remove the device specific logic
This commit is contained in:
		@@ -43,10 +43,39 @@
 | 
			
		||||
//
 | 
			
		||||
//M*/
 | 
			
		||||
 | 
			
		||||
#pragma OPENCL EXTENSION cl_amd_printf : enable
 | 
			
		||||
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
 | 
			
		||||
#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable
 | 
			
		||||
 | 
			
		||||
// specialized for non-image2d_t supported platform, intel HD4000, for example
 | 
			
		||||
#ifdef DISABLE_IMAGE2D
 | 
			
		||||
#define IMAGE_INT32 __global uint  *
 | 
			
		||||
#define IMAGE_INT8  __global uchar *
 | 
			
		||||
#else
 | 
			
		||||
#define IMAGE_INT32 image2d_t
 | 
			
		||||
#define IMAGE_INT8  image2d_t
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
uint read_sumTex(IMAGE_INT32 img, sampler_t sam, int2 coord, int rows, int cols, int elemPerRow)
 | 
			
		||||
{
 | 
			
		||||
#ifdef DISABLE_IMAGE2D
 | 
			
		||||
    int x = clamp(coord.x, 0, cols);
 | 
			
		||||
    int y = clamp(coord.y, 0, rows);
 | 
			
		||||
    return img[elemPerRow * y + x];
 | 
			
		||||
#else
 | 
			
		||||
    return read_imageui(img, sam, coord).x;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
uchar read_imgTex(IMAGE_INT8 img, sampler_t sam, float2 coord, int rows, int cols, int elemPerRow)
 | 
			
		||||
{
 | 
			
		||||
#ifdef DISABLE_IMAGE2D
 | 
			
		||||
    int x = clamp(convert_int_rte(coord.x), 0, cols - 1);
 | 
			
		||||
    int y = clamp(convert_int_rte(coord.y), 0, rows - 1);
 | 
			
		||||
    return img[elemPerRow * y + x];
 | 
			
		||||
#else
 | 
			
		||||
    return (uchar)read_imageui(img, sam, coord).x;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// dynamically change the precision used for floating type
 | 
			
		||||
 | 
			
		||||
#if defined (__ATI__) || defined (__NVIDIA__)
 | 
			
		||||
@@ -58,14 +87,24 @@
 | 
			
		||||
// Image read mode
 | 
			
		||||
__constant sampler_t sampler    = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
 | 
			
		||||
 | 
			
		||||
#ifndef FLT_EPSILON
 | 
			
		||||
#define FLT_EPSILON (1e-15)
 | 
			
		||||
#define CV_PI_F 3.14159265f
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifndef CV_PI_F
 | 
			
		||||
#define CV_PI_F 3.14159265f
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// Use integral image to calculate haar wavelets.
 | 
			
		||||
// N = 2
 | 
			
		||||
// for simple haar paatern
 | 
			
		||||
float icvCalcHaarPatternSum_2(image2d_t sumTex, __constant float src[2][5], int oldSize, int newSize, int y, int x)
 | 
			
		||||
float icvCalcHaarPatternSum_2(
 | 
			
		||||
    IMAGE_INT32 sumTex, 
 | 
			
		||||
    __constant float src[2][5], 
 | 
			
		||||
    int oldSize, 
 | 
			
		||||
    int newSize, 
 | 
			
		||||
    int y, int x, 
 | 
			
		||||
    int rows, int cols, int elemPerRow)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
    float ratio = (float)newSize / oldSize;
 | 
			
		||||
@@ -81,11 +120,10 @@ float icvCalcHaarPatternSum_2(image2d_t sumTex, __constant float src[2][5], int
 | 
			
		||||
        int dy2 = convert_int_rte(ratio * src[k][3]);
 | 
			
		||||
 | 
			
		||||
        F t = 0;
 | 
			
		||||
        t += read_imageui(sumTex, sampler, (int2)(x + dx1, y + dy1)).x;
 | 
			
		||||
        t -= read_imageui(sumTex, sampler, (int2)(x + dx1, y + dy2)).x;
 | 
			
		||||
        t -= read_imageui(sumTex, sampler, (int2)(x + dx2, y + dy1)).x;
 | 
			
		||||
        t += read_imageui(sumTex, sampler, (int2)(x + dx2, y + dy2)).x;
 | 
			
		||||
 | 
			
		||||
        t += read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy1), rows, cols, elemPerRow );
 | 
			
		||||
        t -= read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy2), rows, cols, elemPerRow );
 | 
			
		||||
        t -= read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy1), rows, cols, elemPerRow );
 | 
			
		||||
        t += read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy2), rows, cols, elemPerRow );
 | 
			
		||||
        d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -93,7 +131,13 @@ float icvCalcHaarPatternSum_2(image2d_t sumTex, __constant float src[2][5], int
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// N = 3
 | 
			
		||||
float icvCalcHaarPatternSum_3(image2d_t sumTex, __constant float src[3][5], int oldSize, int newSize, int y, int x)
 | 
			
		||||
float icvCalcHaarPatternSum_3(
 | 
			
		||||
    IMAGE_INT32 sumTex, 
 | 
			
		||||
    __constant float src[2][5], 
 | 
			
		||||
    int oldSize, 
 | 
			
		||||
    int newSize, 
 | 
			
		||||
    int y, int x, 
 | 
			
		||||
    int rows, int cols, int elemPerRow)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
    float ratio = (float)newSize / oldSize;
 | 
			
		||||
@@ -109,11 +153,10 @@ float icvCalcHaarPatternSum_3(image2d_t sumTex, __constant float src[3][5], int
 | 
			
		||||
        int dy2 = convert_int_rte(ratio * src[k][3]);
 | 
			
		||||
 | 
			
		||||
        F t = 0;
 | 
			
		||||
        t += read_imageui(sumTex, sampler, (int2)(x + dx1, y + dy1)).x;
 | 
			
		||||
        t -= read_imageui(sumTex, sampler, (int2)(x + dx1, y + dy2)).x;
 | 
			
		||||
        t -= read_imageui(sumTex, sampler, (int2)(x + dx2, y + dy1)).x;
 | 
			
		||||
        t += read_imageui(sumTex, sampler, (int2)(x + dx2, y + dy2)).x;
 | 
			
		||||
 | 
			
		||||
        t += read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy1), rows, cols, elemPerRow );
 | 
			
		||||
        t -= read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy2), rows, cols, elemPerRow );
 | 
			
		||||
        t -= read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy1), rows, cols, elemPerRow );
 | 
			
		||||
        t += read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy2), rows, cols, elemPerRow );
 | 
			
		||||
        d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -121,7 +164,13 @@ float icvCalcHaarPatternSum_3(image2d_t sumTex, __constant float src[3][5], int
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// N = 4
 | 
			
		||||
float icvCalcHaarPatternSum_4(image2d_t sumTex, __constant float src[4][5], int oldSize, int newSize, int y, int x)
 | 
			
		||||
float icvCalcHaarPatternSum_4(
 | 
			
		||||
    IMAGE_INT32 sumTex, 
 | 
			
		||||
    __constant float src[2][5], 
 | 
			
		||||
    int oldSize, 
 | 
			
		||||
    int newSize, 
 | 
			
		||||
    int y, int x, 
 | 
			
		||||
    int rows, int cols, int elemPerRow)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
    float ratio = (float)newSize / oldSize;
 | 
			
		||||
@@ -137,11 +186,10 @@ float icvCalcHaarPatternSum_4(image2d_t sumTex, __constant float src[4][5], int
 | 
			
		||||
        int dy2 = convert_int_rte(ratio * src[k][3]);
 | 
			
		||||
 | 
			
		||||
        F t = 0;
 | 
			
		||||
        t += read_imageui(sumTex, sampler, (int2)(x + dx1, y + dy1)).x;
 | 
			
		||||
        t -= read_imageui(sumTex, sampler, (int2)(x + dx1, y + dy2)).x;
 | 
			
		||||
        t -= read_imageui(sumTex, sampler, (int2)(x + dx2, y + dy1)).x;
 | 
			
		||||
        t += read_imageui(sumTex, sampler, (int2)(x + dx2, y + dy2)).x;
 | 
			
		||||
 | 
			
		||||
        t += read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy1), rows, cols, elemPerRow );
 | 
			
		||||
        t -= read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy2), rows, cols, elemPerRow );
 | 
			
		||||
        t -= read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy1), rows, cols, elemPerRow );
 | 
			
		||||
        t += read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy2), rows, cols, elemPerRow );
 | 
			
		||||
        d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -172,7 +220,7 @@ __inline int calcSize(int octave, int layer)
 | 
			
		||||
 | 
			
		||||
//calculate targeted layer per-pixel determinant and trace with an integral image
 | 
			
		||||
__kernel void icvCalcLayerDetAndTrace(
 | 
			
		||||
    image2d_t sumTex, // input integral image
 | 
			
		||||
    IMAGE_INT32 sumTex, // input integral image
 | 
			
		||||
    __global float * det,      // output Determinant
 | 
			
		||||
    __global float * trace,    // output trace
 | 
			
		||||
    int det_step,     // the step of det in bytes
 | 
			
		||||
@@ -181,11 +229,13 @@ __kernel void icvCalcLayerDetAndTrace(
 | 
			
		||||
    int c_img_cols,
 | 
			
		||||
    int c_nOctaveLayers,
 | 
			
		||||
    int c_octave,
 | 
			
		||||
    int c_layer_rows
 | 
			
		||||
    int c_layer_rows,
 | 
			
		||||
    int sumTex_step
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    det_step   /= sizeof(*det);
 | 
			
		||||
    trace_step /= sizeof(*trace);
 | 
			
		||||
    sumTex_step/= sizeof(uint);
 | 
			
		||||
    // Determine the indices
 | 
			
		||||
    const int gridDim_y  = get_num_groups(1) / (c_nOctaveLayers + 2);
 | 
			
		||||
    const int blockIdx_y = get_group_id(1) % gridDim_y;
 | 
			
		||||
@@ -205,12 +255,12 @@ __kernel void icvCalcLayerDetAndTrace(
 | 
			
		||||
 | 
			
		||||
    if (size <= c_img_rows && size <= c_img_cols && i < samples_i && j < samples_j)
 | 
			
		||||
    {
 | 
			
		||||
        const float dx  = icvCalcHaarPatternSum_3(sumTex, c_DX , 9, size, i << c_octave, j << c_octave);
 | 
			
		||||
        const float dy  = icvCalcHaarPatternSum_3(sumTex, c_DY , 9, size, i << c_octave, j << c_octave);
 | 
			
		||||
        const float dxy = icvCalcHaarPatternSum_4(sumTex, c_DXY, 9, size, i << c_octave, j << c_octave);
 | 
			
		||||
        const float dx  = icvCalcHaarPatternSum_3(sumTex, c_DX , 9, size, i << c_octave, j << c_octave, c_img_rows, c_img_cols, sumTex_step);
 | 
			
		||||
        const float dy  = icvCalcHaarPatternSum_3(sumTex, c_DY , 9, size, i << c_octave, j << c_octave, c_img_rows, c_img_cols, sumTex_step);
 | 
			
		||||
        const float dxy = icvCalcHaarPatternSum_4(sumTex, c_DXY, 9, size, i << c_octave, j << c_octave, c_img_rows, c_img_cols, sumTex_step);
 | 
			
		||||
 | 
			
		||||
        det  [j + margin + det_step   * (layer * c_layer_rows + i + margin)] = dx * dy - 0.81f * dxy * dxy;
 | 
			
		||||
        trace[j + margin + trace_step * (layer * c_layer_rows + i + margin)] = dx + dy;
 | 
			
		||||
        trace[j + margin + trace_step * (layer * c_layer_rows + i + margin)] = dx + dy; 
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -220,7 +270,7 @@ __kernel void icvCalcLayerDetAndTrace(
 | 
			
		||||
 | 
			
		||||
__constant float c_DM[5] = {0, 0, 9, 9, 1};
 | 
			
		||||
 | 
			
		||||
bool within_check(image2d_t maskSumTex, int sum_i, int sum_j, int size)
 | 
			
		||||
bool within_check(IMAGE_INT32 maskSumTex, int sum_i, int sum_j, int size, int rows, int cols, int step)
 | 
			
		||||
{
 | 
			
		||||
    float ratio = (float)size / 9.0f;
 | 
			
		||||
 | 
			
		||||
@@ -233,10 +283,10 @@ bool within_check(image2d_t maskSumTex, int sum_i, int sum_j, int size)
 | 
			
		||||
 | 
			
		||||
    float t = 0;
 | 
			
		||||
 | 
			
		||||
    t += read_imageui(maskSumTex, sampler, (int2)(sum_j + dx1, sum_i + dy1)).x;
 | 
			
		||||
    t -= read_imageui(maskSumTex, sampler, (int2)(sum_j + dx1, sum_i + dy2)).x;
 | 
			
		||||
    t -= read_imageui(maskSumTex, sampler, (int2)(sum_j + dx2, sum_i + dy1)).x;
 | 
			
		||||
    t += read_imageui(maskSumTex, sampler, (int2)(sum_j + dx2, sum_i + dy2)).x;
 | 
			
		||||
    t += read_sumTex(maskSumTex, sampler, (int2)(sum_j + dx1, sum_i + dy1), rows, cols, step);
 | 
			
		||||
    t -= read_sumTex(maskSumTex, sampler, (int2)(sum_j + dx1, sum_i + dy2), rows, cols, step);
 | 
			
		||||
    t -= read_sumTex(maskSumTex, sampler, (int2)(sum_j + dx2, sum_i + dy1), rows, cols, step);
 | 
			
		||||
    t += read_sumTex(maskSumTex, sampler, (int2)(sum_j + dx2, sum_i + dy2), rows, cols, step);
 | 
			
		||||
 | 
			
		||||
    d += t * c_DM[4] / ((dx2 - dx1) * (dy2 - dy1));
 | 
			
		||||
 | 
			
		||||
@@ -246,9 +296,9 @@ bool within_check(image2d_t maskSumTex, int sum_i, int sum_j, int size)
 | 
			
		||||
// Non-maximal suppression to further filtering the candidates from previous step
 | 
			
		||||
__kernel
 | 
			
		||||
    void icvFindMaximaInLayer_withmask(
 | 
			
		||||
    __global const float * det,
 | 
			
		||||
    __global const float * trace,
 | 
			
		||||
    __global int4 * maxPosBuffer,
 | 
			
		||||
    __global const float * det, 
 | 
			
		||||
    __global const float * trace, 
 | 
			
		||||
    __global int4 * maxPosBuffer, 
 | 
			
		||||
    volatile __global unsigned int* maxCounter,
 | 
			
		||||
    int counter_offset,
 | 
			
		||||
    int det_step,     // the step of det in bytes
 | 
			
		||||
@@ -261,7 +311,8 @@ __kernel
 | 
			
		||||
    int c_layer_cols,
 | 
			
		||||
    int c_max_candidates,
 | 
			
		||||
    float c_hessianThreshold,
 | 
			
		||||
    image2d_t maskSumTex
 | 
			
		||||
    IMAGE_INT32 maskSumTex,
 | 
			
		||||
    int mask_step
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    volatile __local  float N9[768]; // threads.x * threads.y * 3
 | 
			
		||||
@@ -269,6 +320,7 @@ __kernel
 | 
			
		||||
    det_step   /= sizeof(*det);
 | 
			
		||||
    trace_step /= sizeof(*trace);
 | 
			
		||||
    maxCounter += counter_offset;
 | 
			
		||||
    mask_step  /= sizeof(uint);
 | 
			
		||||
 | 
			
		||||
    // Determine the indices
 | 
			
		||||
    const int gridDim_y  = get_num_groups(1) / c_nOctaveLayers;
 | 
			
		||||
@@ -288,26 +340,26 @@ __kernel
 | 
			
		||||
    // Is this thread within the hessian buffer?
 | 
			
		||||
    const int zoff = get_local_size(0) * get_local_size(1);
 | 
			
		||||
    const int localLin = get_local_id(0) + get_local_id(1) * get_local_size(0) + zoff;
 | 
			
		||||
    N9[localLin - zoff] =
 | 
			
		||||
        det[det_step *
 | 
			
		||||
    N9[localLin - zoff] = 
 | 
			
		||||
        det[det_step * 
 | 
			
		||||
        (c_layer_rows * (layer - 1) + min(max(i, 0), c_img_rows - 1)) // y
 | 
			
		||||
        + min(max(j, 0), c_img_cols - 1)];                            // x
 | 
			
		||||
    N9[localLin       ] =
 | 
			
		||||
        det[det_step *
 | 
			
		||||
    N9[localLin       ] = 
 | 
			
		||||
        det[det_step * 
 | 
			
		||||
        (c_layer_rows * (layer    ) + min(max(i, 0), c_img_rows - 1)) // y
 | 
			
		||||
        + min(max(j, 0), c_img_cols - 1)];                            // x
 | 
			
		||||
    N9[localLin + zoff] =
 | 
			
		||||
        det[det_step *
 | 
			
		||||
    N9[localLin + zoff] = 
 | 
			
		||||
        det[det_step * 
 | 
			
		||||
        (c_layer_rows * (layer + 1) + min(max(i, 0), c_img_rows - 1)) // y
 | 
			
		||||
        + min(max(j, 0), c_img_cols - 1)];                            // x
 | 
			
		||||
 | 
			
		||||
    barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
 | 
			
		||||
    if (i < c_layer_rows - margin
 | 
			
		||||
    if (i < c_layer_rows - margin 
 | 
			
		||||
        && j < c_layer_cols - margin
 | 
			
		||||
        && get_local_id(0) > 0
 | 
			
		||||
        && get_local_id(0) > 0 
 | 
			
		||||
        && get_local_id(0) < get_local_size(0) - 1
 | 
			
		||||
        && get_local_id(1) > 0
 | 
			
		||||
        && get_local_id(1) > 0 
 | 
			
		||||
        && get_local_id(1) < get_local_size(1) - 1 // these are unnecessary conditions ported from CUDA
 | 
			
		||||
        )
 | 
			
		||||
    {
 | 
			
		||||
@@ -321,7 +373,7 @@ __kernel
 | 
			
		||||
            const int sum_i = (i - ((size >> 1) >> c_octave)) << c_octave;
 | 
			
		||||
            const int sum_j = (j - ((size >> 1) >> c_octave)) << c_octave;
 | 
			
		||||
 | 
			
		||||
            if (within_check(maskSumTex, sum_i, sum_j, size))
 | 
			
		||||
            if (within_check(maskSumTex, sum_i, sum_j, size, c_img_rows, c_img_cols, mask_step))
 | 
			
		||||
            {
 | 
			
		||||
                // Check to see if we have a max (in its 26 neighbours)
 | 
			
		||||
                const bool condmax = val0 > N9[localLin - 1 - get_local_size(0) - zoff]
 | 
			
		||||
@@ -372,9 +424,9 @@ __kernel
 | 
			
		||||
 | 
			
		||||
__kernel
 | 
			
		||||
    void icvFindMaximaInLayer(
 | 
			
		||||
    __global float * det,
 | 
			
		||||
    __global float * trace,
 | 
			
		||||
    __global int4 * maxPosBuffer,
 | 
			
		||||
    __global float * det, 
 | 
			
		||||
    __global float * trace, 
 | 
			
		||||
    __global int4 * maxPosBuffer, 
 | 
			
		||||
    volatile __global unsigned int* maxCounter,
 | 
			
		||||
    int counter_offset,
 | 
			
		||||
    int det_step,     // the step of det in bytes
 | 
			
		||||
@@ -417,19 +469,19 @@ __kernel
 | 
			
		||||
    int l_x = min(max(j, 0), c_img_cols - 1);
 | 
			
		||||
    int l_y = c_layer_rows * layer + min(max(i, 0), c_img_rows - 1);
 | 
			
		||||
 | 
			
		||||
    N9[localLin - zoff] =
 | 
			
		||||
    N9[localLin - zoff] = 
 | 
			
		||||
        det[det_step * (l_y - c_layer_rows) + l_x];
 | 
			
		||||
    N9[localLin       ] =
 | 
			
		||||
    N9[localLin       ] = 
 | 
			
		||||
        det[det_step * (l_y               ) + l_x];
 | 
			
		||||
    N9[localLin + zoff] =
 | 
			
		||||
    N9[localLin + zoff] = 
 | 
			
		||||
        det[det_step * (l_y + c_layer_rows) + l_x];
 | 
			
		||||
    barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
 | 
			
		||||
    if (i < c_layer_rows - margin
 | 
			
		||||
    if (i < c_layer_rows - margin 
 | 
			
		||||
        && j < c_layer_cols - margin
 | 
			
		||||
        && get_local_id(0) > 0
 | 
			
		||||
        && get_local_id(0) > 0 
 | 
			
		||||
        && get_local_id(0) < get_local_size(0) - 1
 | 
			
		||||
        && get_local_id(1) > 0
 | 
			
		||||
        && get_local_id(1) > 0 
 | 
			
		||||
        && get_local_id(1) < get_local_size(1) - 1 // these are unnecessary conditions ported from CUDA
 | 
			
		||||
        )
 | 
			
		||||
    {
 | 
			
		||||
@@ -497,17 +549,17 @@ inline bool solve3x3_float(volatile __local  const float A[3][3], volatile __loc
 | 
			
		||||
    {
 | 
			
		||||
        F invdet = 1.0 / det;
 | 
			
		||||
 | 
			
		||||
        x[0] = invdet *
 | 
			
		||||
        x[0] = invdet * 
 | 
			
		||||
            (b[0]    * (A[1][1] * A[2][2] - A[1][2] * A[2][1]) -
 | 
			
		||||
            A[0][1] * (b[1]    * A[2][2] - A[1][2] * b[2]   ) +
 | 
			
		||||
            A[0][2] * (b[1]    * A[2][1] - A[1][1] * b[2]   ));
 | 
			
		||||
 | 
			
		||||
        x[1] = invdet *
 | 
			
		||||
        x[1] = invdet * 
 | 
			
		||||
            (A[0][0] * (b[1]    * A[2][2] - A[1][2] * b[2]   ) -
 | 
			
		||||
            b[0]    * (A[1][0] * A[2][2] - A[1][2] * A[2][0]) +
 | 
			
		||||
            A[0][2] * (A[1][0] * b[2]    - b[1]    * A[2][0]));
 | 
			
		||||
 | 
			
		||||
        x[2] = invdet *
 | 
			
		||||
        x[2] = invdet * 
 | 
			
		||||
            (A[0][0] * (A[1][1] * b[2]    - b[1]    * A[2][1]) -
 | 
			
		||||
            A[0][1] * (A[1][0] * b[2]    - b[1]    * A[2][0]) +
 | 
			
		||||
            b[0]    * (A[1][0] * A[2][1] - A[1][1] * A[2][0]));
 | 
			
		||||
@@ -528,9 +580,9 @@ inline bool solve3x3_float(volatile __local  const float A[3][3], volatile __loc
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// INTERPOLATION
 | 
			
		||||
__kernel
 | 
			
		||||
__kernel 
 | 
			
		||||
    void icvInterpolateKeypoint(
 | 
			
		||||
    __global const float * det,
 | 
			
		||||
    __global const float * det, 
 | 
			
		||||
    __global const int4 * maxPosBuffer,
 | 
			
		||||
    __global float * keypoints,
 | 
			
		||||
    volatile __global unsigned int * featureCounter,
 | 
			
		||||
@@ -560,7 +612,7 @@ __kernel
 | 
			
		||||
 | 
			
		||||
    volatile __local  float N9[3][3][3];
 | 
			
		||||
 | 
			
		||||
    N9[get_local_id(2)][get_local_id(1)][get_local_id(0)] =
 | 
			
		||||
    N9[get_local_id(2)][get_local_id(1)][get_local_id(0)] = 
 | 
			
		||||
        det[det_step * (c_layer_rows * layer + i) + j];
 | 
			
		||||
    barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
 | 
			
		||||
@@ -658,27 +710,27 @@ __kernel
 | 
			
		||||
 | 
			
		||||
__constant float c_aptX[ORI_SAMPLES] = {-6, -5, -5, -5, -5, -5, -5, -5, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6};
 | 
			
		||||
__constant float c_aptY[ORI_SAMPLES] = {0, -3, -2, -1, 0, 1, 2, 3, -4, -3, -2, -1, 0, 1, 2, 3, 4, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, -3, -2, -1, 0, 1, 2, 3, 0};
 | 
			
		||||
__constant float c_aptW[ORI_SAMPLES] = {0.001455130288377404f, 0.001707611023448408f, 0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f,
 | 
			
		||||
    0.003238451667129993f, 0.002547456417232752f, 0.001707611023448408f, 0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f,
 | 
			
		||||
    0.00665318313986063f, 0.00720730796456337f, 0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f,
 | 
			
		||||
    0.002003900473937392f, 0.001707611023448408f, 0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f,
 | 
			
		||||
    0.01164754293859005f, 0.01261763460934162f, 0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f,
 | 
			
		||||
    0.0035081731621176f, 0.001707611023448408f, 0.002547456417232752f, 0.005233579315245152f, 0.009162282571196556f,
 | 
			
		||||
    0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f, 0.01366852037608624f,
 | 
			
		||||
    0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.003238451667129993f, 0.00665318313986063f,
 | 
			
		||||
    0.01164754293859005f, 0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f,
 | 
			
		||||
    0.01737609319388866f, 0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.001455130288377404f,
 | 
			
		||||
    0.0035081731621176f, 0.00720730796456337f, 0.01261763460934162f, 0.0188232995569706f, 0.02392910048365593f,
 | 
			
		||||
    0.02592208795249462f, 0.02392910048365593f, 0.0188232995569706f, 0.01261763460934162f, 0.00720730796456337f,
 | 
			
		||||
    0.0035081731621176f, 0.001455130288377404f, 0.003238451667129993f, 0.00665318313986063f, 0.01164754293859005f,
 | 
			
		||||
    0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f, 0.01737609319388866f,
 | 
			
		||||
__constant float c_aptW[ORI_SAMPLES] = {0.001455130288377404f, 0.001707611023448408f, 0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f, 
 | 
			
		||||
    0.003238451667129993f, 0.002547456417232752f, 0.001707611023448408f, 0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f, 
 | 
			
		||||
    0.00665318313986063f, 0.00720730796456337f, 0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f, 
 | 
			
		||||
    0.002003900473937392f, 0.001707611023448408f, 0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f, 
 | 
			
		||||
    0.01164754293859005f, 0.01261763460934162f, 0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f, 
 | 
			
		||||
    0.0035081731621176f, 0.001707611023448408f, 0.002547456417232752f, 0.005233579315245152f, 0.009162282571196556f, 
 | 
			
		||||
    0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f, 0.01366852037608624f, 
 | 
			
		||||
    0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.003238451667129993f, 0.00665318313986063f, 
 | 
			
		||||
    0.01164754293859005f, 0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f, 
 | 
			
		||||
    0.01737609319388866f, 0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.001455130288377404f, 
 | 
			
		||||
    0.0035081731621176f, 0.00720730796456337f, 0.01261763460934162f, 0.0188232995569706f, 0.02392910048365593f, 
 | 
			
		||||
    0.02592208795249462f, 0.02392910048365593f, 0.0188232995569706f, 0.01261763460934162f, 0.00720730796456337f, 
 | 
			
		||||
    0.0035081731621176f, 0.001455130288377404f, 0.003238451667129993f, 0.00665318313986063f, 0.01164754293859005f, 
 | 
			
		||||
    0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f, 0.01737609319388866f, 
 | 
			
		||||
    0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.002547456417232752f, 0.005233579315245152f,
 | 
			
		||||
    0.009162282571196556f, 0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f,
 | 
			
		||||
    0.01366852037608624f, 0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.001707611023448408f,
 | 
			
		||||
    0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f, 0.01164754293859005f, 0.01261763460934162f,
 | 
			
		||||
    0.009162282571196556f, 0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f, 
 | 
			
		||||
    0.01366852037608624f, 0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.001707611023448408f, 
 | 
			
		||||
    0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f, 0.01164754293859005f, 0.01261763460934162f, 
 | 
			
		||||
    0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f, 0.0035081731621176f, 0.001707611023448408f,
 | 
			
		||||
    0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f, 0.00665318313986063f, 0.00720730796456337f,
 | 
			
		||||
    0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f, 0.002003900473937392f, 0.001707611023448408f,
 | 
			
		||||
    0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f, 0.00665318313986063f, 0.00720730796456337f, 
 | 
			
		||||
    0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f, 0.002003900473937392f, 0.001707611023448408f, 
 | 
			
		||||
    0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f, 0.003238451667129993f, 0.002547456417232752f,
 | 
			
		||||
    0.001707611023448408f, 0.001455130288377404f};
 | 
			
		||||
 | 
			
		||||
@@ -691,27 +743,29 @@ void reduce_32_sum(volatile __local  float * data, float partial_reduction, int
 | 
			
		||||
    data[tid] = partial_reduction;
 | 
			
		||||
    barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
 | 
			
		||||
    if (tid < 16)
 | 
			
		||||
    if (tid < 16) 
 | 
			
		||||
    {
 | 
			
		||||
        data[tid] = partial_reduction = op(partial_reduction, data[tid + 16]);
 | 
			
		||||
        data[tid] = partial_reduction = op(partial_reduction, data[tid + 8 ]);
 | 
			
		||||
        data[tid] = partial_reduction = op(partial_reduction, data[tid + 4 ]);
 | 
			
		||||
        data[tid] = partial_reduction = op(partial_reduction, data[tid + 2 ]);
 | 
			
		||||
        data[tid] = partial_reduction = op(partial_reduction, data[tid + 1 ]);
 | 
			
		||||
        data[tid] = partial_reduction = op(partial_reduction, data[tid + 1 ]); 
 | 
			
		||||
    }
 | 
			
		||||
#undef op
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__kernel
 | 
			
		||||
    void icvCalcOrientation(
 | 
			
		||||
    image2d_t sumTex,
 | 
			
		||||
    IMAGE_INT32 sumTex,
 | 
			
		||||
    __global float * keypoints,
 | 
			
		||||
    int keypoints_step,
 | 
			
		||||
    int c_img_rows,
 | 
			
		||||
    int c_img_cols
 | 
			
		||||
    int c_img_cols,
 | 
			
		||||
    int sum_step
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    keypoints_step /= sizeof(*keypoints);
 | 
			
		||||
    sum_step       /= sizeof(uint);
 | 
			
		||||
    __global float* featureX    = keypoints + X_ROW * keypoints_step;
 | 
			
		||||
    __global float* featureY    = keypoints + Y_ROW * keypoints_step;
 | 
			
		||||
    __global float* featureSize = keypoints + SIZE_ROW * keypoints_step;
 | 
			
		||||
@@ -754,8 +808,8 @@ __kernel
 | 
			
		||||
        if (y >= 0 && y < (c_img_rows + 1) - grad_wav_size &&
 | 
			
		||||
            x >= 0 && x < (c_img_cols + 1) - grad_wav_size)
 | 
			
		||||
        {
 | 
			
		||||
            X = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NX, 4, grad_wav_size, y, x);
 | 
			
		||||
            Y = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NY, 4, grad_wav_size, y, x);
 | 
			
		||||
            X = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NX, 4, grad_wav_size, y, x, c_img_rows, c_img_cols, sum_step);
 | 
			
		||||
            Y = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NY, 4, grad_wav_size, y, x, c_img_rows, c_img_cols, sum_step);
 | 
			
		||||
 | 
			
		||||
            angle = atan2(Y, X);
 | 
			
		||||
 | 
			
		||||
@@ -881,20 +935,20 @@ __constant float c_DW[PATCH_SZ * PATCH_SZ] =
 | 
			
		||||
 | 
			
		||||
// utility for linear filter
 | 
			
		||||
inline uchar readerGet(
 | 
			
		||||
    image2d_t src,
 | 
			
		||||
    const float centerX, const float centerY, const float win_offset, const float cos_dir, const float sin_dir,
 | 
			
		||||
    int i, int j
 | 
			
		||||
    IMAGE_INT8 src, 
 | 
			
		||||
    const float centerX, const float centerY, const float win_offset, const float cos_dir, const float sin_dir, 
 | 
			
		||||
    int i, int j, int rows, int cols, int elemPerRow
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    float pixel_x = centerX + (win_offset + j) * cos_dir + (win_offset + i) * sin_dir;
 | 
			
		||||
    float pixel_y = centerY - (win_offset + j) * sin_dir + (win_offset + i) * cos_dir;
 | 
			
		||||
    return (uchar)read_imageui(src, sampler, (float2)(pixel_x, pixel_y)).x;
 | 
			
		||||
    return read_imgTex(src, sampler, (float2)(pixel_x, pixel_y), rows, cols, elemPerRow);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline float linearFilter(
 | 
			
		||||
    image2d_t src,
 | 
			
		||||
    const float centerX, const float centerY, const float win_offset, const float cos_dir, const float sin_dir,
 | 
			
		||||
    float y, float x
 | 
			
		||||
    IMAGE_INT8 src, 
 | 
			
		||||
    const float centerX, const float centerY, const float win_offset, const float cos_dir, const float sin_dir,  
 | 
			
		||||
    float y, float x, int rows, int cols, int elemPerRow
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    x -= 0.5f;
 | 
			
		||||
@@ -907,30 +961,33 @@ inline float linearFilter(
 | 
			
		||||
    const int x2 = x1 + 1;
 | 
			
		||||
    const int y2 = y1 + 1;
 | 
			
		||||
 | 
			
		||||
    uchar src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y1, x1);
 | 
			
		||||
    uchar src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y1, x1, rows, cols, elemPerRow);
 | 
			
		||||
    out = out + src_reg * ((x2 - x) * (y2 - y));
 | 
			
		||||
 | 
			
		||||
    src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y1, x2);
 | 
			
		||||
    src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y1, x2, rows, cols, elemPerRow);
 | 
			
		||||
    out = out + src_reg * ((x - x1) * (y2 - y));
 | 
			
		||||
 | 
			
		||||
    src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y2, x1);
 | 
			
		||||
    src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y2, x1, rows, cols, elemPerRow);
 | 
			
		||||
    out = out + src_reg * ((x2 - x) * (y - y1));
 | 
			
		||||
 | 
			
		||||
    src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y2, x2);
 | 
			
		||||
    src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y2, x2, rows, cols, elemPerRow);
 | 
			
		||||
    out = out + src_reg * ((x - x1) * (y - y1));
 | 
			
		||||
 | 
			
		||||
    return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void calc_dx_dy(
 | 
			
		||||
    image2d_t imgTex,
 | 
			
		||||
    IMAGE_INT8 imgTex,
 | 
			
		||||
    volatile __local  float s_dx_bin[25],
 | 
			
		||||
    volatile __local  float s_dy_bin[25],
 | 
			
		||||
    volatile __local  float s_PATCH[6][6],
 | 
			
		||||
    __global const float* featureX,
 | 
			
		||||
    __global const float* featureY,
 | 
			
		||||
    __global const float* featureSize,
 | 
			
		||||
    __global const float* featureDir
 | 
			
		||||
    __global const float* featureX, 
 | 
			
		||||
    __global const float* featureY, 
 | 
			
		||||
    __global const float* featureSize, 
 | 
			
		||||
    __global const float* featureDir,
 | 
			
		||||
    int rows,
 | 
			
		||||
    int cols,
 | 
			
		||||
    int elemPerRow
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    const float centerX = featureX[get_group_id(0)];
 | 
			
		||||
@@ -965,7 +1022,7 @@ void calc_dx_dy(
 | 
			
		||||
    const float icoo = ((float)yIndex / (PATCH_SZ + 1)) * win_size;
 | 
			
		||||
    const float jcoo = ((float)xIndex / (PATCH_SZ + 1)) * win_size;
 | 
			
		||||
 | 
			
		||||
    s_PATCH[get_local_id(1)][get_local_id(0)] = linearFilter(imgTex, centerX, centerY, win_offset, cos_dir, sin_dir, icoo, jcoo);
 | 
			
		||||
    s_PATCH[get_local_id(1)][get_local_id(0)] = linearFilter(imgTex, centerX, centerY, win_offset, cos_dir, sin_dir, icoo, jcoo, rows, cols, elemPerRow);
 | 
			
		||||
 | 
			
		||||
    barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
 | 
			
		||||
@@ -976,26 +1033,26 @@ void calc_dx_dy(
 | 
			
		||||
        const float dw = c_DW[yIndex * PATCH_SZ + xIndex];
 | 
			
		||||
 | 
			
		||||
        const float vx = (
 | 
			
		||||
            s_PATCH[get_local_id(1)    ][get_local_id(0) + 1] -
 | 
			
		||||
            s_PATCH[get_local_id(1)    ][get_local_id(0)    ] +
 | 
			
		||||
            s_PATCH[get_local_id(1) + 1][get_local_id(0) + 1] -
 | 
			
		||||
            s_PATCH[get_local_id(1) + 1][get_local_id(0)    ])
 | 
			
		||||
            s_PATCH[get_local_id(1)    ][get_local_id(0) + 1] - 
 | 
			
		||||
            s_PATCH[get_local_id(1)    ][get_local_id(0)    ] + 
 | 
			
		||||
            s_PATCH[get_local_id(1) + 1][get_local_id(0) + 1] - 
 | 
			
		||||
            s_PATCH[get_local_id(1) + 1][get_local_id(0)    ]) 
 | 
			
		||||
            * dw;
 | 
			
		||||
        const float vy = (
 | 
			
		||||
            s_PATCH[get_local_id(1) + 1][get_local_id(0)    ] -
 | 
			
		||||
            s_PATCH[get_local_id(1)    ][get_local_id(0)    ] +
 | 
			
		||||
            s_PATCH[get_local_id(1) + 1][get_local_id(0) + 1] -
 | 
			
		||||
            s_PATCH[get_local_id(1)    ][get_local_id(0) + 1])
 | 
			
		||||
            s_PATCH[get_local_id(1) + 1][get_local_id(0)    ] - 
 | 
			
		||||
            s_PATCH[get_local_id(1)    ][get_local_id(0)    ] + 
 | 
			
		||||
            s_PATCH[get_local_id(1) + 1][get_local_id(0) + 1] - 
 | 
			
		||||
            s_PATCH[get_local_id(1)    ][get_local_id(0) + 1]) 
 | 
			
		||||
            * dw;
 | 
			
		||||
        s_dx_bin[tid] = vx;
 | 
			
		||||
        s_dy_bin[tid] = vy;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
void reduce_sum25(
 | 
			
		||||
    volatile __local  float* sdata1,
 | 
			
		||||
    volatile __local  float* sdata2,
 | 
			
		||||
    volatile __local  float* sdata3,
 | 
			
		||||
    volatile __local  float* sdata4,
 | 
			
		||||
    volatile __local  float* sdata1, 
 | 
			
		||||
    volatile __local  float* sdata2, 
 | 
			
		||||
    volatile __local  float* sdata3, 
 | 
			
		||||
    volatile __local  float* sdata4, 
 | 
			
		||||
    int tid
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
@@ -1033,18 +1090,20 @@ void reduce_sum25(
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__kernel
 | 
			
		||||
__kernel 
 | 
			
		||||
    void compute_descriptors64(
 | 
			
		||||
    image2d_t imgTex,
 | 
			
		||||
    volatile __global float * descriptors,
 | 
			
		||||
    IMAGE_INT8 imgTex,
 | 
			
		||||
    volatile __global float * descriptors, 
 | 
			
		||||
    __global const float * keypoints,
 | 
			
		||||
    int descriptors_step,
 | 
			
		||||
    int keypoints_step
 | 
			
		||||
    int keypoints_step, 
 | 
			
		||||
    int rows,
 | 
			
		||||
    int cols,
 | 
			
		||||
    int img_step
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    descriptors_step /= sizeof(float);
 | 
			
		||||
    keypoints_step   /= sizeof(float);
 | 
			
		||||
 | 
			
		||||
    __global const float * featureX    = keypoints + X_ROW * keypoints_step;
 | 
			
		||||
    __global const float * featureY    = keypoints + Y_ROW * keypoints_step;
 | 
			
		||||
    __global const float * featureSize = keypoints + SIZE_ROW * keypoints_step;
 | 
			
		||||
@@ -1057,7 +1116,7 @@ __kernel
 | 
			
		||||
    volatile __local  float sdyabs[25];
 | 
			
		||||
    volatile __local  float s_PATCH[6][6];
 | 
			
		||||
 | 
			
		||||
    calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir);
 | 
			
		||||
    calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir, rows, cols, img_step);
 | 
			
		||||
    barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
 | 
			
		||||
    const int tid = get_local_id(1) * get_local_size(0) + get_local_id(0);
 | 
			
		||||
@@ -1066,10 +1125,10 @@ __kernel
 | 
			
		||||
    {
 | 
			
		||||
        sdxabs[tid] = fabs(sdx[tid]); // |dx| array
 | 
			
		||||
        sdyabs[tid] = fabs(sdy[tid]); // |dy| array
 | 
			
		||||
        barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
        //barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
 | 
			
		||||
        reduce_sum25(sdx, sdy, sdxabs, sdyabs, tid);
 | 
			
		||||
        barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
        //barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
 | 
			
		||||
        volatile __global float* descriptors_block = descriptors + descriptors_step * get_group_id(0) + (get_group_id(1) << 2);
 | 
			
		||||
 | 
			
		||||
@@ -1083,13 +1142,16 @@ __kernel
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
__kernel
 | 
			
		||||
__kernel 
 | 
			
		||||
    void compute_descriptors128(
 | 
			
		||||
    image2d_t imgTex,
 | 
			
		||||
    __global volatile float * descriptors,
 | 
			
		||||
    IMAGE_INT8 imgTex,
 | 
			
		||||
    __global volatile float * descriptors, 
 | 
			
		||||
    __global float * keypoints,
 | 
			
		||||
    int descriptors_step,
 | 
			
		||||
    int keypoints_step
 | 
			
		||||
    int keypoints_step,
 | 
			
		||||
    int rows,
 | 
			
		||||
    int cols,
 | 
			
		||||
    int img_step
 | 
			
		||||
    )
 | 
			
		||||
{
 | 
			
		||||
    descriptors_step /= sizeof(*descriptors);
 | 
			
		||||
@@ -1111,7 +1173,7 @@ __kernel
 | 
			
		||||
    volatile __local  float sdabs2[25];
 | 
			
		||||
    volatile __local  float s_PATCH[6][6];
 | 
			
		||||
 | 
			
		||||
    calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir);
 | 
			
		||||
    calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir, rows, cols, img_step);
 | 
			
		||||
    barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
 | 
			
		||||
    const int tid = get_local_id(1) * get_local_size(0) + get_local_id(0);
 | 
			
		||||
@@ -1132,10 +1194,10 @@ __kernel
 | 
			
		||||
            sd2[tid] = sdx[tid];
 | 
			
		||||
            sdabs2[tid] = fabs(sdx[tid]);
 | 
			
		||||
        }
 | 
			
		||||
        barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
        //barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
 | 
			
		||||
        reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
 | 
			
		||||
        barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
        //barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
 | 
			
		||||
        volatile __global float* descriptors_block = descriptors + descriptors_step * get_group_id(0) + (get_group_id(1) << 3);
 | 
			
		||||
 | 
			
		||||
@@ -1162,10 +1224,10 @@ __kernel
 | 
			
		||||
            sd2[tid] = sdy[tid];
 | 
			
		||||
            sdabs2[tid] = fabs(sdy[tid]);
 | 
			
		||||
        }
 | 
			
		||||
        barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
        //barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
 | 
			
		||||
        reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
 | 
			
		||||
        barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
        //barrier(CLK_LOCAL_MEM_FENCE);
 | 
			
		||||
 | 
			
		||||
        // write dy (dx >= 0), |dy| (dx >= 0), dy (dx < 0), |dy| (dx < 0)
 | 
			
		||||
        if (tid == 0)
 | 
			
		||||
@@ -1178,7 +1240,7 @@ __kernel
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__kernel
 | 
			
		||||
__kernel 
 | 
			
		||||
    void normalize_descriptors128(__global float * descriptors, int descriptors_step)
 | 
			
		||||
{
 | 
			
		||||
    descriptors_step /= sizeof(*descriptors);
 | 
			
		||||
@@ -1219,7 +1281,7 @@ __kernel
 | 
			
		||||
    // normalize and store in output
 | 
			
		||||
    descriptor_base[get_local_id(0)] = lookup / len;
 | 
			
		||||
}
 | 
			
		||||
__kernel
 | 
			
		||||
__kernel 
 | 
			
		||||
    void normalize_descriptors64(__global float * descriptors, int descriptors_step)
 | 
			
		||||
{
 | 
			
		||||
    descriptors_step /= sizeof(*descriptors);
 | 
			
		||||
 
 | 
			
		||||
@@ -1,4 +1,4 @@
 | 
			
		||||
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
/*M/////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
			
		||||
//
 | 
			
		||||
@@ -44,6 +44,7 @@
 | 
			
		||||
//M*/
 | 
			
		||||
#include <iomanip>
 | 
			
		||||
#include "precomp.hpp"
 | 
			
		||||
#include "mcwutil.hpp"
 | 
			
		||||
//#include "opencv2/highgui/highgui.hpp"
 | 
			
		||||
 | 
			
		||||
using namespace cv;
 | 
			
		||||
@@ -71,7 +72,7 @@ static inline int calcSize(int octave, int layer)
 | 
			
		||||
 | 
			
		||||
    /* Wavelet size increment between layers. This should be an even number,
 | 
			
		||||
    such that the wavelet sizes in an octave are either all even or all odd.
 | 
			
		||||
    This ensures that when looking for the neighbours of a sample, the layers
 | 
			
		||||
    This ensures that when looking for the neighbors of a sample, the layers
 | 
			
		||||
 | 
			
		||||
    above and below are aligned correctly. */
 | 
			
		||||
    const int HAAR_SIZE_INC = 6;
 | 
			
		||||
@@ -79,6 +80,41 @@ static inline int calcSize(int octave, int layer)
 | 
			
		||||
    return (HAAR_SIZE0 + HAAR_SIZE_INC * layer) << octave;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
namespace
 | 
			
		||||
{
 | 
			
		||||
    const char* noImage2dOption = "-D DISABLE_IMAGE2D";
 | 
			
		||||
 | 
			
		||||
    // default kernel name can be any kernel in nonfree_surf.cl
 | 
			
		||||
    bool support_image2d(const char* kernel_name = "icvCalcLayerDetAndTrace")
 | 
			
		||||
    {
 | 
			
		||||
        static bool _isTested = false;
 | 
			
		||||
        static bool _support = false;
 | 
			
		||||
        if(_isTested)
 | 
			
		||||
        {
 | 
			
		||||
            return _support;
 | 
			
		||||
        }
 | 
			
		||||
        try
 | 
			
		||||
        {
 | 
			
		||||
            cv::ocl::openCLGetKernelFromSource(Context::getContext(), &nonfree_surf, kernel_name);
 | 
			
		||||
            _support = true;
 | 
			
		||||
        }
 | 
			
		||||
        catch (cv::Exception& e)
 | 
			
		||||
        {
 | 
			
		||||
            if(e.code == -217)
 | 
			
		||||
            {
 | 
			
		||||
                _support = false;
 | 
			
		||||
            }
 | 
			
		||||
            else
 | 
			
		||||
            {
 | 
			
		||||
                // throw e once again
 | 
			
		||||
                cv::error(e);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        _isTested = true;
 | 
			
		||||
        return _support;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
class SURF_OCL_Invoker
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
@@ -88,7 +124,7 @@ public:
 | 
			
		||||
    //void loadGlobalConstants(int maxCandidates, int maxFeatures, int img_rows, int img_cols, int nOctaveLayers, float hessianThreshold);
 | 
			
		||||
    //void loadOctaveConstants(int octave, int layer_rows, int layer_cols);
 | 
			
		||||
 | 
			
		||||
    // kernel callers declearations
 | 
			
		||||
    // kernel callers declarations
 | 
			
		||||
    void icvCalcLayerDetAndTrace_gpu(oclMat &det, oclMat &trace, int octave, int nOctaveLayers, int layer_rows);
 | 
			
		||||
 | 
			
		||||
    void icvFindMaximaInLayer_gpu(const oclMat &det, const oclMat &trace, oclMat &maxPosBuffer, oclMat &maxCounter, int counterOffset,
 | 
			
		||||
@@ -100,14 +136,14 @@ public:
 | 
			
		||||
    void icvCalcOrientation_gpu(const oclMat &keypoints, int nFeatures);
 | 
			
		||||
 | 
			
		||||
    void compute_descriptors_gpu(const oclMat &descriptors, const oclMat &keypoints, int nFeatures);
 | 
			
		||||
    // end of kernel callers declearations
 | 
			
		||||
    // end of kernel callers declarations
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    SURF_OCL_Invoker(SURF_OCL &surf, const oclMat &img, const oclMat &mask) :
 | 
			
		||||
        surf_(surf),
 | 
			
		||||
        img_cols(img.cols), img_rows(img.rows),
 | 
			
		||||
        use_mask(!mask.empty()),
 | 
			
		||||
        imgTex(NULL), sumTex(NULL), maskSumTex(NULL)
 | 
			
		||||
        use_mask(!mask.empty()), counters(oclMat()),
 | 
			
		||||
        imgTex(NULL), sumTex(NULL), maskSumTex(NULL), _img(img)
 | 
			
		||||
    {
 | 
			
		||||
        CV_Assert(!img.empty() && img.type() == CV_8UC1);
 | 
			
		||||
        CV_Assert(mask.empty() || (mask.size() == img.size() && mask.type() == CV_8UC1));
 | 
			
		||||
@@ -131,12 +167,13 @@ public:
 | 
			
		||||
        counters.create(1, surf_.nOctaves + 1, CV_32SC1);
 | 
			
		||||
        counters.setTo(Scalar::all(0));
 | 
			
		||||
 | 
			
		||||
        //loadGlobalConstants(maxCandidates, maxFeatures, img_rows, img_cols, surf_.nOctaveLayers, static_cast<float>(surf_.hessianThreshold));
 | 
			
		||||
        integral(img, surf_.sum);
 | 
			
		||||
        if(support_image2d())
 | 
			
		||||
        {
 | 
			
		||||
            bindImgTex(img, imgTex);
 | 
			
		||||
            bindImgTex(surf_.sum, sumTex);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        bindImgTex(img, imgTex);
 | 
			
		||||
        integral(img, surf_.sum); // the two argumented integral version is incorrect
 | 
			
		||||
 | 
			
		||||
        bindImgTex(surf_.sum, sumTex);
 | 
			
		||||
        maskSumTex = 0;
 | 
			
		||||
 | 
			
		||||
        if (use_mask)
 | 
			
		||||
@@ -155,7 +192,7 @@ public:
 | 
			
		||||
    void detectKeypoints(oclMat &keypoints)
 | 
			
		||||
    {
 | 
			
		||||
        // create image pyramid buffers
 | 
			
		||||
        // different layers have same sized buffers, but they are sampled from gaussin kernel.
 | 
			
		||||
        // different layers have same sized buffers, but they are sampled from Gaussian kernel.
 | 
			
		||||
        ensureSizeIsEnough(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1, surf_.det);
 | 
			
		||||
        ensureSizeIsEnough(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1, surf_.trace);
 | 
			
		||||
 | 
			
		||||
@@ -222,7 +259,6 @@ public:
 | 
			
		||||
            openCLFree(sumTex);
 | 
			
		||||
        if(maskSumTex)
 | 
			
		||||
            openCLFree(maskSumTex);
 | 
			
		||||
        additioalParamBuffer.release();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
@@ -236,13 +272,13 @@ private:
 | 
			
		||||
    int maxFeatures;
 | 
			
		||||
 | 
			
		||||
    oclMat counters;
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    // texture buffers
 | 
			
		||||
    cl_mem imgTex;
 | 
			
		||||
    cl_mem sumTex;
 | 
			
		||||
    cl_mem maskSumTex;
 | 
			
		||||
 | 
			
		||||
    oclMat additioalParamBuffer;
 | 
			
		||||
    const oclMat _img; // make a copy for non-image2d_t supported platform
 | 
			
		||||
 | 
			
		||||
    SURF_OCL_Invoker &operator= (const SURF_OCL_Invoker &right)
 | 
			
		||||
    {
 | 
			
		||||
@@ -362,11 +398,6 @@ void cv::ocl::SURF_OCL::operator()(const oclMat &img, const oclMat &mask, oclMat
 | 
			
		||||
{
 | 
			
		||||
    if (!img.empty())
 | 
			
		||||
    {
 | 
			
		||||
        if (img.clCxt->impl->devName.find("Intel(R) HD Graphics") != string::npos)
 | 
			
		||||
        {
 | 
			
		||||
            cout << " Intel HD GPU device unsupported " << endl;
 | 
			
		||||
            return;
 | 
			
		||||
        }
 | 
			
		||||
        SURF_OCL_Invoker surf(*this, img, mask);
 | 
			
		||||
 | 
			
		||||
        surf.detectKeypoints(keypoints);
 | 
			
		||||
@@ -378,11 +409,6 @@ void cv::ocl::SURF_OCL::operator()(const oclMat &img, const oclMat &mask, oclMat
 | 
			
		||||
{
 | 
			
		||||
    if (!img.empty())
 | 
			
		||||
    {
 | 
			
		||||
        if (img.clCxt->impl->devName.find("Intel(R) HD Graphics") != string::npos)
 | 
			
		||||
        {
 | 
			
		||||
            cout << " Intel HD GPU device unsupported " << endl;
 | 
			
		||||
            return;
 | 
			
		||||
        }
 | 
			
		||||
        SURF_OCL_Invoker surf(*this, img, mask);
 | 
			
		||||
 | 
			
		||||
        if (!useProvidedKeypoints)
 | 
			
		||||
@@ -443,74 +469,11 @@ void cv::ocl::SURF_OCL::releaseMemory()
 | 
			
		||||
// bind source buffer to image oject.
 | 
			
		||||
void SURF_OCL_Invoker::bindImgTex(const oclMat &img, cl_mem &texture)
 | 
			
		||||
{
 | 
			
		||||
    cl_image_format format;
 | 
			
		||||
    int err;
 | 
			
		||||
    int depth    = img.depth();
 | 
			
		||||
    int channels = img.channels();
 | 
			
		||||
 | 
			
		||||
    switch(depth)
 | 
			
		||||
    {
 | 
			
		||||
    case CV_8U:
 | 
			
		||||
        format.image_channel_data_type = CL_UNSIGNED_INT8;
 | 
			
		||||
        break;
 | 
			
		||||
    case CV_32S:
 | 
			
		||||
        format.image_channel_data_type = CL_UNSIGNED_INT32;
 | 
			
		||||
        break;
 | 
			
		||||
    case CV_32F:
 | 
			
		||||
        format.image_channel_data_type = CL_FLOAT;
 | 
			
		||||
        break;
 | 
			
		||||
    default:
 | 
			
		||||
        throw std::exception();
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
    switch(channels)
 | 
			
		||||
    {
 | 
			
		||||
    case 1:
 | 
			
		||||
        format.image_channel_order     = CL_R;
 | 
			
		||||
        break;
 | 
			
		||||
    case 3:
 | 
			
		||||
        format.image_channel_order     = CL_RGB;
 | 
			
		||||
        break;
 | 
			
		||||
    case 4:
 | 
			
		||||
        format.image_channel_order     = CL_RGBA;
 | 
			
		||||
        break;
 | 
			
		||||
    default:
 | 
			
		||||
        throw std::exception();
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
    if(texture)
 | 
			
		||||
    {
 | 
			
		||||
        openCLFree(texture);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#ifdef CL_VERSION_1_2
 | 
			
		||||
    cl_image_desc desc;
 | 
			
		||||
    desc.image_type       = CL_MEM_OBJECT_IMAGE2D;
 | 
			
		||||
    desc.image_width      = img.step / img.elemSize();
 | 
			
		||||
    desc.image_height     = img.rows;
 | 
			
		||||
    desc.image_depth      = 0;
 | 
			
		||||
    desc.image_array_size = 1;
 | 
			
		||||
    desc.image_row_pitch  = 0;
 | 
			
		||||
    desc.image_slice_pitch = 0;
 | 
			
		||||
    desc.buffer           = NULL;
 | 
			
		||||
    desc.num_mip_levels   = 0;
 | 
			
		||||
    desc.num_samples      = 0;
 | 
			
		||||
    texture = clCreateImage(Context::getContext()->impl->clContext, CL_MEM_READ_WRITE, &format, &desc, NULL, &err);
 | 
			
		||||
#else
 | 
			
		||||
    texture = clCreateImage2D(
 | 
			
		||||
                  Context::getContext()->impl->clContext,
 | 
			
		||||
                  CL_MEM_READ_WRITE,
 | 
			
		||||
                  &format,
 | 
			
		||||
                  img.step / img.elemSize(),
 | 
			
		||||
                  img.rows,
 | 
			
		||||
                  0,
 | 
			
		||||
                  NULL,
 | 
			
		||||
                  &err);
 | 
			
		||||
#endif
 | 
			
		||||
    size_t origin[] = { 0, 0, 0 };
 | 
			
		||||
    size_t region[] = { img.step / img.elemSize(), img.rows, 1 };
 | 
			
		||||
    clEnqueueCopyBufferToImage(img.clCxt->impl->clCmdQueue, (cl_mem)img.data, texture, 0, origin, region, 0, NULL, 0);
 | 
			
		||||
    openCLSafeCall(err);
 | 
			
		||||
    texture = bindTexture(img);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////
 | 
			
		||||
@@ -525,7 +488,14 @@ void SURF_OCL_Invoker::icvCalcLayerDetAndTrace_gpu(oclMat &det, oclMat &trace, i
 | 
			
		||||
    string kernelName = "icvCalcLayerDetAndTrace";
 | 
			
		||||
    vector< pair<size_t, const void *> > args;
 | 
			
		||||
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_mem), (void *)&sumTex));
 | 
			
		||||
    if(sumTex)
 | 
			
		||||
    {
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&sumTex));
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&surf_.sum.data)); // if image2d is not supported
 | 
			
		||||
    }
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_mem), (void *)&det.data));
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_mem), (void *)&trace.data));
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_int), (void *)&det.step));
 | 
			
		||||
@@ -535,6 +505,7 @@ void SURF_OCL_Invoker::icvCalcLayerDetAndTrace_gpu(oclMat &det, oclMat &trace, i
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_int), (void *)&nOctaveLayers));
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_int), (void *)&octave));
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_int), (void *)&c_layer_rows));
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_int), (void *)&surf_.sum.step));
 | 
			
		||||
 | 
			
		||||
    size_t localThreads[3]  = {16, 16, 1};
 | 
			
		||||
    size_t globalThreads[3] =
 | 
			
		||||
@@ -543,7 +514,14 @@ void SURF_OCL_Invoker::icvCalcLayerDetAndTrace_gpu(oclMat &det, oclMat &trace, i
 | 
			
		||||
        divUp(max_samples_i, localThreads[1]) *localThreads[1] *(nOctaveLayers + 2),
 | 
			
		||||
        1
 | 
			
		||||
    };
 | 
			
		||||
    openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
    if(support_image2d())
 | 
			
		||||
    {
 | 
			
		||||
        openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void SURF_OCL_Invoker::icvFindMaximaInLayer_gpu(const oclMat &det, const oclMat &trace, oclMat &maxPosBuffer, oclMat &maxCounter, int counterOffset,
 | 
			
		||||
@@ -573,16 +551,30 @@ void SURF_OCL_Invoker::icvFindMaximaInLayer_gpu(const oclMat &det, const oclMat
 | 
			
		||||
 | 
			
		||||
    if(use_mask)
 | 
			
		||||
    {
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&maskSumTex));
 | 
			
		||||
        if(maskSumTex)
 | 
			
		||||
        {
 | 
			
		||||
            args.push_back( make_pair( sizeof(cl_mem), (void *)&maskSumTex));
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            args.push_back( make_pair( sizeof(cl_mem), (void *)&surf_.maskSum.data));
 | 
			
		||||
        }
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&surf_.maskSum.step));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    size_t localThreads[3]  = {16, 16, 1};
 | 
			
		||||
    size_t globalThreads[3] = {divUp(layer_cols - 2 * min_margin, localThreads[0] - 2) *localThreads[0],
 | 
			
		||||
                               divUp(layer_rows - 2 * min_margin, localThreads[1] - 2) *nLayers *localThreads[1],
 | 
			
		||||
                               1
 | 
			
		||||
                              };
 | 
			
		||||
 | 
			
		||||
    openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
    if(support_image2d())
 | 
			
		||||
    {
 | 
			
		||||
        openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void SURF_OCL_Invoker::icvInterpolateKeypoint_gpu(const oclMat &det, const oclMat &maxPosBuffer, unsigned int maxCounter,
 | 
			
		||||
@@ -607,7 +599,14 @@ void SURF_OCL_Invoker::icvInterpolateKeypoint_gpu(const oclMat &det, const oclMa
 | 
			
		||||
    size_t localThreads[3]  = {3, 3, 3};
 | 
			
		||||
    size_t globalThreads[3] = {maxCounter *localThreads[0], localThreads[1], 1};
 | 
			
		||||
 | 
			
		||||
    openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
    if(support_image2d())
 | 
			
		||||
    {
 | 
			
		||||
        openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void SURF_OCL_Invoker::icvCalcOrientation_gpu(const oclMat &keypoints, int nFeatures)
 | 
			
		||||
@@ -617,16 +616,31 @@ void SURF_OCL_Invoker::icvCalcOrientation_gpu(const oclMat &keypoints, int nFeat
 | 
			
		||||
 | 
			
		||||
    vector< pair<size_t, const void *> > args;
 | 
			
		||||
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_mem), (void *)&sumTex));
 | 
			
		||||
    if(sumTex)
 | 
			
		||||
    {
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&sumTex));
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&surf_.sum.data)); // if image2d is not supported
 | 
			
		||||
    }
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_mem), (void *)&keypoints.data));
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_int), (void *)&keypoints.step));
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_int), (void *)&img_rows));
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_int), (void *)&img_cols));
 | 
			
		||||
    args.push_back( make_pair( sizeof(cl_int), (void *)&surf_.sum.step));
 | 
			
		||||
 | 
			
		||||
    size_t localThreads[3]  = {32, 4, 1};
 | 
			
		||||
    size_t globalThreads[3] = {nFeatures *localThreads[0], localThreads[1], 1};
 | 
			
		||||
 | 
			
		||||
    openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
    if(support_image2d())
 | 
			
		||||
    {
 | 
			
		||||
        openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void SURF_OCL_Invoker::compute_descriptors_gpu(const oclMat &descriptors, const oclMat &keypoints, int nFeatures)
 | 
			
		||||
@@ -649,12 +663,29 @@ void SURF_OCL_Invoker::compute_descriptors_gpu(const oclMat &descriptors, const
 | 
			
		||||
        globalThreads[1] = 16 * localThreads[1];
 | 
			
		||||
 | 
			
		||||
        args.clear();
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&imgTex));
 | 
			
		||||
        if(imgTex)
 | 
			
		||||
        {
 | 
			
		||||
            args.push_back( make_pair( sizeof(cl_mem), (void *)&imgTex));
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            args.push_back( make_pair( sizeof(cl_mem), (void *)&_img.data));
 | 
			
		||||
        }
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&descriptors.data));
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&keypoints.data));
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_int), (void *)&descriptors.step));
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_int), (void *)&keypoints.step));
 | 
			
		||||
        openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_int), (void *)&_img.rows));
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_int), (void *)&_img.cols));
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_int), (void *)&_img.step));
 | 
			
		||||
        if(support_image2d())
 | 
			
		||||
        {
 | 
			
		||||
            openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        kernelName = "normalize_descriptors64";
 | 
			
		||||
 | 
			
		||||
@@ -667,7 +698,14 @@ void SURF_OCL_Invoker::compute_descriptors_gpu(const oclMat &descriptors, const
 | 
			
		||||
        args.clear();
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&descriptors.data));
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_int), (void *)&descriptors.step));
 | 
			
		||||
        openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
        if(support_image2d())
 | 
			
		||||
        {
 | 
			
		||||
            openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
@@ -680,12 +718,29 @@ void SURF_OCL_Invoker::compute_descriptors_gpu(const oclMat &descriptors, const
 | 
			
		||||
        globalThreads[1] = 16 * localThreads[1];
 | 
			
		||||
 | 
			
		||||
        args.clear();
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&imgTex));
 | 
			
		||||
        if(imgTex)
 | 
			
		||||
        {
 | 
			
		||||
            args.push_back( make_pair( sizeof(cl_mem), (void *)&imgTex));
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            args.push_back( make_pair( sizeof(cl_mem), (void *)&_img.data));
 | 
			
		||||
        }
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&descriptors.data));
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&keypoints.data));
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_int), (void *)&descriptors.step));
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_int), (void *)&keypoints.step));
 | 
			
		||||
        openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_int), (void *)&_img.rows));
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_int), (void *)&_img.cols));
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_int), (void *)&_img.step));
 | 
			
		||||
        if(support_image2d())
 | 
			
		||||
        {
 | 
			
		||||
            openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        kernelName = "normalize_descriptors128";
 | 
			
		||||
 | 
			
		||||
@@ -698,7 +753,14 @@ void SURF_OCL_Invoker::compute_descriptors_gpu(const oclMat &descriptors, const
 | 
			
		||||
        args.clear();
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_mem), (void *)&descriptors.data));
 | 
			
		||||
        args.push_back( make_pair( sizeof(cl_int), (void *)&descriptors.step));
 | 
			
		||||
        openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
        if(support_image2d())
 | 
			
		||||
        {
 | 
			
		||||
            openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user