||||||
|
if(matches[m].distance < minIntersectRatio)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
keyPointMatchesCount++;
|
||||||
|
|
||||||
|
// Check does this inlier have consistent sizes
|
||||||
|
const float maxSizeDiff = 0.8;//0.9f; // grad
|
||||||
|
float size0 = keypoints0[matches[m].trainIdx].size;
|
||||||
|
float size1 = osiKeypoints1[matches[m].queryIdx].size;
|
||||||
|
CV_Assert(size0 > 0 && size1 > 0);
|
||||||
|
if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1))
|
||||||
|
scaleInliersCount++;
|
||||||
|
}
|
||||||
|
|
||||||
|
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
|
||||||
|
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
|
||||||
|
keyPointMatchesRatio, minKeyPointMatchesRatio);
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(keyPointMatchesCount)
|
||||||
|
{
|
||||||
|
float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount;
|
||||||
|
if(scaleInliersRatio < minScaleInliersRatio)
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Incorrect scaleInliersRatio: curr = %f, min = %f.\n",
|
||||||
|
scaleInliersRatio, minScaleInliersRatio);
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#if SHOW_DEBUG_LOG
|
||||||
|
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
|
||||||
|
<< " - scaleInliersRatio " << static_cast<float>(scaleInliersCount) / keyPointMatchesCount << std::endl;
|
||||||
|
#endif
|
||||||
|
/*vector<DMatch> filteredMatches;
|
||||||
|
for(size_t i = 0; i < matches.size(); i++)
|
||||||
|
{
|
||||||
|
if(matches[i].distance >= minIntersectRatio)
|
||||||
|
filteredMatches.push_back(matches[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
Mat out;
|
||||||
|
namedWindow("out", CV_WINDOW_NORMAL);
|
||||||
|
drawMatches(image1, keypoints1, image0, keypoints0, filteredMatches, out,
|
||||||
|
Scalar::all(-1), Scalar(-1), vector<char>(), DrawMatchesFlags::DEFAULT + DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
|
||||||
|
imshow("out", out);
|
||||||
|
waitKey();*/
|
||||||
|
}
|
||||||
|
ts->set_failed_test_info( cvtest::TS::OK );
|
||||||
|
}
|
||||||
|
|
||||||
|
Ptr<FeatureDetector> featureDetector;
|
||||||
|
float minKeyPointMatchesRatio;
|
||||||
|
float minScaleInliersRatio;
|
||||||
|
};
|
||||||
|
|
||||||
|
class DescriptorScaleInvarianceTest : public cvtest::BaseTest
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
DescriptorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
|
||||||
|
const Ptr<DescriptorExtractor>& _descriptorExtractor,
|
||||||
|
int _normType,
|
||||||
|
float _minKeyPointMatchesRatio,
|
||||||
|
float _minDescInliersRatio) :
|
||||||
|
featureDetector(_featureDetector),
|
||||||
|
descriptorExtractor(_descriptorExtractor),
|
||||||
|
normType(_normType),
|
||||||
|
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
|
||||||
|
minDescInliersRatio(_minDescInliersRatio)
|
||||||
|
{
|
||||||
|
CV_Assert(!featureDetector.empty());
|
||||||
|
CV_Assert(!descriptorExtractor.empty());
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
|
||||||
|
void run(int)
|
||||||
|
{
|
||||||
|
const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
|
||||||
|
|
||||||
|
// Read test data
|
||||||
|
Mat image0 = imread(imageFilename);
|
||||||
|
if(image0.empty())
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
vector<KeyPoint> keypoints0;
|
||||||
|
featureDetector->detect(image0, keypoints0);
|
||||||
|
if(keypoints0.size() < 15)
|
||||||
|
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
|
||||||
|
Mat descriptors0;
|
||||||
|
descriptorExtractor->compute(image0, keypoints0, descriptors0);
|
||||||
|
|
||||||
|
BFMatcher bfmatcher(normType);
|
||||||
|
for(int scale = 2; scale <= 4; scale++)
|
||||||
|
{
|
||||||
|
Mat image1;
|
||||||
|
resize(image0, image1, Size(), 1./scale, 1./scale);
|
||||||
|
|
||||||
|
vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
|
||||||
|
featureDetector->detect(image1, keypoints1);
|
||||||
|
if(keypoints1.size() < 15)
|
||||||
|
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
|
||||||
|
if(keypoints1.size() > keypoints0.size() )
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Strange behavior of the detector. "
|
||||||
|
"It gives more points count in an image of the smaller size.\n"
|
||||||
|
"original size (%d, %d), keypoints count = %d\n"
|
||||||
|
"reduced size (%d, %d), keypoints count = %d\n",
|
||||||
|
image0.cols, image0.rows, keypoints0.size(),
|
||||||
|
image1.cols, image1.rows, keypoints1.size());
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
Mat descriptors1;
|
||||||
|
descriptorExtractor->compute(image1, keypoints1, descriptors1);
|
||||||
|
|
||||||
|
vector<DMatch> keyPointMatches, descMatches;
|
||||||
|
// image1 is query image (it's reduced image0)
|
||||||
|
// image0 is train image
|
||||||
|
bfmatcher.match(descriptors1, descriptors0, descMatches);
|
||||||
|
|
||||||
|
scaleKeyPoints(keypoints1, osiKeypoints1, scale);
|
||||||
|
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, keyPointMatches);
|
||||||
|
|
||||||
|
const float minIntersectRatio = 0.5f;
|
||||||
|
int keyPointMatchesCount = 0;
|
||||||
|
for(size_t m = 0; m < keyPointMatches.size(); m++)
|
||||||
|
{
|
||||||
|
if(keyPointMatches[m].distance >= minIntersectRatio)
|
||||||
|
keyPointMatchesCount++;
|
||||||
|
}
|
||||||
|
int descInliersCount = 0;
|
||||||
|
for(size_t m = 0; m < descMatches.size(); m++)
|
||||||
|
{
|
||||||
|
int queryIdx = descMatches[m].queryIdx;
|
||||||
|
if(keyPointMatches[queryIdx].distance >= minIntersectRatio &&
|
||||||
|
descMatches[m].trainIdx == keyPointMatches[queryIdx].trainIdx)
|
||||||
|
descInliersCount++;
|
||||||
|
}
|
||||||
|
|
||||||
|
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
|
||||||
|
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
|
||||||
|
keyPointMatchesRatio, minKeyPointMatchesRatio);
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(keyPointMatchesCount)
|
||||||
|
{
|
||||||
|
float descInliersRatio = static_cast<float>(descInliersCount) / keyPointMatchesCount;
|
||||||
|
if(descInliersRatio < minDescInliersRatio)
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
|
||||||
|
descInliersRatio, minDescInliersRatio);
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#if SHOW_DEBUG_LOG
|
||||||
|
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
|
||||||
|
<< " - descInliersRatio " << static_cast<float>(descInliersCount) / keyPointMatchesCount << std::endl;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
ts->set_failed_test_info( cvtest::TS::OK );
|
||||||
|
}
|
||||||
|
|
||||||
|
Ptr<FeatureDetector> featureDetector;
|
||||||
|
Ptr<DescriptorExtractor> descriptorExtractor;
|
||||||
|
int normType;
|
||||||
|
float minKeyPointMatchesRatio;
|
||||||
|
float minDescInliersRatio;
|
||||||
|
};
|
||||||
|
|
||||||
// Tests registration
|
// Tests registration
|
||||||
|
|
||||||
// Detector's rotation invariance check
|
// Detector's rotation invariance check
|
||||||
@ -397,7 +660,7 @@ TEST(Features2d_RotationInvariance_Descriptor_ORB, regression)
|
|||||||
test.safe_run();
|
test.safe_run();
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: uncomment test for FREAK when it will work
|
// TODO: Uncomment test for FREAK when it will work; add test for scale invariance for FREAK
|
||||||
//TEST(Features2d_RotationInvariance_Descriptor_FREAK, regression)
|
//TEST(Features2d_RotationInvariance_Descriptor_FREAK, regression)
|
||||||
//{
|
//{
|
||||||
// DescriptorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
|
// DescriptorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
|
||||||
@ -406,4 +669,25 @@ TEST(Features2d_RotationInvariance_Descriptor_ORB, regression)
|
|||||||
// 0.45f,
|
// 0.45f,
|
||||||
// 0.?f);
|
// 0.?f);
|
||||||
// test.safe_run();
|
// test.safe_run();
|
||||||
//}
|
//}
|
||||||
|
|
||||||
|
/* TODO: Why ORB has bad scale invariance in this tests?
|
||||||
|
// Detector's scale invariance check
|
||||||
|
TEST(Features2d_ScaleInvariance_Detector_ORB, regression)
|
||||||
|
{
|
||||||
|
DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
|
||||||
|
0.13f,
|
||||||
|
0.0f);
|
||||||
|
test.safe_run();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Descriptor's scale invariance check
|
||||||
|
TEST(Features2d_ScaleInvariance_Descriptor_ORB, regression)
|
||||||
|
{
|
||||||
|
DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
|
||||||
|
Algorithm::create<DescriptorExtractor>("Feature2D.ORB"),
|
||||||
|
NORM_HAMMING,
|
||||||
|
0.13f,
|
||||||
|
0.36f);
|
||||||
|
test.safe_run();
|
||||||
|
}*/
|
@ -45,8 +45,8 @@
|
|||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace cv;
|
using namespace cv;
|
||||||
|
|
||||||
const string FEATURES2D_DIR = "features2d";
|
const string IMAGE_TSUKUBA = "/features2d/tsukuba.png";
|
||||||
const string IMAGE_FILENAME = "tsukuba.png";
|
const string IMAGE_BIKES = "/detectors_descriptors_evaluation/images_datasets/bikes/img1.png";
|
||||||
|
|
||||||
#define SHOW_DEBUG_LOG 0
|
#define SHOW_DEBUG_LOG 0
|
||||||
|
|
||||||
@ -127,14 +127,17 @@ void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
|
|||||||
vector<Point2f> points0;
|
vector<Point2f> points0;
|
||||||
KeyPoint::convert(keypoints0, points0);
|
KeyPoint::convert(keypoints0, points0);
|
||||||
Mat points0t;
|
Mat points0t;
|
||||||
perspectiveTransform(Mat(points0), points0t, H);
|
if(H.empty())
|
||||||
|
points0t = Mat(points0);
|
||||||
|
else
|
||||||
|
perspectiveTransform(Mat(points0), points0t, H);
|
||||||
|
|
||||||
matches.clear();
|
matches.clear();
|
||||||
vector<uchar> usedMask(keypoints1.size(), 0);
|
vector<uchar> usedMask(keypoints1.size(), 0);
|
||||||
for(size_t i0 = 0; i0 < keypoints0.size(); i0++)
|
for(size_t i0 = 0; i0 < keypoints0.size(); i0++)
|
||||||
{
|
{
|
||||||
int nearestPointIndex = -1;
|
int nearestPointIndex = -1;
|
||||||
float maxIntersectRatio = -1.f;
|
float maxIntersectRatio = 0.f;
|
||||||
const float r0 = 0.5f * keypoints0[i0].size;
|
const float r0 = 0.5f * keypoints0[i0].size;
|
||||||
for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
|
for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
|
||||||
{
|
{
|
||||||
@ -174,7 +177,7 @@ protected:
|
|||||||
|
|
||||||
void run(int)
|
void run(int)
|
||||||
{
|
{
|
||||||
const string imageFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;
|
||||||
|
|
||||||
// Read test data
|
// Read test data
|
||||||
Mat image0 = imread(imageFilename), image1, mask1;
|
Mat image0 = imread(imageFilename), image1, mask1;
|
||||||
@ -187,8 +190,8 @@ protected:
|
|||||||
|
|
||||||
vector<KeyPoint> keypoints0;
|
vector<KeyPoint> keypoints0;
|
||||||
featureDetector->detect(image0, keypoints0);
|
featureDetector->detect(image0, keypoints0);
|
||||||
|
if(keypoints0.size() < 15)
|
||||||
CV_Assert(keypoints0.size() > 15);
|
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
|
||||||
|
|
||||||
const int maxAngle = 360, angleStep = 15;
|
const int maxAngle = 360, angleStep = 15;
|
||||||
for(int angle = 0; angle < maxAngle; angle += angleStep)
|
for(int angle = 0; angle < maxAngle; angle += angleStep)
|
||||||
@ -266,6 +269,13 @@ protected:
|
|||||||
float minAngleInliersRatio;
|
float minAngleInliersRatio;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
void scaleKeyPoints(const vector<KeyPoint>& src, vector<KeyPoint>& dst, float scale)
|
||||||
|
{
|
||||||
|
dst.resize(src.size());
|
||||||
|
for(size_t i = 0; i < src.size(); i++)
|
||||||
|
dst[i] = KeyPoint(src[i].pt.x * scale, src[i].pt.y * scale, src[i].size * scale);
|
||||||
|
}
|
||||||
|
|
||||||
class DescriptorRotationInvarianceTest : public cvtest::BaseTest
|
class DescriptorRotationInvarianceTest : public cvtest::BaseTest
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
@ -288,7 +298,7 @@ protected:
|
|||||||
|
|
||||||
void run(int)
|
void run(int)
|
||||||
{
|
{
|
||||||
const string imageFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;
|
||||||
|
|
||||||
// Read test data
|
// Read test data
|
||||||
Mat image0 = imread(imageFilename), image1, mask1;
|
Mat image0 = imread(imageFilename), image1, mask1;
|
||||||
@ -302,9 +312,10 @@ protected:
|
|||||||
vector<KeyPoint> keypoints0;
|
vector<KeyPoint> keypoints0;
|
||||||
Mat descriptors0;
|
Mat descriptors0;
|
||||||
featureDetector->detect(image0, keypoints0);
|
featureDetector->detect(image0, keypoints0);
|
||||||
|
if(keypoints0.size() < 15)
|
||||||
|
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
|
||||||
descriptorExtractor->compute(image0, keypoints0, descriptors0);
|
descriptorExtractor->compute(image0, keypoints0, descriptors0);
|
||||||
|
|
||||||
CV_Assert(keypoints0.size() > 15);
|
|
||||||
BFMatcher bfmatcher(normType);
|
BFMatcher bfmatcher(normType);
|
||||||
|
|
||||||
const int maxAngle = 360, angleStep = 15;
|
const int maxAngle = 360, angleStep = 15;
|
||||||
@ -375,6 +386,245 @@ protected:
|
|||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
class DetectorScaleInvarianceTest : public cvtest::BaseTest
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
DetectorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
|
||||||
|
float _minKeyPointMatchesRatio,
|
||||||
|
float _minScaleInliersRatio) :
|
||||||
|
featureDetector(_featureDetector),
|
||||||
|
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
|
||||||
|
minScaleInliersRatio(_minScaleInliersRatio)
|
||||||
|
{
|
||||||
|
CV_Assert(!featureDetector.empty());
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
|
||||||
|
void run(int)
|
||||||
|
{
|
||||||
|
const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
|
||||||
|
|
||||||
|
// Read test data
|
||||||
|
Mat image0 = imread(imageFilename);
|
||||||
|
if(image0.empty())
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
vector<KeyPoint> keypoints0;
|
||||||
|
featureDetector->detect(image0, keypoints0);
|
||||||
|
if(keypoints0.size() < 15)
|
||||||
|
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
|
||||||
|
|
||||||
|
for(int scale = 2; scale <= 4; scale++)
|
||||||
|
{
|
||||||
|
Mat image1;
|
||||||
|
resize(image0, image1, Size(), 1./scale, 1./scale);
|
||||||
|
|
||||||
|
vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
|
||||||
|
featureDetector->detect(image1, keypoints1);
|
||||||
|
if(keypoints1.size() < 15)
|
||||||
|
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
|
||||||
|
|
||||||
|
if(keypoints1.size() > keypoints0.size())
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Strange behavior of the detector. "
|
||||||
|
"It gives more points count in an image of the smaller size.\n"
|
||||||
|
"original size (%d, %d), keypoints count = %d\n"
|
||||||
|
"reduced size (%d, %d), keypoints count = %d\n",
|
||||||
|
image0.cols, image0.rows, keypoints0.size(),
|
||||||
|
image1.cols, image1.rows, keypoints1.size());
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
scaleKeyPoints(keypoints1, osiKeypoints1, scale);
|
||||||
|
|
||||||
|
vector<DMatch> matches;
|
||||||
|
// image1 is query image (it's reduced image0)
|
||||||
|
// image0 is train image
|
||||||
|
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches);
|
||||||
|
|
||||||
|
const float minIntersectRatio = 0.5f;
|
||||||
|
int keyPointMatchesCount = 0;
|
||||||
|
int scaleInliersCount = 0;
|
||||||
|
|
||||||
|
for(size_t m = 0; m < matches.size(); m++)
|
||||||
|
{
|
||||||
|
if(matches[m].distance < minIntersectRatio)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
keyPointMatchesCount++;
|
||||||
|
|
||||||
|
// Check does this inlier have consistent sizes
|
||||||
|
const float maxSizeDiff = 0.8;//0.9f; // grad
|
||||||
|
float size0 = keypoints0[matches[m].trainIdx].size;
|
||||||
|
float size1 = osiKeypoints1[matches[m].queryIdx].size;
|
||||||
|
CV_Assert(size0 > 0 && size1 > 0);
|
||||||
|
if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1))
|
||||||
|
scaleInliersCount++;
|
||||||
|
}
|
||||||
|
|
||||||
|
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
|
||||||
|
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
|
||||||
|
keyPointMatchesRatio, minKeyPointMatchesRatio);
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(keyPointMatchesCount)
|
||||||
|
{
|
||||||
|
float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount;
|
||||||
|
if(scaleInliersRatio < minScaleInliersRatio)
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Incorrect scaleInliersRatio: curr = %f, min = %f.\n",
|
||||||
|
scaleInliersRatio, minScaleInliersRatio);
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#if SHOW_DEBUG_LOG
|
||||||
|
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
|
||||||
|
<< " - scaleInliersRatio " << static_cast<float>(scaleInliersCount) / keyPointMatchesCount << std::endl;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
ts->set_failed_test_info( cvtest::TS::OK );
|
||||||
|
}
|
||||||
|
|
||||||
|
Ptr<FeatureDetector> featureDetector;
|
||||||
|
float minKeyPointMatchesRatio;
|
||||||
|
float minScaleInliersRatio;
|
||||||
|
};
|
||||||
|
|
||||||
|
class DescriptorScaleInvarianceTest : public cvtest::BaseTest
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
DescriptorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
|
||||||
|
const Ptr<DescriptorExtractor>& _descriptorExtractor,
|
||||||
|
int _normType,
|
||||||
|
float _minKeyPointMatchesRatio,
|
||||||
|
float _minDescInliersRatio) :
|
||||||
|
featureDetector(_featureDetector),
|
||||||
|
descriptorExtractor(_descriptorExtractor),
|
||||||
|
normType(_normType),
|
||||||
|
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
|
||||||
|
minDescInliersRatio(_minDescInliersRatio)
|
||||||
|
{
|
||||||
|
CV_Assert(!featureDetector.empty());
|
||||||
|
CV_Assert(!descriptorExtractor.empty());
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
|
||||||
|
void run(int)
|
||||||
|
{
|
||||||
|
const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
|
||||||
|
|
||||||
|
// Read test data
|
||||||
|
Mat image0 = imread(imageFilename);
|
||||||
|
if(image0.empty())
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
vector<KeyPoint> keypoints0;
|
||||||
|
featureDetector->detect(image0, keypoints0);
|
||||||
|
if(keypoints0.size() < 15)
|
||||||
|
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
|
||||||
|
Mat descriptors0;
|
||||||
|
descriptorExtractor->compute(image0, keypoints0, descriptors0);
|
||||||
|
|
||||||
|
BFMatcher bfmatcher(normType);
|
||||||
|
for(int scale = 2; scale <= 4; scale++)
|
||||||
|
{
|
||||||
|
Mat image1;
|
||||||
|
resize(image0, image1, Size(), 1./scale, 1./scale);
|
||||||
|
|
||||||
|
vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
|
||||||
|
featureDetector->detect(image1, keypoints1);
|
||||||
|
if(keypoints1.size() < 15)
|
||||||
|
CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
|
||||||
|
if(keypoints1.size() > keypoints0.size() )
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Strange behavior of the detector. "
|
||||||
|
"It gives more points count in an image of the smaller size.\n"
|
||||||
|
"original size (%d, %d), keypoints count = %d\n"
|
||||||
|
"reduced size (%d, %d), keypoints count = %d\n",
|
||||||
|
image0.cols, image0.rows, keypoints0.size(),
|
||||||
|
image1.cols, image1.rows, keypoints1.size());
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
Mat descriptors1;
|
||||||
|
descriptorExtractor->compute(image1, keypoints1, descriptors1);
|
||||||
|
|
||||||
|
vector<DMatch> keyPointMatches, descMatches;
|
||||||
|
// image1 is query image (it's reduced image0)
|
||||||
|
// image0 is train image
|
||||||
|
bfmatcher.match(descriptors1, descriptors0, descMatches);
|
||||||
|
|
||||||
|
scaleKeyPoints(keypoints1, osiKeypoints1, scale);
|
||||||
|
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, keyPointMatches);
|
||||||
|
|
||||||
|
const float minIntersectRatio = 0.5f;
|
||||||
|
int keyPointMatchesCount = 0;
|
||||||
|
for(size_t m = 0; m < keyPointMatches.size(); m++)
|
||||||
|
{
|
||||||
|
if(keyPointMatches[m].distance >= minIntersectRatio)
|
||||||
|
keyPointMatchesCount++;
|
||||||
|
}
|
||||||
|
int descInliersCount = 0;
|
||||||
|
for(size_t m = 0; m < descMatches.size(); m++)
|
||||||
|
{
|
||||||
|
int queryIdx = descMatches[m].queryIdx;
|
||||||
|
if(keyPointMatches[queryIdx].distance >= minIntersectRatio &&
|
||||||
|
descMatches[m].trainIdx == keyPointMatches[queryIdx].trainIdx)
|
||||||
|
descInliersCount++;
|
||||||
|
}
|
||||||
|
|
||||||
|
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
|
||||||
|
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
|
||||||
|
keyPointMatchesRatio, minKeyPointMatchesRatio);
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(keyPointMatchesCount)
|
||||||
|
{
|
||||||
|
float descInliersRatio = static_cast<float>(descInliersCount) / keyPointMatchesCount;
|
||||||
|
if(descInliersRatio < minDescInliersRatio)
|
||||||
|
{
|
||||||
|
ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
|
||||||
|
descInliersRatio, minDescInliersRatio);
|
||||||
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#if SHOW_DEBUG_LOG
|
||||||
|
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
|
||||||
|
<< " - descInliersRatio " << static_cast<float>(descInliersCount) / keyPointMatchesCount << std::endl;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
ts->set_failed_test_info( cvtest::TS::OK );
|
||||||
|
}
|
||||||
|
|
||||||
|
Ptr<FeatureDetector> featureDetector;
|
||||||
|
Ptr<DescriptorExtractor> descriptorExtractor;
|
||||||
|
int normType;
|
||||||
|
float minKeyPointMatchesRatio;
|
||||||
|
float minDescInliersRatio;
|
||||||
|
};
|
||||||
|
|
||||||
// Tests registration
|
// Tests registration
|
||||||
|
|
||||||
// Detector's rotation invariance check
|
// Detector's rotation invariance check
|
||||||
@ -386,7 +636,6 @@ TEST(Features2d_RotationInvariance_Detector_SURF, regression)
|
|||||||
test.safe_run();
|
test.safe_run();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
TEST(Features2d_RotationInvariance_Detector_SIFT, regression)
|
TEST(Features2d_RotationInvariance_Detector_SIFT, regression)
|
||||||
{
|
{
|
||||||
DetectorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
|
DetectorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
|
||||||
@ -402,7 +651,7 @@ TEST(Features2d_RotationInvariance_Descriptor_SURF, regression)
|
|||||||
Algorithm::create<DescriptorExtractor>("Feature2D.SURF"),
|
Algorithm::create<DescriptorExtractor>("Feature2D.SURF"),
|
||||||
NORM_L1,
|
NORM_L1,
|
||||||
0.44f,
|
0.44f,
|
||||||
0.64f);
|
0.63f);
|
||||||
test.safe_run();
|
test.safe_run();
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -414,4 +663,42 @@ TEST(Features2d_RotationInvariance_Descriptor_SIFT, regression)
|
|||||||
0.64f,
|
0.64f,
|
||||||
0.72f);
|
0.72f);
|
||||||
test.safe_run();
|
test.safe_run();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Detector's scale invariance check
|
||||||
|
TEST(Features2d_ScaleInvariance_Detector_SURF, regression)
|
||||||
|
{
|
||||||
|
DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF"),
|
||||||
|
0.62f,
|
||||||
|
0.68f);
|
||||||
|
test.safe_run();
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Features2d_ScaleInvariance_Detector_SIFT, regression)
|
||||||
|
{
|
||||||
|
DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
|
||||||
|
0.59f,
|
||||||
|
0.94f);
|
||||||
|
test.safe_run();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Descriptor's scale invariance check
|
||||||
|
TEST(Features2d_ScaleInvariance_Descriptor_SURF, regression)
|
||||||
|
{
|
||||||
|
DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF"),
|
||||||
|
Algorithm::create<DescriptorExtractor>("Feature2D.SURF"),
|
||||||
|
NORM_L1,
|
||||||
|
0.62f,
|
||||||
|
0.68f);
|
||||||
|
test.safe_run();
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Features2d_ScaleInvariance_Descriptor_SIFT, regression)
|
||||||
|
{
|
||||||
|
DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
|
||||||
|
Algorithm::create<DescriptorExtractor>("Feature2D.SIFT"),
|
||||||
|
NORM_L1,
|
||||||
|
0.59f,
|
||||||
|
0.78f);
|
||||||
|
test.safe_run();
|
||||||
}
|
}
|
Loading…
x
Reference in New Issue
Block a user