Update letter_recog sample to current version of opencv interfaces
This commit is contained in:
parent
d579f08093
commit
e90dc20361
@ -65,13 +65,12 @@ class RTrees(LetterStatModel):
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL], np.uint8)
|
||||
#CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER));
|
||||
params = dict(max_depth=10 )
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses, varType = var_types, params = params)
|
||||
self.model.setMaxDepth(20)
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
|
||||
|
||||
def predict(self, samples):
|
||||
return [self.model.predict(s) for s in samples]
|
||||
ret, resp = self.model.predict(samples)
|
||||
return resp.ravel()
|
||||
|
||||
|
||||
class KNearest(LetterStatModel):
|
||||
@ -79,10 +78,10 @@ class KNearest(LetterStatModel):
|
||||
self.model = cv2.ml.KNearest_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, responses)
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
retval, results, neigh_resp, dists = self.model.find_nearest(samples, k = 10)
|
||||
retval, results, neigh_resp, dists = self.model.findNearest(samples, k = 10)
|
||||
return results.ravel()
|
||||
|
||||
|
||||
@ -95,15 +94,15 @@ class Boost(LetterStatModel):
|
||||
new_samples = self.unroll_samples(samples)
|
||||
new_responses = self.unroll_responses(responses)
|
||||
var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL, cv2.ml.VAR_CATEGORICAL], np.uint8)
|
||||
#CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 )
|
||||
params = dict(max_depth=5) #, use_surrogates=False)
|
||||
self.model.train(new_samples, cv2.ml.ROW_SAMPLE, new_responses, varType = var_types, params=params)
|
||||
|
||||
self.model.setMaxDepth(5)
|
||||
self.model.train(cv2.ml.TrainData_create(new_samples, cv2.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
|
||||
|
||||
def predict(self, samples):
|
||||
new_samples = self.unroll_samples(samples)
|
||||
pred = np.array( [self.model.predict(s, returnSum = True) for s in new_samples] )
|
||||
pred = pred.reshape(-1, self.class_n).argmax(1)
|
||||
return pred
|
||||
ret, resp = self.model.predict(new_samples)
|
||||
|
||||
return resp.ravel().reshape(-1, self.class_n).argmax(1)
|
||||
|
||||
|
||||
class SVM(LetterStatModel):
|
||||
@ -111,13 +110,14 @@ class SVM(LetterStatModel):
|
||||
self.model = cv2.ml.SVM_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
params = dict( kernel_type = cv2.ml.SVM_LINEAR,
|
||||
svm_type = cv2.ml.SVM_C_SVC,
|
||||
C = 1 )
|
||||
self.model.train(samples, responses, params = params)
|
||||
self.model.setType(cv2.ml.SVM_C_SVC)
|
||||
self.model.setC(1)
|
||||
self.model.setKernel(cv2.ml.SVM_LINEAR)
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
|
||||
|
||||
def predict(self, samples):
|
||||
return self.model.predict_all(samples).ravel()
|
||||
ret, resp = self.model.predict(samples)
|
||||
return resp.ravel()
|
||||
|
||||
|
||||
class MLP(LetterStatModel):
|
||||
@ -127,22 +127,23 @@ class MLP(LetterStatModel):
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
|
||||
|
||||
layer_sizes = np.int32([var_n, 100, 100, self.class_n])
|
||||
self.model.create(layer_sizes)
|
||||
|
||||
# CvANN_MLP_TrainParams::BACKPROP,0.001
|
||||
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),
|
||||
train_method = cv2.ml.ANN_MLP_TRAIN_PARAMS_BACKPROP,
|
||||
bp_dw_scale = 0.001,
|
||||
bp_moment_scale = 0.0 )
|
||||
self.model.train(samples, np.float32(new_responses), None, params = params)
|
||||
self.model.setLayerSizes(layer_sizes)
|
||||
self.model.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP)
|
||||
self.model.setBackpropMomentumScale(0)
|
||||
self.model.setBackpropWeightScale(0.001)
|
||||
self.model.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 300, 0.01))
|
||||
self.model.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM)
|
||||
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, np.float32(new_responses))
|
||||
|
||||
def predict(self, samples):
|
||||
ret, resp = self.model.predict(samples)
|
||||
return resp.argmax(-1)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import getopt
|
||||
import sys
|
||||
@ -155,7 +156,7 @@ if __name__ == '__main__':
|
||||
|
||||
args, dummy = getopt.getopt(sys.argv[1:], '', ['model=', 'data=', 'load=', 'save='])
|
||||
args = dict(args)
|
||||
args.setdefault('--model', 'rtrees')
|
||||
args.setdefault('--model', 'svm')
|
||||
args.setdefault('--data', '../data/letter-recognition.data')
|
||||
|
||||
print('loading data %s ...' % args['--data'])
|
||||
@ -173,8 +174,8 @@ if __name__ == '__main__':
|
||||
model.train(samples[:train_n], responses[:train_n])
|
||||
|
||||
print('testing...')
|
||||
train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n])
|
||||
test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:])
|
||||
train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n].astype(int))
|
||||
test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:].astype(int))
|
||||
|
||||
print('train rate: %f test rate: %f' % (train_rate*100, test_rate*100))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user