Fixed hundreds of documentation problems
This commit is contained in:
@@ -81,7 +81,7 @@ CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst );
|
||||
|
||||
#define CV_LMEDS 4
|
||||
#define CV_RANSAC 8
|
||||
|
||||
|
||||
#define CV_FM_LMEDS_ONLY CV_LMEDS
|
||||
#define CV_FM_RANSAC_ONLY CV_RANSAC
|
||||
#define CV_FM_LMEDS CV_LMEDS
|
||||
@@ -93,7 +93,7 @@ enum
|
||||
CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
|
||||
CV_P3P = 2 // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
|
||||
};
|
||||
|
||||
|
||||
CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2,
|
||||
CvMat* fundamental_matrix,
|
||||
int method CV_DEFAULT(CV_FM_RANSAC),
|
||||
@@ -117,7 +117,7 @@ CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2,
|
||||
CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2,
|
||||
CvMat* new_points1, CvMat* new_points2);
|
||||
|
||||
|
||||
|
||||
/* Computes the optimal new camera matrix according to the free scaling parameter alpha:
|
||||
alpha=0 - only valid pixels will be retained in the undistorted image
|
||||
alpha=1 - all the source image pixels will be retained in the undistorted image
|
||||
@@ -203,20 +203,19 @@ CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points,
|
||||
#define CV_CALIB_CB_FILTER_QUADS 4
|
||||
#define CV_CALIB_CB_FAST_CHECK 8
|
||||
|
||||
// Performs a fast check if a chessboard is in the input image. This is a workaround to
|
||||
// Performs a fast check if a chessboard is in the input image. This is a workaround to
|
||||
// a problem of cvFindChessboardCorners being slow on images with no chessboard
|
||||
// - src: input image
|
||||
// - size: chessboard size
|
||||
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
|
||||
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
|
||||
// 0 if there is no chessboard, -1 in case of error
|
||||
CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size);
|
||||
|
||||
|
||||
/* Detects corners on a chessboard calibration pattern */
|
||||
CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size,
|
||||
CvPoint2D32f* corners,
|
||||
int* corner_count CV_DEFAULT(NULL),
|
||||
int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+
|
||||
CV_CALIB_CB_NORMALIZE_IMAGE) );
|
||||
int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) );
|
||||
|
||||
/* Draws individual chessboard corners or the whole chessboard detected */
|
||||
CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size,
|
||||
@@ -330,7 +329,7 @@ typedef struct CvStereoBMState
|
||||
int speckleRange; // acceptable range of variation in window
|
||||
|
||||
int trySmallerWindows; // if 1, the results may be more accurate,
|
||||
// at the expense of slower processing
|
||||
// at the expense of slower processing
|
||||
CvRect roi1, roi2;
|
||||
int disp12MaxDiff;
|
||||
|
||||
@@ -353,13 +352,13 @@ CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state );
|
||||
|
||||
CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right,
|
||||
CvArr* disparity, CvStereoBMState* state );
|
||||
|
||||
|
||||
CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
|
||||
int numberOfDisparities, int SADWindowSize );
|
||||
|
||||
|
||||
CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost,
|
||||
int minDisparity, int numberOfDisparities,
|
||||
int disp12MaxDiff CV_DEFAULT(1) );
|
||||
int disp12MaxDiff CV_DEFAULT(1) );
|
||||
|
||||
/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */
|
||||
CVAPI(void) cvReprojectImageTo3D( const CvArr* disparityImage,
|
||||
@@ -384,11 +383,11 @@ public:
|
||||
bool completeSymmFlag=false );
|
||||
bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
|
||||
bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
|
||||
|
||||
|
||||
void clear();
|
||||
void step();
|
||||
enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
|
||||
|
||||
|
||||
cv::Ptr<CvMat> mask;
|
||||
cv::Ptr<CvMat> prevParam;
|
||||
cv::Ptr<CvMat> param;
|
||||
@@ -427,7 +426,7 @@ CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
|
||||
//! variant of findHomography for backward compatibility
|
||||
CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
|
||||
OutputArray mask, int method=0, double ransacReprojThreshold=3);
|
||||
|
||||
|
||||
//! Computes RQ decomposition of 3x3 matrix
|
||||
CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
|
||||
OutputArray Qx=noArray(),
|
||||
@@ -440,7 +439,7 @@ CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray
|
||||
OutputArray rotMatrixX=noArray(),
|
||||
OutputArray rotMatrixY=noArray(),
|
||||
OutputArray rotMatrixZ=noArray(),
|
||||
OutputArray eulerAngles=noArray() );
|
||||
OutputArray eulerAngles=noArray() );
|
||||
|
||||
//! computes derivatives of the matrix product w.r.t each of the multiplied matrix coefficients
|
||||
CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B,
|
||||
@@ -467,14 +466,14 @@ CV_EXPORTS_W void projectPoints( InputArray objectPoints,
|
||||
//! computes the camera pose from a few 3D points and the corresponding projections. The outliers are not handled.
|
||||
enum
|
||||
{
|
||||
ITERATIVE=CV_ITERATIVE,
|
||||
ITERATIVE=CV_ITERATIVE,
|
||||
EPNP=CV_EPNP,
|
||||
P3P=CV_P3P
|
||||
P3P=CV_P3P
|
||||
};
|
||||
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
|
||||
InputArray cameraMatrix, InputArray distCoeffs,
|
||||
OutputArray rvec, OutputArray tvec,
|
||||
bool useExtrinsicGuess=false, int flags=0);
|
||||
bool useExtrinsicGuess=false, int flags=ITERATIVE);
|
||||
|
||||
//! computes the camera pose from a few 3D points and the corresponding projections. The outliers are possible.
|
||||
CV_EXPORTS_W void solvePnPRansac( InputArray objectPoints,
|
||||
@@ -483,12 +482,12 @@ CV_EXPORTS_W void solvePnPRansac( InputArray objectPoints,
|
||||
InputArray distCoeffs,
|
||||
OutputArray rvec,
|
||||
OutputArray tvec,
|
||||
bool useExtrinsicGuess = false,
|
||||
bool useExtrinsicGuess = false,
|
||||
int iterationsCount = 100,
|
||||
float reprojectionError = 8.0,
|
||||
int minInliersCount = 100,
|
||||
OutputArray inliers = noArray(),
|
||||
int flags = 0);
|
||||
int flags = ITERATIVE);
|
||||
|
||||
//! initializes camera matrix from a few 3D points and the corresponding projections.
|
||||
CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
|
||||
@@ -501,10 +500,9 @@ enum { CALIB_CB_ADAPTIVE_THRESH = 1, CALIB_CB_NORMALIZE_IMAGE = 2,
|
||||
//! finds checkerboard pattern of the specified size in the image
|
||||
CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize,
|
||||
OutputArray corners,
|
||||
int flags=CALIB_CB_ADAPTIVE_THRESH+
|
||||
CALIB_CB_NORMALIZE_IMAGE );
|
||||
int flags=CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE );
|
||||
|
||||
//! finds subpixel-accurate positions of the chessboard corners
|
||||
//! finds subpixel-accurate positions of the chessboard corners
|
||||
CV_EXPORTS bool find4QuadCornerSubpix(InputArray img, InputOutputArray corners, Size region_size);
|
||||
|
||||
//! draws the checkerboard pattern (found or partly found) in the image
|
||||
@@ -574,11 +572,10 @@ CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
|
||||
CV_OUT InputOutputArray distCoeffs2,
|
||||
Size imageSize, OutputArray R,
|
||||
OutputArray T, OutputArray E, OutputArray F,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+
|
||||
TermCriteria::EPS, 30, 1e-6),
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6),
|
||||
int flags=CALIB_FIX_INTRINSIC );
|
||||
|
||||
|
||||
|
||||
//! computes the rectification transformation for a stereo camera from its intrinsic and extrinsic parameters
|
||||
CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
|
||||
InputArray cameraMatrix2, InputArray distCoeffs2,
|
||||
@@ -606,7 +603,7 @@ CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distC
|
||||
OutputArray P1, OutputArray P2, OutputArray P3,
|
||||
OutputArray Q, double alpha, Size newImgSize,
|
||||
CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
|
||||
|
||||
|
||||
//! returns the optimal new camera matrix
|
||||
CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
|
||||
Size imageSize, double alpha, Size newImgSize=Size(),
|
||||
@@ -614,16 +611,16 @@ CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray
|
||||
|
||||
//! converts point coordinates from normal pixel coordinates to homogeneous coordinates ((x,y)->(x,y,1))
|
||||
CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
|
||||
|
||||
|
||||
//! converts point coordinates from homogeneous to normal pixel coordinates ((x,y,z)->(x/z, y/z))
|
||||
CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
|
||||
|
||||
//! for backward compatibility
|
||||
CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
|
||||
|
||||
|
||||
//! the algorithm for finding fundamental matrix
|
||||
enum
|
||||
{
|
||||
{
|
||||
FM_7POINT = CV_FM_7POINT, //!< 7-point algorithm
|
||||
FM_8POINT = CV_FM_8POINT, //!< 8-point algorithm
|
||||
FM_LMEDS = CV_FM_LMEDS, //!< least-median algorithm
|
||||
@@ -642,7 +639,7 @@ CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
|
||||
double param1=3., double param2=0.99);
|
||||
|
||||
//! finds coordinates of epipolar lines corresponding the specified points
|
||||
CV_EXPORTS void computeCorrespondEpilines( InputArray points1,
|
||||
CV_EXPORTS void computeCorrespondEpilines( InputArray points,
|
||||
int whichImage, InputArray F,
|
||||
OutputArray lines );
|
||||
|
||||
@@ -657,7 +654,7 @@ template<> CV_EXPORTS void Ptr<CvStereoBMState>::delete_obj();
|
||||
|
||||
/*!
|
||||
Block Matching Stereo Correspondence Algorithm
|
||||
|
||||
|
||||
The class implements BM stereo correspondence algorithm by K. Konolige.
|
||||
*/
|
||||
class CV_EXPORTS_W StereoBM
|
||||
@@ -683,7 +680,7 @@ public:
|
||||
|
||||
/*!
|
||||
Semi-Global Block Matching Stereo Correspondence Algorithm
|
||||
|
||||
|
||||
The class implements the original SGBM stereo correspondence algorithm by H. Hirschmuller and some its modification.
|
||||
*/
|
||||
class CV_EXPORTS_W StereoSGBM
|
||||
@@ -693,7 +690,7 @@ public:
|
||||
|
||||
//! the default constructor
|
||||
CV_WRAP StereoSGBM();
|
||||
|
||||
|
||||
//! the full constructor taking all the necessary algorithm parameters
|
||||
CV_WRAP StereoSGBM(int minDisparity, int numDisparities, int SADWindowSize,
|
||||
int P1=0, int P2=0, int disp12MaxDiff=0,
|
||||
@@ -742,11 +739,11 @@ CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
|
||||
OutputArray _3dImage, InputArray Q,
|
||||
bool handleMissingValues=false,
|
||||
int ddepth=-1 );
|
||||
|
||||
CV_EXPORTS_W int estimateAffine3D(InputArray _from, InputArray _to,
|
||||
OutputArray _out, OutputArray _inliers,
|
||||
double param1=3, double param2=0.99);
|
||||
|
||||
|
||||
CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst,
|
||||
OutputArray out, OutputArray inliers,
|
||||
double ransacThreshold=3, double confidence=0.99);
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user