Normalized file endings.

This commit is contained in:
Roman Donchenko
2013-08-21 17:26:54 +04:00
parent f55740da70
commit e9a28f66ee
486 changed files with 166 additions and 606 deletions

View File

@@ -318,4 +318,3 @@ decision tree.
.. [Breiman84] Breiman, L., Friedman, J. Olshen, R. and Stone, C. (1984), *Classification and Regression Trees*, Wadsworth.

View File

@@ -194,5 +194,3 @@ The sample below (currently using the obsolete ``CvMat`` structures) demonstrate
cvReleaseMat( &trainData );
return 0;
}

View File

@@ -278,4 +278,3 @@ Returns neurons weights of the particular layer.
.. ocv:function:: double* CvANN_MLP::get_weights(int layer)
:param layer: Index of the particular layer.

View File

@@ -161,4 +161,3 @@ Predicts the response for a sample.
The method is used to predict the response for a new sample. In case of a classification, the method returns the class label. In case of a regression, the method returns the output function value. The input sample must have as many components as the ``train_data`` passed to ``train`` contains. If the ``var_idx`` parameter is passed to ``train``, it is remembered and then is used to extract only the necessary components from the input sample in the method ``predict``.
The suffix ``const`` means that prediction does not affect the internal model state, so the method can be safely called from within different threads.

View File

@@ -1847,4 +1847,3 @@ bool CvERTrees::train( const Mat& _train_data, int _tflag,
}
// End of file.

View File

@@ -480,4 +480,3 @@ float CvKNearest::find_nearest( const cv::Mat& _samples, int k, CV_OUT cv::Mat&
}
/* End of file */

View File

@@ -623,4 +623,3 @@ float CvNormalBayesClassifier::predict( const Mat& _samples, Mat* _results ) con
}
/* End of file. */

View File

@@ -2949,4 +2949,3 @@ cvTrainSVM_CrossValidation( const CvMat* train_data, int tflag,
#endif
/* End of file. */

View File

@@ -678,4 +678,3 @@ TEST(ML_KNearest, accuracy) { CV_KNearestTest test; test.safe_run(); }
TEST(ML_EM, accuracy) { CV_EMTest test; test.safe_run(); }
TEST(ML_EM, save_load) { CV_EMTest_SaveLoad test; test.safe_run(); }
TEST(ML_EM, classification) { CV_EMTest_Classification test; test.safe_run(); }