renamed gpu namespace -> cuda
This commit is contained in:
@@ -357,7 +357,7 @@ int main(int argc, char* argv[])
|
||||
if (features_type == "surf")
|
||||
{
|
||||
#ifdef HAVE_OPENCV_NONFREE
|
||||
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
|
||||
if (try_gpu && cuda::getCudaEnabledDeviceCount() > 0)
|
||||
finder = new SurfFeaturesFinderGpu();
|
||||
else
|
||||
#endif
|
||||
@@ -553,7 +553,7 @@ int main(int argc, char* argv[])
|
||||
|
||||
Ptr<WarperCreator> warper_creator;
|
||||
#ifdef HAVE_OPENCV_GPUWARPING
|
||||
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
|
||||
if (try_gpu && cuda::getCudaEnabledDeviceCount() > 0)
|
||||
{
|
||||
if (warp_type == "plane") warper_creator = new cv::PlaneWarperGpu();
|
||||
else if (warp_type == "cylindrical") warper_creator = new cv::CylindricalWarperGpu();
|
||||
@@ -618,7 +618,7 @@ int main(int argc, char* argv[])
|
||||
else if (seam_find_type == "gc_color")
|
||||
{
|
||||
#ifdef HAVE_OPENCV_GPU
|
||||
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
|
||||
if (try_gpu && cuda::getCudaEnabledDeviceCount() > 0)
|
||||
seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR);
|
||||
else
|
||||
#endif
|
||||
@@ -627,7 +627,7 @@ int main(int argc, char* argv[])
|
||||
else if (seam_find_type == "gc_colorgrad")
|
||||
{
|
||||
#ifdef HAVE_OPENCV_GPU
|
||||
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
|
||||
if (try_gpu && cuda::getCudaEnabledDeviceCount() > 0)
|
||||
seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR_GRAD);
|
||||
else
|
||||
#endif
|
||||
|
@@ -21,28 +21,28 @@ Scalar getMSSIM_GPU( const Mat& I1, const Mat& I2);
|
||||
|
||||
struct BufferPSNR // Optimized GPU versions
|
||||
{ // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
|
||||
gpu::GpuMat gI1, gI2, gs, t1,t2;
|
||||
cuda::GpuMat gI1, gI2, gs, t1,t2;
|
||||
|
||||
gpu::GpuMat buf;
|
||||
cuda::GpuMat buf;
|
||||
};
|
||||
double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b);
|
||||
|
||||
struct BufferMSSIM // Optimized GPU versions
|
||||
{ // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
|
||||
gpu::GpuMat gI1, gI2, gs, t1,t2;
|
||||
cuda::GpuMat gI1, gI2, gs, t1,t2;
|
||||
|
||||
gpu::GpuMat I1_2, I2_2, I1_I2;
|
||||
vector<gpu::GpuMat> vI1, vI2;
|
||||
cuda::GpuMat I1_2, I2_2, I1_I2;
|
||||
vector<cuda::GpuMat> vI1, vI2;
|
||||
|
||||
gpu::GpuMat mu1, mu2;
|
||||
gpu::GpuMat mu1_2, mu2_2, mu1_mu2;
|
||||
cuda::GpuMat mu1, mu2;
|
||||
cuda::GpuMat mu1_2, mu2_2, mu1_mu2;
|
||||
|
||||
gpu::GpuMat sigma1_2, sigma2_2, sigma12;
|
||||
gpu::GpuMat t3;
|
||||
cuda::GpuMat sigma1_2, sigma2_2, sigma12;
|
||||
cuda::GpuMat t3;
|
||||
|
||||
gpu::GpuMat ssim_map;
|
||||
cuda::GpuMat ssim_map;
|
||||
|
||||
gpu::GpuMat buf;
|
||||
cuda::GpuMat buf;
|
||||
};
|
||||
Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b);
|
||||
|
||||
@@ -197,10 +197,10 @@ double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
|
||||
b.gI1.convertTo(b.t1, CV_32F);
|
||||
b.gI2.convertTo(b.t2, CV_32F);
|
||||
|
||||
gpu::absdiff(b.t1.reshape(1), b.t2.reshape(1), b.gs);
|
||||
gpu::multiply(b.gs, b.gs, b.gs);
|
||||
cuda::absdiff(b.t1.reshape(1), b.t2.reshape(1), b.gs);
|
||||
cuda::multiply(b.gs, b.gs, b.gs);
|
||||
|
||||
double sse = gpu::sum(b.gs, b.buf)[0];
|
||||
double sse = cuda::sum(b.gs, b.buf)[0];
|
||||
|
||||
if( sse <= 1e-10) // for small values return zero
|
||||
return 0;
|
||||
@@ -214,7 +214,7 @@ double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
|
||||
|
||||
double getPSNR_GPU(const Mat& I1, const Mat& I2)
|
||||
{
|
||||
gpu::GpuMat gI1, gI2, gs, t1,t2;
|
||||
cuda::GpuMat gI1, gI2, gs, t1,t2;
|
||||
|
||||
gI1.upload(I1);
|
||||
gI2.upload(I2);
|
||||
@@ -222,10 +222,10 @@ double getPSNR_GPU(const Mat& I1, const Mat& I2)
|
||||
gI1.convertTo(t1, CV_32F);
|
||||
gI2.convertTo(t2, CV_32F);
|
||||
|
||||
gpu::absdiff(t1.reshape(1), t2.reshape(1), gs);
|
||||
gpu::multiply(gs, gs, gs);
|
||||
cuda::absdiff(t1.reshape(1), t2.reshape(1), gs);
|
||||
cuda::multiply(gs, gs, gs);
|
||||
|
||||
Scalar s = gpu::sum(gs);
|
||||
Scalar s = cuda::sum(gs);
|
||||
double sse = s.val[0] + s.val[1] + s.val[2];
|
||||
|
||||
if( sse <= 1e-10) // for small values return zero
|
||||
@@ -295,7 +295,7 @@ Scalar getMSSIM_GPU( const Mat& i1, const Mat& i2)
|
||||
{
|
||||
const float C1 = 6.5025f, C2 = 58.5225f;
|
||||
/***************************** INITS **********************************/
|
||||
gpu::GpuMat gI1, gI2, gs1, tmp1,tmp2;
|
||||
cuda::GpuMat gI1, gI2, gs1, tmp1,tmp2;
|
||||
|
||||
gI1.upload(i1);
|
||||
gI2.upload(i2);
|
||||
@@ -303,57 +303,57 @@ Scalar getMSSIM_GPU( const Mat& i1, const Mat& i2)
|
||||
gI1.convertTo(tmp1, CV_MAKE_TYPE(CV_32F, gI1.channels()));
|
||||
gI2.convertTo(tmp2, CV_MAKE_TYPE(CV_32F, gI2.channels()));
|
||||
|
||||
vector<gpu::GpuMat> vI1, vI2;
|
||||
gpu::split(tmp1, vI1);
|
||||
gpu::split(tmp2, vI2);
|
||||
vector<cuda::GpuMat> vI1, vI2;
|
||||
cuda::split(tmp1, vI1);
|
||||
cuda::split(tmp2, vI2);
|
||||
Scalar mssim;
|
||||
|
||||
Ptr<gpu::Filter> gauss = gpu::createGaussianFilter(vI2[0].type(), -1, Size(11, 11), 1.5);
|
||||
Ptr<cuda::Filter> gauss = cuda::createGaussianFilter(vI2[0].type(), -1, Size(11, 11), 1.5);
|
||||
|
||||
for( int i = 0; i < gI1.channels(); ++i )
|
||||
{
|
||||
gpu::GpuMat I2_2, I1_2, I1_I2;
|
||||
cuda::GpuMat I2_2, I1_2, I1_I2;
|
||||
|
||||
gpu::multiply(vI2[i], vI2[i], I2_2); // I2^2
|
||||
gpu::multiply(vI1[i], vI1[i], I1_2); // I1^2
|
||||
gpu::multiply(vI1[i], vI2[i], I1_I2); // I1 * I2
|
||||
cuda::multiply(vI2[i], vI2[i], I2_2); // I2^2
|
||||
cuda::multiply(vI1[i], vI1[i], I1_2); // I1^2
|
||||
cuda::multiply(vI1[i], vI2[i], I1_I2); // I1 * I2
|
||||
|
||||
/*************************** END INITS **********************************/
|
||||
gpu::GpuMat mu1, mu2; // PRELIMINARY COMPUTING
|
||||
cuda::GpuMat mu1, mu2; // PRELIMINARY COMPUTING
|
||||
gauss->apply(vI1[i], mu1);
|
||||
gauss->apply(vI2[i], mu2);
|
||||
|
||||
gpu::GpuMat mu1_2, mu2_2, mu1_mu2;
|
||||
gpu::multiply(mu1, mu1, mu1_2);
|
||||
gpu::multiply(mu2, mu2, mu2_2);
|
||||
gpu::multiply(mu1, mu2, mu1_mu2);
|
||||
cuda::GpuMat mu1_2, mu2_2, mu1_mu2;
|
||||
cuda::multiply(mu1, mu1, mu1_2);
|
||||
cuda::multiply(mu2, mu2, mu2_2);
|
||||
cuda::multiply(mu1, mu2, mu1_mu2);
|
||||
|
||||
gpu::GpuMat sigma1_2, sigma2_2, sigma12;
|
||||
cuda::GpuMat sigma1_2, sigma2_2, sigma12;
|
||||
|
||||
gauss->apply(I1_2, sigma1_2);
|
||||
gpu::subtract(sigma1_2, mu1_2, sigma1_2); // sigma1_2 -= mu1_2;
|
||||
cuda::subtract(sigma1_2, mu1_2, sigma1_2); // sigma1_2 -= mu1_2;
|
||||
|
||||
gauss->apply(I2_2, sigma2_2);
|
||||
gpu::subtract(sigma2_2, mu2_2, sigma2_2); // sigma2_2 -= mu2_2;
|
||||
cuda::subtract(sigma2_2, mu2_2, sigma2_2); // sigma2_2 -= mu2_2;
|
||||
|
||||
gauss->apply(I1_I2, sigma12);
|
||||
gpu::subtract(sigma12, mu1_mu2, sigma12); // sigma12 -= mu1_mu2;
|
||||
cuda::subtract(sigma12, mu1_mu2, sigma12); // sigma12 -= mu1_mu2;
|
||||
|
||||
///////////////////////////////// FORMULA ////////////////////////////////
|
||||
gpu::GpuMat t1, t2, t3;
|
||||
cuda::GpuMat t1, t2, t3;
|
||||
|
||||
mu1_mu2.convertTo(t1, -1, 2, C1); // t1 = 2 * mu1_mu2 + C1;
|
||||
sigma12.convertTo(t2, -1, 2, C2); // t2 = 2 * sigma12 + C2;
|
||||
gpu::multiply(t1, t2, t3); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
|
||||
cuda::multiply(t1, t2, t3); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
|
||||
|
||||
gpu::addWeighted(mu1_2, 1.0, mu2_2, 1.0, C1, t1); // t1 = mu1_2 + mu2_2 + C1;
|
||||
gpu::addWeighted(sigma1_2, 1.0, sigma2_2, 1.0, C2, t2); // t2 = sigma1_2 + sigma2_2 + C2;
|
||||
gpu::multiply(t1, t2, t1); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
|
||||
cuda::addWeighted(mu1_2, 1.0, mu2_2, 1.0, C1, t1); // t1 = mu1_2 + mu2_2 + C1;
|
||||
cuda::addWeighted(sigma1_2, 1.0, sigma2_2, 1.0, C2, t2); // t2 = sigma1_2 + sigma2_2 + C2;
|
||||
cuda::multiply(t1, t2, t1); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
|
||||
|
||||
gpu::GpuMat ssim_map;
|
||||
gpu::divide(t3, t1, ssim_map); // ssim_map = t3./t1;
|
||||
cuda::GpuMat ssim_map;
|
||||
cuda::divide(t3, t1, ssim_map); // ssim_map = t3./t1;
|
||||
|
||||
Scalar s = gpu::sum(ssim_map);
|
||||
Scalar s = cuda::sum(ssim_map);
|
||||
mssim.val[i] = s.val[0] / (ssim_map.rows * ssim_map.cols);
|
||||
|
||||
}
|
||||
@@ -368,63 +368,63 @@ Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
|
||||
b.gI1.upload(i1);
|
||||
b.gI2.upload(i2);
|
||||
|
||||
gpu::Stream stream;
|
||||
cuda::Stream stream;
|
||||
|
||||
b.gI1.convertTo(b.t1, CV_32F, stream);
|
||||
b.gI2.convertTo(b.t2, CV_32F, stream);
|
||||
|
||||
gpu::split(b.t1, b.vI1, stream);
|
||||
gpu::split(b.t2, b.vI2, stream);
|
||||
cuda::split(b.t1, b.vI1, stream);
|
||||
cuda::split(b.t2, b.vI2, stream);
|
||||
Scalar mssim;
|
||||
|
||||
Ptr<gpu::Filter> gauss = gpu::createGaussianFilter(b.vI1[0].type(), -1, Size(11, 11), 1.5);
|
||||
Ptr<cuda::Filter> gauss = cuda::createGaussianFilter(b.vI1[0].type(), -1, Size(11, 11), 1.5);
|
||||
|
||||
for( int i = 0; i < b.gI1.channels(); ++i )
|
||||
{
|
||||
gpu::multiply(b.vI2[i], b.vI2[i], b.I2_2, 1, -1, stream); // I2^2
|
||||
gpu::multiply(b.vI1[i], b.vI1[i], b.I1_2, 1, -1, stream); // I1^2
|
||||
gpu::multiply(b.vI1[i], b.vI2[i], b.I1_I2, 1, -1, stream); // I1 * I2
|
||||
cuda::multiply(b.vI2[i], b.vI2[i], b.I2_2, 1, -1, stream); // I2^2
|
||||
cuda::multiply(b.vI1[i], b.vI1[i], b.I1_2, 1, -1, stream); // I1^2
|
||||
cuda::multiply(b.vI1[i], b.vI2[i], b.I1_I2, 1, -1, stream); // I1 * I2
|
||||
|
||||
gauss->apply(b.vI1[i], b.mu1, stream);
|
||||
gauss->apply(b.vI2[i], b.mu2, stream);
|
||||
|
||||
gpu::multiply(b.mu1, b.mu1, b.mu1_2, 1, -1, stream);
|
||||
gpu::multiply(b.mu2, b.mu2, b.mu2_2, 1, -1, stream);
|
||||
gpu::multiply(b.mu1, b.mu2, b.mu1_mu2, 1, -1, stream);
|
||||
cuda::multiply(b.mu1, b.mu1, b.mu1_2, 1, -1, stream);
|
||||
cuda::multiply(b.mu2, b.mu2, b.mu2_2, 1, -1, stream);
|
||||
cuda::multiply(b.mu1, b.mu2, b.mu1_mu2, 1, -1, stream);
|
||||
|
||||
gauss->apply(b.I1_2, b.sigma1_2, stream);
|
||||
gpu::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, gpu::GpuMat(), -1, stream);
|
||||
cuda::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, cuda::GpuMat(), -1, stream);
|
||||
//b.sigma1_2 -= b.mu1_2; - This would result in an extra data transfer operation
|
||||
|
||||
gauss->apply(b.I2_2, b.sigma2_2, stream);
|
||||
gpu::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, gpu::GpuMat(), -1, stream);
|
||||
cuda::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, cuda::GpuMat(), -1, stream);
|
||||
//b.sigma2_2 -= b.mu2_2;
|
||||
|
||||
gauss->apply(b.I1_I2, b.sigma12, stream);
|
||||
gpu::subtract(b.sigma12, b.mu1_mu2, b.sigma12, gpu::GpuMat(), -1, stream);
|
||||
cuda::subtract(b.sigma12, b.mu1_mu2, b.sigma12, cuda::GpuMat(), -1, stream);
|
||||
//b.sigma12 -= b.mu1_mu2;
|
||||
|
||||
//here too it would be an extra data transfer due to call of operator*(Scalar, Mat)
|
||||
gpu::multiply(b.mu1_mu2, 2, b.t1, 1, -1, stream); //b.t1 = 2 * b.mu1_mu2 + C1;
|
||||
gpu::add(b.t1, C1, b.t1, gpu::GpuMat(), -1, stream);
|
||||
gpu::multiply(b.sigma12, 2, b.t2, 1, -1, stream); //b.t2 = 2 * b.sigma12 + C2;
|
||||
gpu::add(b.t2, C2, b.t2, gpu::GpuMat(), -12, stream);
|
||||
cuda::multiply(b.mu1_mu2, 2, b.t1, 1, -1, stream); //b.t1 = 2 * b.mu1_mu2 + C1;
|
||||
cuda::add(b.t1, C1, b.t1, cuda::GpuMat(), -1, stream);
|
||||
cuda::multiply(b.sigma12, 2, b.t2, 1, -1, stream); //b.t2 = 2 * b.sigma12 + C2;
|
||||
cuda::add(b.t2, C2, b.t2, cuda::GpuMat(), -12, stream);
|
||||
|
||||
gpu::multiply(b.t1, b.t2, b.t3, 1, -1, stream); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
|
||||
cuda::multiply(b.t1, b.t2, b.t3, 1, -1, stream); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
|
||||
|
||||
gpu::add(b.mu1_2, b.mu2_2, b.t1, gpu::GpuMat(), -1, stream);
|
||||
gpu::add(b.t1, C1, b.t1, gpu::GpuMat(), -1, stream);
|
||||
cuda::add(b.mu1_2, b.mu2_2, b.t1, cuda::GpuMat(), -1, stream);
|
||||
cuda::add(b.t1, C1, b.t1, cuda::GpuMat(), -1, stream);
|
||||
|
||||
gpu::add(b.sigma1_2, b.sigma2_2, b.t2, gpu::GpuMat(), -1, stream);
|
||||
gpu::add(b.t2, C2, b.t2, gpu::GpuMat(), -1, stream);
|
||||
cuda::add(b.sigma1_2, b.sigma2_2, b.t2, cuda::GpuMat(), -1, stream);
|
||||
cuda::add(b.t2, C2, b.t2, cuda::GpuMat(), -1, stream);
|
||||
|
||||
|
||||
gpu::multiply(b.t1, b.t2, b.t1, 1, -1, stream); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
|
||||
gpu::divide(b.t3, b.t1, b.ssim_map, 1, -1, stream); // ssim_map = t3./t1;
|
||||
cuda::multiply(b.t1, b.t2, b.t1, 1, -1, stream); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
|
||||
cuda::divide(b.t3, b.t1, b.ssim_map, 1, -1, stream); // ssim_map = t3./t1;
|
||||
|
||||
stream.waitForCompletion();
|
||||
|
||||
Scalar s = gpu::sum(b.ssim_map, b.buf);
|
||||
Scalar s = cuda::sum(b.ssim_map, b.buf);
|
||||
mssim.val[i] = s.val[0] / (b.ssim_map.rows * b.ssim_map.cols);
|
||||
|
||||
}
|
||||
|
@@ -347,7 +347,7 @@ int main(int argc, const char **argv)
|
||||
{
|
||||
cout << "initializing GPU..."; cout.flush();
|
||||
Mat hostTmp = Mat::zeros(1, 1, CV_32F);
|
||||
gpu::GpuMat deviceTmp;
|
||||
cuda::GpuMat deviceTmp;
|
||||
deviceTmp.upload(hostTmp);
|
||||
cout << endl;
|
||||
}
|
||||
|
Reference in New Issue
Block a user