Merge remote-tracking branch 'upstream/2.4' into merge-2.4

* #1538 from StevenPuttemans:bugfix_3283
* #1545 from alalek:ocl_test_fix_rng
* #1551 from alalek:cmake_install_win
* #1570 from ilya-lavrenov:ipp_warn_fix
* #1573 from alalek:perf_simple_strategy
* #1574 from alalek:svm_workaround
* #1576 from alalek:ocl_fix_cl_double
* #1577 from ilya-lavrenov:ocl_setto_opencl12
* #1578 from asmorkalov:android_fd_cp_fix
* #1579 from ilya-lavrenov:ocl_norm
* #1582 from sperrholz:ocl-arithm-additions
* #1586 from ilya-lavrenov:ocl_setto_win_fix
* #1589 from ilya-lavrenov:pr1582_fix
* #1591 from alalek:ocl_remove_cl_hpp_h
* #1592 from alalek:ocl_program_cache_update
* #1593 from ilya-lavrenov:ocl_war_on_double
* #1594 from ilya-lavrenov:ocl_perf
* #1595 from alalek:cl_code_cleanup
* #1596 from alalek:test_fix_run_py
* #1597 from alalek:ocl_fix_cleanup
* #1598 from alalek:ocl_fix_build_mac
* #1599 from ilya-lavrenov:ocl_mac_kernel_warnings
* #1601 from ilya-lavrenov:ocl_fix_tvl1_and_sparse
* #1602 from alalek:ocl_test_dump_info
* #1603 from ilya-lavrenov:ocl_disable_svm_noblas
* #1605 from alalek:ocl_fixes
* #1606 from ilya-lavrenov:ocl_imgproc
* #1607 from ilya-lavrenov:ocl_fft_cleanup
* #1608 from alalek:fix_warn_upd_haar
* #1609 from ilya-lavrenov:ocl_some_optimization
* #1610 from alalek:ocl_fix_perf_kalman
* #1612 from alalek:ocl_fix_string_info
* #1614 from ilya-lavrenov:ocl_svm_misprint
* #1616 from ilya-lavrenov:ocl_cvtColor
* #1617 from ilya-lavrenov:ocl_info
* #1622 from a0byte:2.4
* #1625 from ilya-lavrenov:to_string

Conflicts:
	cmake/OpenCVConfig.cmake
	cmake/OpenCVDetectPython.cmake
	cmake/OpenCVGenConfig.cmake
	modules/core/CMakeLists.txt
	modules/nonfree/src/surf.ocl.cpp
	modules/ocl/include/opencv2/ocl/ocl.hpp
	modules/ocl/include/opencv2/ocl/private/util.hpp
	modules/ocl/perf/main.cpp
	modules/ocl/src/arithm.cpp
	modules/ocl/src/cl_operations.cpp
	modules/ocl/src/cl_programcache.cpp
	modules/ocl/src/color.cpp
	modules/ocl/src/fft.cpp
	modules/ocl/src/filtering.cpp
	modules/ocl/src/gemm.cpp
	modules/ocl/src/haar.cpp
	modules/ocl/src/imgproc.cpp
	modules/ocl/src/matrix_operations.cpp
	modules/ocl/src/pyrlk.cpp
	modules/ocl/src/split_merge.cpp
	modules/ocl/src/svm.cpp
	modules/ocl/test/main.cpp
	modules/ocl/test/test_fft.cpp
	modules/ocl/test/test_moments.cpp
	modules/ocl/test/test_objdetect.cpp
	modules/ocl/test/test_optflow.cpp
	modules/ocl/test/utility.hpp
	modules/python/CMakeLists.txt
	modules/ts/include/opencv2/ts.hpp
	modules/ts/src/ts_perf.cpp
	samples/android/face-detection/jni/DetectionBasedTracker_jni.cpp
This commit is contained in:
Alexander Alekhin
2013-10-15 18:43:37 +04:00
124 changed files with 3144 additions and 3195 deletions

View File

@@ -10,7 +10,8 @@
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
@@ -41,105 +42,17 @@
#include "test_precomp.hpp"
#ifdef HAVE_OPENCL
#define DUMP_INFO_STDOUT(propertyDisplayName, propertyValue) \
do { \
std::cout << (propertyDisplayName) << ": " << (propertyValue) << std::endl; \
} while (false)
using namespace cv;
using namespace cv::ocl;
using namespace cvtest;
using namespace testing;
using std::cout;
using std::endl;
#define DUMP_INFO_XML(propertyXMLName, propertyValue) \
do { \
std::stringstream ss; ss << propertyValue; \
::testing::Test::RecordProperty((propertyXMLName), ss.str()); \
} while (false)
void print_info()
{
printf("\n");
#if defined _WIN32
# if defined _WIN64
puts("OS: Windows 64");
# else
puts("OS: Windows 32");
# endif
#elif defined linux
# if defined _LP64
puts("OS: Linux 64");
# else
puts("OS: Linux 32");
# endif
#elif defined __APPLE__
# if defined _LP64
puts("OS: Apple 64");
# else
puts("OS: Apple 32");
# endif
#endif
#include "opencv2/ocl/private/opencl_dumpinfo.hpp"
}
int main(int argc, char **argv)
{
TS::ptr()->init(".");
InitGoogleTest(&argc, argv);
const char *keys =
"{ h | false | print help message }"
"{ t | gpu | set device type:i.e. -t=cpu or gpu}"
"{ p | -1 | set platform id i.e. -p=0}"
"{ d | 0 | set device id i.e. -d=0}";
if (getenv("OPENCV_OPENCL_DEVICE") == NULL) // TODO Remove this after buildbot updates
{
CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help"))
{
cout << "Available options besides google test option:" << endl;
cmd.printMessage();
return 0;
}
string type = cmd.get<string>("type");
int pid = cmd.get<int>("platform");
int device = cmd.get<int>("device");
print_info();
int flag = CVCL_DEVICE_TYPE_GPU;
if(type == "cpu")
{
flag = CVCL_DEVICE_TYPE_CPU;
}
cv::ocl::PlatformsInfo platformsInfo;
cv::ocl::getOpenCLPlatforms(platformsInfo);
if (pid >= (int)platformsInfo.size())
{
std::cout << "platform is invalid\n";
return 1;
}
cv::ocl::DevicesInfo devicesInfo;
int devnums = cv::ocl::getOpenCLDevices(devicesInfo, flag, (pid < 0) ? NULL : platformsInfo[pid]);
if (device < 0 || device >= devnums)
{
std::cout << "device/platform invalid\n";
return 1;
}
cv::ocl::setDevice(devicesInfo[device]);
}
const DeviceInfo& deviceInfo = cv::ocl::Context::getContext()->getDeviceInfo();
cout << "Device type: " << (deviceInfo.deviceType == CVCL_DEVICE_TYPE_CPU ?
"CPU" :
(deviceInfo.deviceType == CVCL_DEVICE_TYPE_GPU ? "GPU" : "unknown")) << endl
<< "Platform name: " << deviceInfo.platform->platformName << endl
<< "Device name: " << deviceInfo.deviceName << endl;
return RUN_ALL_TESTS();
}
#else // DON'T HAVE_OPENCL
int main()
{
printf("OpenCV was built without OpenCL support\n");
return 0;
}
#endif // HAVE_OPENCL
CV_TEST_MAIN(".", dumpOpenCLDevice())

View File

@@ -0,0 +1,80 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/ocl/cl_runtime/cl_runtime.hpp" // for OpenCL types: cl_mem
TEST(TestAPI, openCLExecuteKernelInterop)
{
cv::RNG rng;
Size sz(10000, 1);
cv::Mat cpuMat = cvtest::randomMat(rng, sz, CV_32FC4, -10, 10, false);
cv::ocl::oclMat gpuMat(cpuMat);
cv::ocl::oclMat gpuMatDst(sz, CV_32FC4);
const char* kernelStr =
"__kernel void test_kernel(__global float4* src, __global float4* dst) {\n"
" int x = get_global_id(0);\n"
" dst[x] = src[x];\n"
"}\n";
cv::ocl::ProgramSource program("test_interop", kernelStr);
using namespace std;
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *) &gpuMat.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *) &gpuMatDst.data ));
size_t globalThreads[3] = { sz.width, 1, 1 };
cv::ocl::openCLExecuteKernelInterop(
gpuMat.clCxt,
program,
"test_kernel",
globalThreads, NULL, args,
-1, -1,
"");
cv::Mat dst;
gpuMatDst.download(dst);
EXPECT_LE(checkNorm(cpuMat, dst), 1e-3);
}

File diff suppressed because it is too large Load Diff

View File

@@ -85,14 +85,12 @@ PARAM_TEST_CASE(mog, UseGray, LearningRate, bool)
virtual void SetUp()
{
useGray = GET_PARAM(0);
learningRate = GET_PARAM(1);
useRoi = GET_PARAM(2);
}
};
TEST_P(mog, Update)
OCL_TEST_P(mog, Update)
{
std::string inputFile = string(cvtest::TS::ptr()->get_data_path()) + "gpu/video/768x576.avi";
cv::VideoCapture cap(inputFile);
@@ -103,7 +101,7 @@ TEST_P(mog, Update)
ASSERT_FALSE(frame.empty());
cv::ocl::MOG mog;
cv::ocl::oclMat foreground = createMat_ocl(frame.size(), CV_8UC1, useRoi);
cv::ocl::oclMat foreground = createMat_ocl(rng, frame.size(), CV_8UC1, useRoi);
Ptr<cv::BackgroundSubtractorMOG> mog_gold = createBackgroundSubtractorMOG();
cv::Mat foreground_gold;
@@ -120,7 +118,7 @@ TEST_P(mog, Update)
cv::swap(temp, frame);
}
mog(loadMat_ocl(frame, useRoi), foreground, (float)learningRate);
mog(loadMat_ocl(rng, frame, useRoi), foreground, (float)learningRate);
mog_gold->apply(frame, foreground_gold, learningRate);
@@ -153,7 +151,7 @@ PARAM_TEST_CASE(mog2, UseGray, DetectShadow, bool)
}
};
TEST_P(mog2, Update)
OCL_TEST_P(mog2, Update)
{
std::string inputFile = string(cvtest::TS::ptr()->get_data_path()) + "gpu/video/768x576.avi";
cv::VideoCapture cap(inputFile);
@@ -165,7 +163,7 @@ TEST_P(mog2, Update)
cv::ocl::MOG2 mog2;
mog2.bShadowDetection = detectShadow;
cv::ocl::oclMat foreground = createMat_ocl(frame.size(), CV_8UC1, useRoi);
cv::ocl::oclMat foreground = createMat_ocl(rng, frame.size(), CV_8UC1, useRoi);
cv::Ptr<cv::BackgroundSubtractorMOG2> mog2_gold = createBackgroundSubtractorMOG2();
mog2_gold->setDetectShadows(detectShadow);
@@ -183,7 +181,7 @@ TEST_P(mog2, Update)
cv::swap(temp, frame);
}
mog2(loadMat_ocl(frame, useRoi), foreground);
mog2(loadMat_ocl(rng, frame, useRoi), foreground);
mog2_gold->apply(frame, foreground_gold);
@@ -194,7 +192,7 @@ TEST_P(mog2, Update)
}
}
TEST_P(mog2, getBackgroundImage)
OCL_TEST_P(mog2, getBackgroundImage)
{
if (useGray)
return;
@@ -218,12 +216,12 @@ TEST_P(mog2, getBackgroundImage)
cap >> frame;
ASSERT_FALSE(frame.empty());
mog2(loadMat_ocl(frame, useRoi), foreground);
mog2(loadMat_ocl(rng, frame, useRoi), foreground);
mog2_gold->apply(frame, foreground_gold);
}
cv::ocl::oclMat background = createMat_ocl(frame.size(), frame.type(), useRoi);
cv::ocl::oclMat background = createMat_ocl(rng, frame.size(), frame.type(), useRoi);
mog2.getBackgroundImage(background);
cv::Mat background_gold;

View File

@@ -88,7 +88,7 @@ PARAM_TEST_CASE(Blend, cv::Size, MatType/*, UseRoi*/)
}
};
TEST_P(Blend, Accuracy)
OCL_TEST_P(Blend, Accuracy)
{
int depth = CV_MAT_DEPTH(type);

View File

@@ -72,8 +72,6 @@ namespace
queryDescCount = 300; // must be even number because we split train data in some cases in two
countFactor = 4; // do not change it
cv::RNG &rng = cvtest::TS::ptr()->get_rng();
cv::Mat queryBuf, trainBuf;
// Generate query descriptors randomly.
@@ -108,7 +106,7 @@ namespace
}
};
TEST_P(BruteForceMatcher, Match_Single)
OCL_TEST_P(BruteForceMatcher, Match_Single)
{
cv::ocl::BruteForceMatcher_OCL_base matcher(distType);
@@ -128,7 +126,7 @@ namespace
ASSERT_EQ(0, badCount);
}
TEST_P(BruteForceMatcher, KnnMatch_2_Single)
OCL_TEST_P(BruteForceMatcher, KnnMatch_2_Single)
{
const int knn = 2;
@@ -160,7 +158,7 @@ namespace
ASSERT_EQ(0, badCount);
}
TEST_P(BruteForceMatcher, RadiusMatch_Single)
OCL_TEST_P(BruteForceMatcher, RadiusMatch_Single)
{
float radius = 1.f / countFactor;

View File

@@ -46,10 +46,10 @@
#include "test_precomp.hpp"
#include <iomanip>
#ifdef HAVE_OPENCL
using namespace cv;
#ifdef HAVE_OPENCL
PARAM_TEST_CASE(StereoMatchBM, int, int)
{
int n_disp;
@@ -62,7 +62,7 @@ PARAM_TEST_CASE(StereoMatchBM, int, int)
}
};
TEST_P(StereoMatchBM, Regression)
OCL_TEST_P(StereoMatchBM, Regression)
{
Mat left_image = readImage("gpu/stereobm/aloe-L.png", IMREAD_GRAYSCALE);
@@ -110,7 +110,7 @@ PARAM_TEST_CASE(StereoMatchBP, int, int, int, float, float, float, float)
disc_single_jump_ = GET_PARAM(6);
}
};
TEST_P(StereoMatchBP, Regression)
OCL_TEST_P(StereoMatchBP, Regression)
{
Mat left_image = readImage("gpu/stereobp/aloe-L.png");
Mat right_image = readImage("gpu/stereobp/aloe-R.png");
@@ -163,7 +163,7 @@ PARAM_TEST_CASE(StereoMatchConstSpaceBP, int, int, int, int, float, float, float
msg_type_ = GET_PARAM(9);
}
};
TEST_P(StereoMatchConstSpaceBP, Regression)
OCL_TEST_P(StereoMatchConstSpaceBP, Regression)
{
Mat left_image = readImage("gpu/csstereobp/aloe-L.png");
Mat right_image = readImage("gpu/csstereobp/aloe-R.png");

View File

@@ -64,7 +64,7 @@ PARAM_TEST_CASE(Canny, AppertureSize, L2gradient)
}
};
TEST_P(Canny, Accuracy)
OCL_TEST_P(Canny, Accuracy)
{
cv::Mat img = readImage("cv/shared/fruits.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());

View File

@@ -93,7 +93,7 @@ PARAM_TEST_CASE(CvtColor, cv::Size, MatDepth)
};
#define CVTCODE(name) cv::COLOR_ ## name
#define TEST_P_CVTCOLOR(name) TEST_P(CvtColor, name)\
#define OCL_TEST_P_CVTCOLOR(name) OCL_TEST_P(CvtColor, name)\
{\
cv::Mat src = img;\
cv::ocl::oclMat ocl_img, dst;\
@@ -107,17 +107,17 @@ PARAM_TEST_CASE(CvtColor, cv::Size, MatDepth)
}
//add new ones here using macro
TEST_P_CVTCOLOR(RGB2GRAY)
TEST_P_CVTCOLOR(BGR2GRAY)
TEST_P_CVTCOLOR(RGBA2GRAY)
TEST_P_CVTCOLOR(BGRA2GRAY)
OCL_TEST_P_CVTCOLOR(RGB2GRAY)
OCL_TEST_P_CVTCOLOR(BGR2GRAY)
OCL_TEST_P_CVTCOLOR(RGBA2GRAY)
OCL_TEST_P_CVTCOLOR(BGRA2GRAY)
TEST_P_CVTCOLOR(RGB2YUV)
TEST_P_CVTCOLOR(BGR2YUV)
TEST_P_CVTCOLOR(YUV2RGB)
TEST_P_CVTCOLOR(YUV2BGR)
TEST_P_CVTCOLOR(RGB2YCrCb)
TEST_P_CVTCOLOR(BGR2YCrCb)
OCL_TEST_P_CVTCOLOR(RGB2YUV)
OCL_TEST_P_CVTCOLOR(BGR2YUV)
OCL_TEST_P_CVTCOLOR(YUV2RGB)
OCL_TEST_P_CVTCOLOR(YUV2BGR)
OCL_TEST_P_CVTCOLOR(RGB2YCrCb)
OCL_TEST_P_CVTCOLOR(BGR2YCrCb)
PARAM_TEST_CASE(CvtColor_Gray2RGB, cv::Size, MatDepth, int)
{
@@ -134,7 +134,7 @@ PARAM_TEST_CASE(CvtColor_Gray2RGB, cv::Size, MatDepth, int)
img = randomMat(size, CV_MAKETYPE(depth, 1), 0.0, depth == CV_32F ? 1.0 : 255.0);
}
};
TEST_P(CvtColor_Gray2RGB, Accuracy)
OCL_TEST_P(CvtColor_Gray2RGB, Accuracy)
{
cv::Mat src = img;
cv::ocl::oclMat ocl_img, dst;
@@ -163,7 +163,7 @@ PARAM_TEST_CASE(CvtColor_YUV420, cv::Size, int)
}
};
TEST_P(CvtColor_YUV420, Accuracy)
OCL_TEST_P(CvtColor_YUV420, Accuracy)
{
cv::Mat src = img;
cv::ocl::oclMat ocl_img, dst;

View File

@@ -44,10 +44,12 @@
//M*/
#include "test_precomp.hpp"
using namespace std;
#ifdef HAVE_CLAMDFFT
////////////////////////////////////////////////////////////////////////////
// Dft
PARAM_TEST_CASE(Dft, cv::Size, int)
{
cv::Size dft_size;
@@ -59,7 +61,7 @@ PARAM_TEST_CASE(Dft, cv::Size, int)
}
};
TEST_P(Dft, C2C)
OCL_TEST_P(Dft, C2C)
{
cv::Mat a = randomMat(dft_size, CV_32FC2, 0.0, 100.0);
cv::Mat b_gold;
@@ -71,7 +73,7 @@ TEST_P(Dft, C2C)
EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), a.size().area() * 1e-4);
}
TEST_P(Dft, R2C)
OCL_TEST_P(Dft, R2C)
{
cv::Mat a = randomMat(dft_size, CV_32FC1, 0.0, 100.0);
cv::Mat b_gold, b_gold_roi;
@@ -88,7 +90,7 @@ TEST_P(Dft, R2C)
EXPECT_MAT_NEAR(b_gold_roi, cv::Mat(d_b), a.size().area() * 1e-4);
}
TEST_P(Dft, R2CthenC2R)
OCL_TEST_P(Dft, R2CthenC2R)
{
cv::Mat a = randomMat(dft_size, CV_32FC1, 0.0, 10.0);
@@ -98,7 +100,6 @@ TEST_P(Dft, R2CthenC2R)
EXPECT_MAT_NEAR(a, d_c, a.size().area() * 1e-4);
}
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, Dft, testing::Combine(
testing::Values(cv::Size(2, 3), cv::Size(5, 4), cv::Size(25, 20), cv::Size(512, 1), cv::Size(1024, 768)),
testing::Values(0, (int)cv::DFT_ROWS, (int)cv::DFT_SCALE) ));
@@ -119,12 +120,12 @@ PARAM_TEST_CASE(MulSpectrums, cv::Size, DftFlags, bool)
flag = GET_PARAM(1);
ccorr = GET_PARAM(2);
a = randomMat(size, CV_32FC2);
b = randomMat(size, CV_32FC2);
a = randomMat(size, CV_32FC2, -100, 100, false);
b = randomMat(size, CV_32FC2, -100, 100, false);
}
};
TEST_P(MulSpectrums, Simple)
OCL_TEST_P(MulSpectrums, Simple)
{
cv::ocl::oclMat c;
cv::ocl::mulSpectrums(cv::ocl::oclMat(a), cv::ocl::oclMat(b), c, flag, 1.0, ccorr);
@@ -135,7 +136,7 @@ TEST_P(MulSpectrums, Simple)
EXPECT_MAT_NEAR(c_gold, c, 1e-2);
}
TEST_P(MulSpectrums, Scaled)
OCL_TEST_P(MulSpectrums, Scaled)
{
float scale = 1.f / size.area();
@@ -219,7 +220,7 @@ PARAM_TEST_CASE(Convolve_DFT, cv::Size, KSize, Ccorr)
}
};
TEST_P(Convolve_DFT, Accuracy)
OCL_TEST_P(Convolve_DFT, Accuracy)
{
cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0);
cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0);
@@ -236,5 +237,4 @@ TEST_P(Convolve_DFT, Accuracy)
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, Convolve_DFT, testing::Combine(
DIFFERENT_CONVOLVE_SIZES,
testing::Values(KSize(19), KSize(23), KSize(45)),
testing::Values(Ccorr(true)/*, Ccorr(false)*/))); // false ccorr cannot pass for some instances
#endif // HAVE_CLAMDFFT
testing::Values(Ccorr(true)/*, Ccorr(false)*/))); // TODO false ccorr cannot pass for some instances

View File

@@ -91,7 +91,6 @@ PARAM_TEST_CASE(FilterTestBase,
{
#ifdef RANDOMROI
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(2, mat1.cols);
roirows = rng.uniform(2, mat1.rows);
src1x = rng.uniform(0, mat1.cols - roicols);
@@ -146,7 +145,7 @@ struct Blur : FilterTestBase
}
};
TEST_P(Blur, Mat)
OCL_TEST_P(Blur, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -173,7 +172,7 @@ struct Laplacian : FilterTestBase
}
};
TEST_P(Laplacian, Accuracy)
OCL_TEST_P(Laplacian, Accuracy)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -201,13 +200,12 @@ struct ErodeDilate : FilterTestBase
type = GET_PARAM(0);
iterations = GET_PARAM(3);
Init(type);
// rng.fill(kernel, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3));
kernel = randomMat(Size(3, 3), CV_8UC1, 0, 3);
}
};
TEST_P(ErodeDilate, Mat)
OCL_TEST_P(ErodeDilate, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -246,7 +244,7 @@ struct Sobel : FilterTestBase
}
};
TEST_P(Sobel, Mat)
OCL_TEST_P(Sobel, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -276,7 +274,7 @@ struct Scharr : FilterTestBase
}
};
TEST_P(Scharr, Mat)
OCL_TEST_P(Scharr, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -304,13 +302,12 @@ struct GaussianBlur : FilterTestBase
ksize = GET_PARAM(1);
bordertype = GET_PARAM(3);
Init(type);
cv::RNG &rng = TS::ptr()->get_rng();
sigma1 = rng.uniform(0.1, 1.0);
sigma2 = rng.uniform(0.1, 1.0);
}
};
TEST_P(GaussianBlur, Mat)
OCL_TEST_P(GaussianBlur, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -342,7 +339,7 @@ struct Filter2D : FilterTestBase
}
};
TEST_P(Filter2D, Mat)
OCL_TEST_P(Filter2D, Mat)
{
cv::Mat kernel = randomMat(cv::Size(ksize.width, ksize.height), CV_32FC1, 0.0, 1.0);
for(int j = 0; j < LOOP_TIMES; j++)
@@ -368,13 +365,12 @@ struct Bilateral : FilterTestBase
ksize = GET_PARAM(1);
bordertype = GET_PARAM(3);
Init(type);
cv::RNG &rng = TS::ptr()->get_rng();
sigmacolor = rng.uniform(20, 100);
sigmaspace = rng.uniform(10, 40);
}
};
TEST_P(Bilateral, Mat)
OCL_TEST_P(Bilateral, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -404,7 +400,7 @@ struct AdaptiveBilateral : FilterTestBase
}
};
TEST_P(AdaptiveBilateral, Mat)
OCL_TEST_P(AdaptiveBilateral, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{

View File

@@ -42,12 +42,13 @@
//
//M*/
#include "test_precomp.hpp"
using namespace std;
#ifdef HAVE_CLAMDBLAS
////////////////////////////////////////////////////////////////////////////
// GEMM
PARAM_TEST_CASE(Gemm, int, cv::Size, int)
{
int type;
@@ -62,7 +63,7 @@ PARAM_TEST_CASE(Gemm, int, cv::Size, int)
}
};
TEST_P(Gemm, Accuracy)
OCL_TEST_P(Gemm, Accuracy)
{
cv::Mat a = randomMat(mat_size, type, 0.0, 10.0);
cv::Mat b = randomMat(mat_size, type, 0.0, 10.0);
@@ -81,4 +82,3 @@ INSTANTIATE_TEST_CASE_P(ocl_gemm, Gemm, testing::Combine(
testing::Values(CV_32FC1, CV_32FC2/*, CV_64FC1, CV_64FC2*/),
testing::Values(cv::Size(20, 20), cv::Size(300, 300)),
testing::Values(0, (int)cv::GEMM_1_T, (int)cv::GEMM_2_T, (int)(cv::GEMM_1_T + cv::GEMM_2_T))));
#endif

View File

@@ -58,7 +58,7 @@ PARAM_TEST_CASE(HoughCircles, cv::Size)
}
};
TEST_P(HoughCircles, Accuracy)
OCL_TEST_P(HoughCircles, Accuracy)
{
const cv::Size size = GET_PARAM(0);

View File

@@ -351,33 +351,32 @@ PARAM_TEST_CASE(ImgprocTestBase, MatType, MatType, MatType, MatType, MatType, bo
type3 = GET_PARAM(2);
type4 = GET_PARAM(3);
type5 = GET_PARAM(4);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
double min = 1, max = 20;
if(type1 != nulltype)
{
mat1 = randomMat(rng, size, type1, min, max, false);
mat1 = randomMat(size, type1, min, max, false);
clmat1 = mat1;
}
if(type2 != nulltype)
{
mat2 = randomMat(rng, size, type2, min, max, false);
mat2 = randomMat(size, type2, min, max, false);
clmat2 = mat2;
}
if(type3 != nulltype)
{
dst = randomMat(rng, size, type3, min, max, false);
dst = randomMat(size, type3, min, max, false);
cldst = dst;
}
if(type4 != nulltype)
{
dst1 = randomMat(rng, size, type4, min, max, false);
dst1 = randomMat(size, type4, min, max, false);
cldst1 = dst1;
}
if(type5 != nulltype)
{
mask = randomMat(rng, size, CV_8UC1, 0, 2, false);
mask = randomMat(size, CV_8UC1, 0, 2, false);
cv::threshold(mask, mask, 0.5, 255., type5);
clmask = mask;
}
@@ -388,7 +387,6 @@ PARAM_TEST_CASE(ImgprocTestBase, MatType, MatType, MatType, MatType, MatType, bo
{
#ifdef RANDOMROI
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(1, mat1.cols);
roirows = rng.uniform(1, mat1.rows);
src1x = rng.uniform(0, mat1.cols - roicols);
@@ -455,7 +453,7 @@ PARAM_TEST_CASE(ImgprocTestBase, MatType, MatType, MatType, MatType, MatType, bo
struct equalizeHist : ImgprocTestBase {};
TEST_P(equalizeHist, Mat)
OCL_TEST_P(equalizeHist, Mat)
{
if (mat1.type() != CV_8UC1 || mat1.type() != dst.type())
{
@@ -479,10 +477,9 @@ TEST_P(equalizeHist, Mat)
struct CopyMakeBorder : ImgprocTestBase {};
TEST_P(CopyMakeBorder, Mat)
OCL_TEST_P(CopyMakeBorder, Mat)
{
int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE, cv::BORDER_REFLECT, cv::BORDER_WRAP, cv::BORDER_REFLECT_101};
cv::RNG &rng = TS::ptr()->get_rng();
int top = rng.uniform(0, 10);
int bottom = rng.uniform(0, 10);
int left = rng.uniform(0, 10);
@@ -535,7 +532,7 @@ TEST_P(CopyMakeBorder, Mat)
struct cornerMinEigenVal : ImgprocTestBase {};
TEST_P(cornerMinEigenVal, Mat)
OCL_TEST_P(cornerMinEigenVal, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -557,7 +554,7 @@ TEST_P(cornerMinEigenVal, Mat)
struct cornerHarris : ImgprocTestBase {};
TEST_P(cornerHarris, Mat)
OCL_TEST_P(cornerHarris, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -579,7 +576,7 @@ TEST_P(cornerHarris, Mat)
struct integral : ImgprocTestBase {};
TEST_P(integral, Mat1)
OCL_TEST_P(integral, Mat1)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -591,7 +588,7 @@ TEST_P(integral, Mat1)
}
}
TEST_P(integral, Mat2)
OCL_TEST_P(integral, Mat2)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -646,22 +643,17 @@ PARAM_TEST_CASE(WarpTestBase, MatType, int)
virtual void SetUp()
{
type = GET_PARAM(0);
//dsize = GET_PARAM(1);
interpolation = GET_PARAM(1);
cv::RNG &rng = TS::ptr()->get_rng();
size = cv::Size(MWIDTH, MHEIGHT);
mat1 = randomMat(rng, size, type, 5, 16, false);
dst = randomMat(rng, size, type, 5, 16, false);
mat1 = randomMat(size, type, 5, 16, false);
dst = randomMat(size, type, 5, 16, false);
}
void random_roi()
{
#ifdef RANDOMROI
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
src_roicols = rng.uniform(1, mat1.cols);
src_roirows = rng.uniform(1, mat1.rows);
dst_roicols = rng.uniform(1, dst.cols);
@@ -698,7 +690,7 @@ PARAM_TEST_CASE(WarpTestBase, MatType, int)
struct WarpAffine : WarpTestBase {};
TEST_P(WarpAffine, Mat)
OCL_TEST_P(WarpAffine, Mat)
{
static const double coeffs[2][3] =
{
@@ -726,7 +718,7 @@ TEST_P(WarpAffine, Mat)
struct WarpPerspective : WarpTestBase {};
TEST_P(WarpPerspective, Mat)
OCL_TEST_P(WarpPerspective, Mat)
{
static const double coeffs[3][3] =
{
@@ -810,23 +802,22 @@ PARAM_TEST_CASE(Remap, MatType, MatType, MatType, int, int)
interpolation = GET_PARAM(3);
bordertype = GET_PARAM(4);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size srcSize = cv::Size(MWIDTH, MHEIGHT);
cv::Size map1Size = cv::Size(MWIDTH, MHEIGHT);
double min = 5, max = 16;
if(srcType != nulltype)
{
src = randomMat(rng, srcSize, srcType, min, max, false);
src = randomMat(srcSize, srcType, min, max, false);
}
if((map1Type == CV_16SC2 && map2Type == nulltype) || (map1Type == CV_32FC2 && map2Type == nulltype))
{
map1 = randomMat(rng, map1Size, map1Type, min, max, false);
map1 = randomMat(map1Size, map1Type, min, max, false);
}
else if (map1Type == CV_32FC1 && map2Type == CV_32FC1)
{
map1 = randomMat(rng, map1Size, map1Type, min, max, false);
map2 = randomMat(rng, map1Size, map1Type, min, max, false);
map1 = randomMat(map1Size, map1Type, min, max, false);
map2 = randomMat(map1Size, map1Type, min, max, false);
}
else
@@ -835,7 +826,7 @@ PARAM_TEST_CASE(Remap, MatType, MatType, MatType, int, int)
return;
}
dst = randomMat(rng, map1Size, srcType, min, max, false);
dst = randomMat(map1Size, srcType, min, max, false);
switch (src.channels())
{
case 1:
@@ -855,8 +846,6 @@ PARAM_TEST_CASE(Remap, MatType, MatType, MatType, int, int)
}
void random_roi()
{
cv::RNG &rng = TS::ptr()->get_rng();
dst_roicols = rng.uniform(1, dst.cols);
dst_roirows = rng.uniform(1, dst.rows);
@@ -898,7 +887,7 @@ PARAM_TEST_CASE(Remap, MatType, MatType, MatType, int, int)
}
};
TEST_P(Remap, Mat)
OCL_TEST_P(Remap, Mat)
{
if((interpolation == 1 && map1Type == CV_16SC2) || (map1Type == CV_32FC1 && map2Type == nulltype) || (map1Type == CV_16SC2 && map2Type == CV_32FC1) || (map1Type == CV_32FC2 && map2Type == CV_32FC1))
{
@@ -966,8 +955,6 @@ PARAM_TEST_CASE(Resize, MatType, cv::Size, double, double, int)
fy = GET_PARAM(3);
interpolation = GET_PARAM(4);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
if(dsize == cv::Size() && !(fx > 0 && fy > 0))
@@ -982,8 +969,8 @@ PARAM_TEST_CASE(Resize, MatType, cv::Size, double, double, int)
dsize.height = (int)(size.height * fy);
}
mat1 = randomMat(rng, size, type, 5, 16, false);
dst = randomMat(rng, dsize, type, 5, 16, false);
mat1 = randomMat(size, type, 5, 16, false);
dst = randomMat(dsize, type, 5, 16, false);
}
@@ -991,7 +978,6 @@ PARAM_TEST_CASE(Resize, MatType, cv::Size, double, double, int)
{
#ifdef RANDOMROI
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
src_roicols = rng.uniform(1, mat1.cols);
src_roirows = rng.uniform(1, mat1.rows);
dst_roicols = (int)(src_roicols * fx);
@@ -1026,7 +1012,7 @@ PARAM_TEST_CASE(Resize, MatType, cv::Size, double, double, int)
};
TEST_P(Resize, Mat)
OCL_TEST_P(Resize, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -1082,18 +1068,16 @@ PARAM_TEST_CASE(Threshold, MatType, ThreshOp)
type = GET_PARAM(0);
threshOp = GET_PARAM(1);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
mat1 = randomMat(rng, size, type, 5, 16, false);
dst = randomMat(rng, size, type, 5, 16, false);
mat1 = randomMat(size, type, 5, 16, false);
dst = randomMat(size, type, 5, 16, false);
}
void random_roi()
{
#ifdef RANDOMROI
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(1, mat1.cols);
roirows = rng.uniform(1, mat1.rows);
src1x = rng.uniform(0, mat1.cols - roicols);
@@ -1121,7 +1105,7 @@ PARAM_TEST_CASE(Threshold, MatType, ThreshOp)
};
TEST_P(Threshold, Mat)
OCL_TEST_P(Threshold, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -1179,22 +1163,18 @@ PARAM_TEST_CASE(meanShiftTestBase, MatType, MatType, int, int, cv::TermCriteria)
sr = GET_PARAM(3);
crit = GET_PARAM(4);
cv::RNG &rng = TS::ptr()->get_rng();
// MWIDTH=256, MHEIGHT=256. defined in utility.hpp
cv::Size size = cv::Size(MWIDTH, MHEIGHT);
src = randomMat(rng, size, type, 5, 16, false);
dst = randomMat(rng, size, type, 5, 16, false);
dstCoor = randomMat(rng, size, typeCoor, 5, 16, false);
src = randomMat(size, type, 5, 16, false);
dst = randomMat(size, type, 5, 16, false);
dstCoor = randomMat(size, typeCoor, 5, 16, false);
}
void random_roi()
{
#ifdef RANDOMROI
cv::RNG &rng = TS::ptr()->get_rng();
//randomize ROI
roicols = rng.uniform(1, src.cols);
roirows = rng.uniform(1, src.rows);
@@ -1226,7 +1206,7 @@ PARAM_TEST_CASE(meanShiftTestBase, MatType, MatType, int, int, cv::TermCriteria)
/////////////////////////meanShiftFiltering/////////////////////////////
struct meanShiftFiltering : meanShiftTestBase {};
TEST_P(meanShiftFiltering, Mat)
OCL_TEST_P(meanShiftFiltering, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
@@ -1247,7 +1227,7 @@ TEST_P(meanShiftFiltering, Mat)
///////////////////////////meanShiftProc//////////////////////////////////
struct meanShiftProc : meanShiftTestBase {};
TEST_P(meanShiftProc, Mat)
OCL_TEST_P(meanShiftProc, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
@@ -1307,18 +1287,15 @@ PARAM_TEST_CASE(histTestBase, MatType, MatType)
{
type_src = GET_PARAM(0);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size = cv::Size(MWIDTH, MHEIGHT);
src = randomMat(rng, size, type_src, 0, 256, false);
src = randomMat(size, type_src, 0, 256, false);
}
void random_roi()
{
#ifdef RANDOMROI
cv::RNG &rng = TS::ptr()->get_rng();
//randomize ROI
roicols = rng.uniform(1, src.cols);
roirows = rng.uniform(1, src.rows);
@@ -1338,7 +1315,7 @@ PARAM_TEST_CASE(histTestBase, MatType, MatType)
///////////////////////////calcHist///////////////////////////////////////
struct calcHist : histTestBase {};
TEST_P(calcHist, Mat)
OCL_TEST_P(calcHist, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -1372,13 +1349,12 @@ PARAM_TEST_CASE(CLAHE, cv::Size, double)
gridSize = GET_PARAM(0);
clipLimit = GET_PARAM(1);
cv::RNG &rng = TS::ptr()->get_rng();
src = randomMat(rng, cv::Size(MWIDTH, MHEIGHT), CV_8UC1, 0, 256, false);
src = randomMat(cv::Size(MWIDTH, MHEIGHT), CV_8UC1, 0, 256, false);
g_src.upload(src);
}
};
TEST_P(CLAHE, Accuracy)
OCL_TEST_P(CLAHE, Accuracy)
{
cv::Ptr<cv::CLAHE> clahe = cv::ocl::createCLAHE(clipLimit, gridSize);
clahe->apply(g_src, g_dst);
@@ -1425,19 +1401,15 @@ PARAM_TEST_CASE(ConvolveTestBase, MatType, bool)
{
type = GET_PARAM(0);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
mat1 = randomMat(rng, size, type, 5, 16, false);
mat2 = randomMat(rng, size, type, 5, 16, false);
dst = randomMat(rng, size, type, 5, 16, false);
dst1 = randomMat(rng, size, type, 5, 16, false);
mat1 = randomMat(size, type, 5, 16, false);
mat2 = randomMat(size, type, 5, 16, false);
dst = randomMat(size, type, 5, 16, false);
dst1 = randomMat(size, type, 5, 16, false);
}
void random_roi()
{
cv::RNG &rng = TS::ptr()->get_rng();
#ifdef RANDOMROI
//randomize ROI
roicols = rng.uniform(1, mat1.cols);
@@ -1505,7 +1477,7 @@ void conv2( cv::Mat x, cv::Mat y, cv::Mat z)
dstdata[i * (z.step >> 2) + j] = temp;
}
}
TEST_P(Convolve, Mat)
OCL_TEST_P(Convolve, Mat)
{
if(mat1.type() != CV_32FC1)
{
@@ -1540,9 +1512,9 @@ PARAM_TEST_CASE(ColumnSum, cv::Size)
}
};
TEST_P(ColumnSum, Accuracy)
OCL_TEST_P(ColumnSum, Accuracy)
{
cv::Mat src = randomMat(size, CV_32FC1);
cv::Mat src = randomMat(size, CV_32FC1, 0, 255);
cv::ocl::oclMat d_dst;
cv::ocl::oclMat d_src(src);

View File

@@ -43,7 +43,9 @@
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_OPENCL
using namespace cv;
using namespace cv::ocl;
using namespace cvtest;
@@ -51,6 +53,7 @@ using namespace testing;
using namespace std;
//////////////////////////////////////////////////////////////////////////
PARAM_TEST_CASE(Kalman, int, int)
{
int size_;
@@ -62,15 +65,13 @@ PARAM_TEST_CASE(Kalman, int, int)
}
};
TEST_P(Kalman, Accuracy)
OCL_TEST_P(Kalman, Accuracy)
{
const int Dim = size_;
const int Steps = iteration;
const double max_init = 1;
const double max_noise = 0.1;
cv::RNG &rng = TS::ptr()->get_rng();
Mat sample_mat(Dim, 1, CV_32F), temp_mat;
oclMat Sample(Dim, 1, CV_32F);
oclMat Temp(Dim, 1, CV_32F);
@@ -78,7 +79,7 @@ TEST_P(Kalman, Accuracy)
Size size(Sample.cols, Sample.rows);
sample_mat = randomMat(rng, size, Sample.type(), -max_init, max_init, false);
sample_mat = randomMat(size, Sample.type(), -max_init, max_init, false);
Sample.upload(sample_mat);
//ocl start
@@ -120,7 +121,7 @@ TEST_P(Kalman, Accuracy)
cv::gemm(kalman_filter_cpu.transitionMatrix, sample_mat, 1, cv::Mat(), 0, Temp_cpu);
Size size1(Temp.cols, Temp.rows);
Mat temp = randomMat(rng, size1, Temp.type(), 0, 0xffff, false);
Mat temp = randomMat(size1, Temp.type(), 0, 0xffff, false);
cv::multiply(2, temp, temp);
@@ -141,6 +142,7 @@ TEST_P(Kalman, Accuracy)
//test end
EXPECT_MAT_NEAR(kalman_filter_cpu.statePost, kalman_filter_ocl.statePost, 0);
}
INSTANTIATE_TEST_CASE_P(OCL_Video, Kalman, Combine(Values(3, 7), Values(30)));
#endif // HAVE_OPENCL
#endif // HAVE_OPENCL

View File

@@ -66,12 +66,11 @@ PARAM_TEST_CASE(Kmeans, int, int, int)
Mat labels, centers;
ocl::oclMat d_labels, d_centers;
cv::RNG rng ;
virtual void SetUp(){
virtual void SetUp()
{
K = GET_PARAM(0);
type = GET_PARAM(1);
flags = GET_PARAM(2);
rng = TS::ptr()->get_rng();
// MWIDTH=256, MHEIGHT=256. defined in utility.hpp
cv::Size size = cv::Size(MWIDTH, MHEIGHT);
@@ -92,14 +91,14 @@ PARAM_TEST_CASE(Kmeans, int, int, int)
{
Mat cur_row_header = src.row(row_idx + 1 + j);
center_row_header.copyTo(cur_row_header);
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), -200, 200, false);
Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), -200, 200, false);
cur_row_header += tmpmat;
}
row_idx += 1 + max_neighbour;
}
}
};
TEST_P(Kmeans, Mat){
OCL_TEST_P(Kmeans, Mat){
if(flags & KMEANS_USE_INITIAL_LABELS)
{

View File

@@ -70,10 +70,10 @@ PARAM_TEST_CASE(MatchTemplate8U, cv::Size, TemplateSize, Channels, TemplateMetho
}
};
TEST_P(MatchTemplate8U, Accuracy)
OCL_TEST_P(MatchTemplate8U, Accuracy)
{
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn));
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn));
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn), 0, 255);
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn), 0, 255);
cv::ocl::oclMat dst, ocl_image(image), ocl_templ(templ);
cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);
@@ -103,10 +103,10 @@ PARAM_TEST_CASE(MatchTemplate32F, cv::Size, TemplateSize, Channels, TemplateMeth
}
};
TEST_P(MatchTemplate32F, Accuracy)
OCL_TEST_P(MatchTemplate32F, Accuracy)
{
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn));
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn));
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn), 0, 255);
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn), 0, 255);
cv::ocl::oclMat dst, ocl_image(image), ocl_templ(templ);
cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);

View File

@@ -90,10 +90,8 @@ PARAM_TEST_CASE(ConvertToTestBase, MatType, MatType, int, bool)
use_roi = GET_PARAM(3);
cv::RNG &rng = TS::ptr()->get_rng();
mat = randomMat(rng, randomSize(MIN_VALUE, MAX_VALUE), src_type, 5, 136, false);
dst = randomMat(rng, use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : mat.size(), dst_type, 5, 136, false);
mat = randomMat(randomSize(MIN_VALUE, MAX_VALUE), src_type, 5, 136, false);
dst = randomMat(use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : mat.size(), dst_type, 5, 136, false);
}
void random_roi()
@@ -101,7 +99,6 @@ PARAM_TEST_CASE(ConvertToTestBase, MatType, MatType, int, bool)
if (use_roi)
{
// randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(1, MIN_VALUE);
roirows = rng.uniform(1, MIN_VALUE);
srcx = rng.uniform(0, mat.cols - roicols);
@@ -129,7 +126,7 @@ PARAM_TEST_CASE(ConvertToTestBase, MatType, MatType, int, bool)
typedef ConvertToTestBase ConvertTo;
TEST_P(ConvertTo, Accuracy)
OCL_TEST_P(ConvertTo, Accuracy)
{
if((src_depth == CV_64F || dst_depth == CV_64F) &&
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE))
@@ -178,11 +175,9 @@ PARAM_TEST_CASE(CopyToTestBase, MatType, int, bool)
int type = CV_MAKETYPE(GET_PARAM(0), GET_PARAM(1));
use_roi = GET_PARAM(2);
cv::RNG &rng = TS::ptr()->get_rng();
src = randomMat(rng, randomSize(MIN_VALUE, MAX_VALUE), type, 5, 16, false);
dst = randomMat(rng, use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), type, 5, 16, false);
mask = randomMat(rng, use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), CV_8UC1, 0, 2, false);
src = randomMat(randomSize(MIN_VALUE, MAX_VALUE), type, 5, 16, false);
dst = randomMat(use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), type, 5, 16, false);
mask = randomMat(use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), CV_8UC1, 0, 2, false);
cv::threshold(mask, mask, 0.5, 255., CV_8UC1);
}
@@ -192,7 +187,6 @@ PARAM_TEST_CASE(CopyToTestBase, MatType, int, bool)
if (use_roi)
{
// randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(1, MIN_VALUE);
roirows = rng.uniform(1, MIN_VALUE);
srcx = rng.uniform(0, src.cols - roicols);
@@ -225,7 +219,7 @@ PARAM_TEST_CASE(CopyToTestBase, MatType, int, bool)
typedef CopyToTestBase CopyTo;
TEST_P(CopyTo, Without_mask)
OCL_TEST_P(CopyTo, Without_mask)
{
if((src.depth() == CV_64F) &&
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE))
@@ -243,7 +237,7 @@ TEST_P(CopyTo, Without_mask)
}
}
TEST_P(CopyTo, With_mask)
OCL_TEST_P(CopyTo, With_mask)
{
if(src.depth() == CV_64F &&
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE))
@@ -295,11 +289,10 @@ PARAM_TEST_CASE(SetToTestBase, MatType, int, bool)
channels = GET_PARAM(1);
use_roi = GET_PARAM(2);
cv::RNG &rng = TS::ptr()->get_rng();
int type = CV_MAKE_TYPE(depth, channels);
src = randomMat(rng, randomSize(MIN_VALUE, MAX_VALUE), type, 5, 16, false);
mask = randomMat(rng, use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), CV_8UC1, 0, 2, false);
src = randomMat(randomSize(MIN_VALUE, MAX_VALUE), type, 5, 16, false);
mask = randomMat(use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), CV_8UC1, 0, 2, false);
cv::threshold(mask, mask, 0.5, 255., CV_8UC1);
val = cv::Scalar(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0),
@@ -311,7 +304,6 @@ PARAM_TEST_CASE(SetToTestBase, MatType, int, bool)
if (use_roi)
{
// randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(1, MIN_VALUE);
roirows = rng.uniform(1, MIN_VALUE);
srcx = rng.uniform(0, src.cols - roicols);
@@ -339,7 +331,7 @@ PARAM_TEST_CASE(SetToTestBase, MatType, int, bool)
typedef SetToTestBase SetTo;
TEST_P(SetTo, Without_mask)
OCL_TEST_P(SetTo, Without_mask)
{
if(depth == CV_64F &&
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE))
@@ -357,7 +349,7 @@ TEST_P(SetTo, Without_mask)
}
}
TEST_P(SetTo, With_mask)
OCL_TEST_P(SetTo, With_mask)
{
if(depth == CV_64F &&
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE))
@@ -401,8 +393,7 @@ PARAM_TEST_CASE(convertC3C4, MatType, bool)
use_roi = GET_PARAM(1);
int type = CV_MAKE_TYPE(depth, 3);
cv::RNG &rng = TS::ptr()->get_rng();
src = randomMat(rng, randomSize(1, MAX_VALUE), type, 0, 40, false);
src = randomMat(randomSize(1, MAX_VALUE), type, 0, 40, false);
}
void random_roi()
@@ -410,7 +401,6 @@ PARAM_TEST_CASE(convertC3C4, MatType, bool)
if (use_roi)
{
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(1, src.cols);
roirows = rng.uniform(1, src.rows);
srcx = rng.uniform(0, src.cols - roicols);
@@ -427,7 +417,7 @@ PARAM_TEST_CASE(convertC3C4, MatType, bool)
}
};
TEST_P(convertC3C4, Accuracy)
OCL_TEST_P(convertC3C4, Accuracy)
{
if(depth == CV_64F &&
!cv::ocl::Context::getContext()->supportsFeature(cv::ocl::FEATURE_CL_DOUBLE))

View File

@@ -44,16 +44,19 @@
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_OPENCL
using namespace cv;
using namespace cv::ocl;
using namespace cvtest;
using namespace testing;
///////K-NEAREST NEIGHBOR//////////////////////////
static void genTrainData(Mat& trainData, int trainDataRow, int trainDataCol,
static void genTrainData(cv::RNG& rng, Mat& trainData, int trainDataRow, int trainDataCol,
Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0)
{
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size(trainDataCol, trainDataRow);
trainData = randomMat(rng, size, CV_32FC1, 1.0, 1000.0, false);
if(nClasses != 0)
@@ -81,14 +84,14 @@ PARAM_TEST_CASE(KNN, int, Size, int, bool)
}
};
TEST_P(KNN, Accuracy)
OCL_TEST_P(KNN, Accuracy)
{
Mat trainData, trainLabels;
const int trainDataRow = 500;
genTrainData(trainData, trainDataRow, trainDataCol, trainLabels, nClass);
genTrainData(rng, trainData, trainDataRow, trainDataCol, trainLabels, nClass);
Mat testData, testLabels;
genTrainData(testData, testDataRow, trainDataCol);
genTrainData(rng, testData, testDataRow, trainDataCol);
KNearestNeighbour knn_ocl;
CvKNearest knn_cpu;
@@ -119,10 +122,14 @@ TEST_P(KNN, Accuracy)
EXPECT_MAT_NEAR(Mat(best_label_ocl), best_label_cpu, 0.0);
}
}
INSTANTIATE_TEST_CASE_P(OCL_ML, KNN, Combine(Values(6, 5), Values(Size(200, 400), Size(300, 600)),
Values(4, 3), Values(false, true)));
#ifdef HAVE_CLAMDBLAS // TODO does not work non-blas version of SVM
////////////////////////////////SVM/////////////////////////////////////////////////
PARAM_TEST_CASE(SVM_OCL, int, int, int)
{
cv::Size size;
@@ -130,7 +137,6 @@ PARAM_TEST_CASE(SVM_OCL, int, int, int)
int svm_type;
Mat src, labels, samples, labels_predict;
int K;
cv::RNG rng ;
virtual void SetUp()
{
@@ -138,7 +144,6 @@ PARAM_TEST_CASE(SVM_OCL, int, int, int)
kernel_type = GET_PARAM(0);
svm_type = GET_PARAM(1);
K = GET_PARAM(2);
rng = TS::ptr()->get_rng();
cv::Size size = cv::Size(MWIDTH, MHEIGHT);
src.create(size, CV_32FC1);
labels.create(1, size.height, CV_32SC1);
@@ -160,7 +165,7 @@ PARAM_TEST_CASE(SVM_OCL, int, int, int)
{
Mat cur_row_header = src.row(row_idx + 1 + j);
center_row_header.copyTo(cur_row_header);
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false);
Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), 1, 100, false);
cur_row_header += tmpmat;
labels.at<int>(0, row_idx + 1 + j) = i;
}
@@ -187,7 +192,7 @@ PARAM_TEST_CASE(SVM_OCL, int, int, int)
{
Mat cur_row_header = samples.row(row_idx + 1 + j);
center_row_header.copyTo(cur_row_header);
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false);
Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), 1, 100, false);
cur_row_header += tmpmat;
labels_predict.at<int>(0, row_idx + 1 + j) = i;
}
@@ -196,7 +201,8 @@ PARAM_TEST_CASE(SVM_OCL, int, int, int)
labels_predict.convertTo(labels_predict, CV_32FC1);
}
};
TEST_P(SVM_OCL, Accuracy)
OCL_TEST_P(SVM_OCL, Accuracy)
{
CvSVMParams params;
params.degree = 0.4;
@@ -292,9 +298,16 @@ TEST_P(SVM_OCL, Accuracy)
}
}
}
// TODO FIXIT: CvSVM::EPS_SVR case is crashed inside CPU implementation
// Anonymous enums are not supported well so cast them to 'int'
INSTANTIATE_TEST_CASE_P(OCL_ML, SVM_OCL, testing::Combine(
Values(CvSVM::LINEAR, CvSVM::POLY, CvSVM::RBF, CvSVM::SIGMOID),
Values(CvSVM::C_SVC, CvSVM::NU_SVC, CvSVM::ONE_CLASS, CvSVM::EPS_SVR, CvSVM::NU_SVR),
Values((int)CvSVM::LINEAR, (int)CvSVM::POLY, (int)CvSVM::RBF, (int)CvSVM::SIGMOID),
Values((int)CvSVM::C_SVC, (int)CvSVM::NU_SVC, (int)CvSVM::ONE_CLASS, (int)CvSVM::NU_SVR),
Values(2, 3, 4)
));
#endif // HAVE_CLAMDBLAS
#endif // HAVE_OPENCL

View File

@@ -7,7 +7,6 @@ using namespace cv;
using namespace cv::ocl;
using namespace cvtest;
using namespace testing;
PARAM_TEST_CASE(MomentsTest, MatType, bool)
{
int type;
@@ -18,9 +17,8 @@ PARAM_TEST_CASE(MomentsTest, MatType, bool)
{
type = GET_PARAM(0);
test_contours = GET_PARAM(1);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size(10*MWIDTH, 10*MHEIGHT);
mat1 = randomMat(rng, size, type, 5, 16, false);
mat1 = randomMat(size, type, 5, 16, false);
}
void Compare(Moments& cpu_moments, Moments& gpu_moments)
@@ -34,10 +32,9 @@ PARAM_TEST_CASE(MomentsTest, MatType, bool)
};
TEST_P(MomentsTest, Mat)
OCL_TEST_P(MomentsTest, Mat)
{
bool binaryImage = 0;
SetUp();
for(int j = 0; j < LOOP_TIMES; j++)
{

View File

@@ -49,8 +49,6 @@
using namespace cv;
using namespace testing;
#ifdef HAVE_OPENCL
///////////////////// HOG /////////////////////////////
PARAM_TEST_CASE(HOG, Size, int)
{
@@ -66,7 +64,7 @@ PARAM_TEST_CASE(HOG, Size, int)
}
};
TEST_P(HOG, GetDescriptors)
OCL_TEST_P(HOG, GetDescriptors)
{
// Convert image
Mat img;
@@ -112,7 +110,7 @@ TEST_P(HOG, GetDescriptors)
EXPECT_MAT_SIMILAR(down_descriptors, cpu_descriptors, 1e-2);
}
TEST_P(HOG, Detect)
OCL_TEST_P(HOG, Detect)
{
// Convert image
Mat img;
@@ -210,13 +208,14 @@ PARAM_TEST_CASE(Haar, int, CascadeName)
}
};
TEST_P(Haar, FaceDetect)
OCL_TEST_P(Haar, FaceDetect)
{
cascade.detectMultiScale(d_img, oclfaces, 1.1, 3,
flags, Size(30, 30));
cpucascade.detectMultiScale(img, faces, 1.1, 3,
flags, Size(30, 30));
cpucascade.detectMultiScale(img, faces, 1.1, 3,
flags,
Size(30, 30), Size(0, 0));
EXPECT_LT(checkRectSimilarity(img.size(), faces, oclfaces), 1.0);
}
@@ -224,6 +223,3 @@ TEST_P(Haar, FaceDetect)
INSTANTIATE_TEST_CASE_P(OCL_ObjDetect, Haar,
Combine(Values((int)CASCADE_SCALE_IMAGE, 0),
Values(cascade_frontalface_alt, cascade_frontalface_alt2)));
#endif //HAVE_OPENCL

View File

@@ -52,6 +52,7 @@ using namespace cv;
using namespace cv::ocl;
using namespace cvtest;
using namespace testing;
using namespace std;
//////////////////////////////////////////////////////
// GoodFeaturesToTrack
@@ -69,7 +70,7 @@ PARAM_TEST_CASE(GoodFeaturesToTrack, MinDistance)
}
};
TEST_P(GoodFeaturesToTrack, Accuracy)
OCL_TEST_P(GoodFeaturesToTrack, Accuracy)
{
cv::Mat frame = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame.empty());
@@ -110,7 +111,7 @@ TEST_P(GoodFeaturesToTrack, Accuracy)
ASSERT_LE(bad_ratio, 0.01);
}
TEST_P(GoodFeaturesToTrack, EmptyCorners)
OCL_TEST_P(GoodFeaturesToTrack, EmptyCorners)
{
int maxCorners = 1000;
double qualityLevel = 0.01;
@@ -140,7 +141,7 @@ PARAM_TEST_CASE(TVL1, bool)
};
TEST_P(TVL1, DISABLED_Accuracy) // TODO implementations of TV1 in video module are different in 2.4 and master branches
OCL_TEST_P(TVL1, DISABLED_Accuracy) // TODO implementations of TV1 in video module are different in 2.4 and master branches
{
cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
@@ -149,9 +150,8 @@ TEST_P(TVL1, DISABLED_Accuracy) // TODO implementations of TV1 in video module a
ASSERT_FALSE(frame1.empty());
cv::ocl::OpticalFlowDual_TVL1_OCL d_alg;
cv::RNG &rng = TS::ptr()->get_rng();
cv::Mat flowx = randomMat(rng, frame0.size(), CV_32FC1, 0, 0, useRoi);
cv::Mat flowy = randomMat(rng, frame0.size(), CV_32FC1, 0, 0, useRoi);
cv::Mat flowx = randomMat(frame0.size(), CV_32FC1, 0, 0, useRoi);
cv::Mat flowy = randomMat(frame0.size(), CV_32FC1, 0, 0, useRoi);
cv::ocl::oclMat d_flowx(flowx), d_flowy(flowy);
d_alg(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy);
@@ -182,7 +182,7 @@ PARAM_TEST_CASE(Sparse, bool, bool)
}
};
TEST_P(Sparse, Mat)
OCL_TEST_P(Sparse, Mat)
{
cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame0.empty());
@@ -292,7 +292,7 @@ PARAM_TEST_CASE(Farneback, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
}
};
TEST_P(Farneback, Accuracy)
OCL_TEST_P(Farneback, Accuracy)
{
cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());

View File

@@ -72,4 +72,6 @@
#include "opencv2/core/private.hpp"
using namespace cvtest;
#endif

View File

@@ -74,12 +74,12 @@ PARAM_TEST_CASE(PyrBase, MatType, int)
typedef PyrBase PyrDown;
TEST_P(PyrDown, Mat)
OCL_TEST_P(PyrDown, Mat)
{
for (int j = 0; j < LOOP_TIMES; j++)
{
Size size(MWIDTH, MHEIGHT);
Mat src = randomMat(size, CV_MAKETYPE(depth, channels));
Mat src = randomMat(size, CV_MAKETYPE(depth, channels), 0, 255);
oclMat gsrc(src);
pyrDown(src, dst_cpu);
@@ -97,12 +97,12 @@ INSTANTIATE_TEST_CASE_P(OCL_ImgProc, PyrDown, Combine(
typedef PyrBase PyrUp;
TEST_P(PyrUp, Accuracy)
OCL_TEST_P(PyrUp, Accuracy)
{
for (int j = 0; j < LOOP_TIMES; j++)
{
Size size(MWIDTH, MHEIGHT);
Mat src = randomMat(size, CV_MAKETYPE(depth, channels));
Mat src = randomMat(size, CV_MAKETYPE(depth, channels), 0, 255);
oclMat gsrc(src);
pyrUp(src, dst_cpu);

View File

@@ -229,7 +229,7 @@ PARAM_TEST_CASE(SortByKey, InputSize, MatType, MatType, SortMethod, IsGreaterTha
}
};
TEST_P(SortByKey, Accuracy)
OCL_TEST_P(SortByKey, Accuracy)
{
using namespace cv;
ocl::oclMat oclmat_key(mat_key);

View File

@@ -90,12 +90,11 @@ PARAM_TEST_CASE(MergeTestBase, MatType, int, bool)
channels = GET_PARAM(1);
use_roi = GET_PARAM(2);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
for (int i = 0; i < channels; ++i)
mat[i] = randomMat(rng, size, CV_MAKETYPE(type, 1), 5, 16, false);
dst = randomMat(rng, size, CV_MAKETYPE(type, channels), 5, 16, false);
mat[i] = randomMat(size, CV_MAKETYPE(type, 1), 5, 16, false);
dst = randomMat(size, CV_MAKETYPE(type, channels), 5, 16, false);
}
void random_roi()
@@ -103,7 +102,6 @@ PARAM_TEST_CASE(MergeTestBase, MatType, int, bool)
if (use_roi)
{
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(1, mat[0].cols);
roirows = rng.uniform(1, mat[0].rows);
@@ -141,7 +139,7 @@ PARAM_TEST_CASE(MergeTestBase, MatType, int, bool)
struct Merge : MergeTestBase {};
TEST_P(Merge, Accuracy)
OCL_TEST_P(Merge, Accuracy)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
@@ -191,19 +189,17 @@ PARAM_TEST_CASE(SplitTestBase, MatType, int, bool)
channels = GET_PARAM(1);
use_roi = GET_PARAM(2);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
mat = randomMat(rng, size, CV_MAKETYPE(type, channels), 5, 16, false);
mat = randomMat(size, CV_MAKETYPE(type, channels), 5, 16, false);
for (int i = 0; i < channels; ++i)
dst[i] = randomMat(rng, size, CV_MAKETYPE(type, 1), 5, 16, false); }
dst[i] = randomMat(size, CV_MAKETYPE(type, 1), 5, 16, false); }
void random_roi()
{
if (use_roi)
{
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(1, mat.cols);
roirows = rng.uniform(1, mat.rows);
srcx = rng.uniform(0, mat.cols - roicols);
@@ -242,7 +238,7 @@ PARAM_TEST_CASE(SplitTestBase, MatType, int, bool)
struct Split : SplitTestBase {};
TEST_P(Split, Accuracy)
OCL_TEST_P(Split, Accuracy)
{
for(int j = 0; j < LOOP_TIMES; j++)
{

View File

@@ -45,7 +45,7 @@ using namespace std;
using namespace cv;
using namespace cvtest;
namespace cvtest {
//std::string generateVarList(int first,...)
//{
// vector<std::string> varname;
@@ -72,41 +72,14 @@ using namespace cvtest;
// return ss.str();
//};
int randomInt(int minVal, int maxVal)
{
RNG &rng = TS::ptr()->get_rng();
return rng.uniform(minVal, maxVal);
}
double randomDouble(double minVal, double maxVal)
{
RNG &rng = TS::ptr()->get_rng();
return rng.uniform(minVal, maxVal);
}
Size randomSize(int minVal, int maxVal)
{
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
}
Scalar randomScalar(double minVal, double maxVal)
{
return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal));
}
Mat randomMat(Size size, int type, double minVal, double maxVal)
{
return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false);
}
cv::ocl::oclMat createMat_ocl(Size size, int type, bool useRoi)
cv::ocl::oclMat createMat_ocl(cv::RNG& rng, Size size, int type, bool useRoi)
{
Size size0 = size;
if (useRoi)
{
size0.width += randomInt(5, 15);
size0.height += randomInt(5, 15);
size0.width += rng.uniform(5, 15);
size0.height += rng.uniform(5, 15);
}
cv::ocl::oclMat d_m(size0, type);
@@ -117,11 +90,11 @@ cv::ocl::oclMat createMat_ocl(Size size, int type, bool useRoi)
return d_m;
}
cv::ocl::oclMat loadMat_ocl(const Mat& m, bool useRoi)
cv::ocl::oclMat loadMat_ocl(cv::RNG& rng, const Mat& m, bool useRoi)
{
CV_Assert(m.type() == CV_8UC1 || m.type() == CV_8UC3);
cv::ocl::oclMat d_m;
d_m = createMat_ocl(m.size(), m.type(), useRoi);
d_m = createMat_ocl(rng, m.size(), m.type(), useRoi);
Size ls;
Point pt;
@@ -137,38 +110,6 @@ cv::ocl::oclMat loadMat_ocl(const Mat& m, bool useRoi)
m_ocl.copyTo(d_m);
return d_m;
}
/*
void showDiff(InputArray gold_, InputArray actual_, double eps)
{
Mat gold;
if (gold_.kind() == _InputArray::MAT)
gold = gold_.getMat();
else
gold_.getGpuMat().download(gold);
Mat actual;
if (actual_.kind() == _InputArray::MAT)
actual = actual_.getMat();
else
actual_.getGpuMat().download(actual);
Mat diff;
absdiff(gold, actual, diff);
threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY);
namedWindow("gold", WINDOW_NORMAL);
namedWindow("actual", WINDOW_NORMAL);
namedWindow("diff", WINDOW_NORMAL);
imshow("gold", gold);
imshow("actual", actual);
imshow("diff", diff);
waitKey();
}
*/
vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
{
@@ -288,3 +229,5 @@ double checkRectSimilarity(Size sz, std::vector<Rect>& ob1, std::vector<Rect>& o
}
return final_test_result;
}
} // namespace cvtest

View File

@@ -52,16 +52,12 @@
#define MIN_VALUE 171
#define MAX_VALUE 357
//#define RANDOMROI
int randomInt(int minVal, int maxVal);
double randomDouble(double minVal, double maxVal);
//std::string generateVarList(int first,...);
std::string generateVarList(int &p1, int &p2);
cv::Size randomSize(int minVal, int maxVal);
cv::Scalar randomScalar(double minVal, double maxVal);
cv::Mat randomMat(cv::Size size, int type, double minVal = 0.0, double maxVal = 255.0);
namespace cvtest {
void showDiff(cv::InputArray gold, cv::InputArray actual, double eps);
//void showDiff(cv::InputArray gold, cv::InputArray actual, double eps);
cv::ocl::oclMat createMat_ocl(cv::RNG& rng, Size size, int type, bool useRoi);
cv::ocl::oclMat loadMat_ocl(cv::RNG& rng, const Mat& m, bool useRoi);
// This function test if gpu_rst matches cpu_rst.
// If the two vectors are not equal, it will return the difference in vector size
@@ -78,10 +74,6 @@ double checkNorm(const cv::Mat &m);
double checkNorm(const cv::Mat &m1, const cv::Mat &m2);
double checkSimilarity(const cv::Mat &m1, const cv::Mat &m2);
//oclMat create
cv::ocl::oclMat createMat_ocl(cv::Size size, int type, bool useRoi = false);
cv::ocl::oclMat loadMat_ocl(const cv::Mat& m, bool useRoi = false);
#define EXPECT_MAT_NORM(mat, eps) \
{ \
EXPECT_LE(checkNorm(cv::Mat(mat)), eps) \
@@ -101,13 +93,6 @@ cv::ocl::oclMat loadMat_ocl(const cv::Mat& m, bool useRoi = false);
EXPECT_LE(checkSimilarity(cv::Mat(mat1), cv::Mat(mat2)), eps); \
}
namespace cv
{
namespace ocl
{
// void PrintTo(const DeviceInfo& info, std::ostream* os);
}
}
using perf::MatDepth;
using perf::MatType;
@@ -134,80 +119,106 @@ private:
void PrintTo(const Inverse &useRoi, std::ostream *os);
enum {FLIP_BOTH = 0, FLIP_X = 1, FLIP_Y = -1};
CV_ENUM(FlipCode, FLIP_BOTH, FLIP_X, FLIP_Y)
#define OCL_RNG_SEED 123456
CV_ENUM(CmpCode, CMP_EQ, CMP_GT, CMP_GE, CMP_LT, CMP_LE, CMP_NE)
CV_ENUM(NormCode, NORM_INF, NORM_L1, NORM_L2, NORM_TYPE_MASK, NORM_RELATIVE, NORM_MINMAX)
CV_ENUM(ReduceOp, REDUCE_SUM, REDUCE_AVG, REDUCE_MAX, REDUCE_MIN)
CV_ENUM(MorphOp, MORPH_OPEN, MORPH_CLOSE, MORPH_GRADIENT, MORPH_TOPHAT, MORPH_BLACKHAT)
CV_ENUM(ThreshOp, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV)
CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC)
CV_ENUM(Border, BORDER_REFLECT101, BORDER_REPLICATE, BORDER_CONSTANT, BORDER_REFLECT, BORDER_WRAP)
CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED)
template <typename T>
struct TSTestWithParam : public ::testing::TestWithParam<T>
{
cv::RNG rng;
CV_FLAGS(GemmFlags, GEMM_1_T, GEMM_2_T, GEMM_3_T);
CV_FLAGS(WarpFlags, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, WARP_INVERSE_MAP)
CV_FLAGS(DftFlags, DFT_INVERSE, DFT_SCALE, DFT_ROWS, DFT_COMPLEX_OUTPUT, DFT_REAL_OUTPUT)
TSTestWithParam()
{
rng = cv::RNG(OCL_RNG_SEED);
}
void run_perf_test();
int randomInt(int minVal, int maxVal)
{
return rng.uniform(minVal, maxVal);
}
#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > >
double randomDouble(double minVal, double maxVal)
{
return rng.uniform(minVal, maxVal);
}
double randomDoubleLog(double minVal, double maxVal)
{
double logMin = log((double)minVal + 1);
double logMax = log((double)maxVal + 1);
double pow = rng.uniform(logMin, logMax);
double v = exp(pow) - 1;
CV_Assert(v >= minVal && (v < maxVal || (v == minVal && v == maxVal)));
return v;
}
Size randomSize(int minVal, int maxVal)
{
#if 1
return cv::Size((int)randomDoubleLog(minVal, maxVal), (int)randomDoubleLog(minVal, maxVal));
#else
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
#endif
}
Size randomSize(int minValX, int maxValX, int minValY, int maxValY)
{
#if 1
return cv::Size(randomDoubleLog(minValX, maxValX), randomDoubleLog(minValY, maxValY));
#else
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
#endif
}
Scalar randomScalar(double minVal, double maxVal)
{
return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal));
}
Mat randomMat(Size size, int type, double minVal, double maxVal, bool useRoi = false)
{
RNG dataRng(rng.next());
return cvtest::randomMat(dataRng, size, type, minVal, maxVal, useRoi);
}
struct Border
{
int top, bot, lef, rig;
};
Border randomBorder(int minValue = 0, int maxValue = MAX_VALUE)
{
Border border = {
(int)randomDoubleLog(minValue, maxValue),
(int)randomDoubleLog(minValue, maxValue),
(int)randomDoubleLog(minValue, maxValue),
(int)randomDoubleLog(minValue, maxValue)
};
return border;
}
void randomSubMat(Mat& whole, Mat& subMat, const Size& roiSize, const Border& border, int type, double minVal, double maxVal)
{
Size wholeSize = Size(roiSize.width + border.lef + border.rig, roiSize.height + border.top + border.bot);
whole = randomMat(wholeSize, type, minVal, maxVal, false);
subMat = whole(Rect(border.lef, border.top, roiSize.width, roiSize.height));
}
void generateOclMat(cv::ocl::oclMat& whole, cv::ocl::oclMat& subMat, const Mat& wholeMat, const Size& roiSize, const Border& border)
{
whole = wholeMat;
subMat = whole(Rect(border.lef, border.top, roiSize.width, roiSize.height));
}
};
#define PARAM_TEST_CASE(name, ...) struct name : public TSTestWithParam< std::tr1::tuple< __VA_ARGS__ > >
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
#define ALL_DEVICES testing::ValuesIn(devices())
#define DEVICES(feature) testing::ValuesIn(devices(feature))
#define ALL_TYPES testing::ValuesIn(all_types())
#define TYPES(depth_start, depth_end, cn_start, cn_end) testing::ValuesIn(types(depth_start, depth_end, cn_start, cn_end))
#define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(1300, 1300))
#define DIRECT_INVERSE testing::Values(Inverse(false), Inverse(true))
#ifndef ALL_DEPTH
#define ALL_DEPTH testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S), MatDepth(CV_32F), MatDepth(CV_64F))
#endif
#define REPEAT 1000
#define COUNT_U 0 // count the uploading execution time for ocl mat structures
#define COUNT_D 0
// the following macro section tests the target function (kernel) performance
// upload is the code snippet for converting cv::mat to cv::ocl::oclMat
// downloading is the code snippet for converting cv::ocl::oclMat back to cv::mat
// change COUNT_U and COUNT_D to take downloading and uploading time into account
#define P_TEST_FULL( upload, kernel_call, download ) \
{ \
std::cout<< "\n" #kernel_call "\n----------------------"; \
{upload;} \
R_TEST( kernel_call, 2 ); \
double t = (double)cvGetTickCount(); \
R_T( { \
if( COUNT_U ) {upload;} \
kernel_call; \
if( COUNT_D ) {download;} \
} ); \
t = (double)cvGetTickCount() - t; \
std::cout << "runtime is " << t/((double)cvGetTickFrequency()* 1000.) << "ms" << std::endl; \
}
#define R_T2( test ) \
{ \
std::cout<< "\n" #test "\n----------------------"; \
R_TEST( test, 15 ) \
clock_t st = clock(); \
R_T( test ) \
std::cout<< clock() - st << "ms\n"; \
}
#define R_T( test ) \
R_TEST( test, REPEAT )
#define R_TEST( test, repeat ) \
try{ \
for( int i = 0; i < repeat; i ++ ) { test; } \
} catch( ... ) { std::cout << "||||| Exception catched! |||||\n"; return; }
//////// Utility
#define IMAGE_CHANNELS testing::Values(Channels(1), Channels(3), Channels(4))
#ifndef IMPLEMENT_PARAM_CLASS
#define IMPLEMENT_PARAM_CLASS(name, type) \
@@ -227,4 +238,70 @@ void run_perf_test();
IMPLEMENT_PARAM_CLASS(Channels, int)
#endif // IMPLEMENT_PARAM_CLASS
} // namespace cvtest
enum {FLIP_BOTH = 0, FLIP_X = 1, FLIP_Y = -1};
CV_ENUM(FlipCode, FLIP_BOTH, FLIP_X, FLIP_Y)
CV_ENUM(CmpCode, CMP_EQ, CMP_GT, CMP_GE, CMP_LT, CMP_LE, CMP_NE)
CV_ENUM(NormCode, NORM_INF, NORM_L1, NORM_L2, NORM_TYPE_MASK, NORM_RELATIVE, NORM_MINMAX)
CV_ENUM(ReduceOp, REDUCE_SUM, REDUCE_AVG, REDUCE_MAX, REDUCE_MIN)
CV_ENUM(MorphOp, MORPH_OPEN, MORPH_CLOSE, MORPH_GRADIENT, MORPH_TOPHAT, MORPH_BLACKHAT)
CV_ENUM(ThreshOp, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV)
CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC)
CV_ENUM(Border, BORDER_REFLECT101, BORDER_REPLICATE, BORDER_CONSTANT, BORDER_REFLECT, BORDER_WRAP)
CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED)
CV_FLAGS(GemmFlags, GEMM_1_T, GEMM_2_T, GEMM_3_T);
CV_FLAGS(WarpFlags, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, WARP_INVERSE_MAP)
CV_FLAGS(DftFlags, DFT_INVERSE, DFT_SCALE, DFT_ROWS, DFT_COMPLEX_OUTPUT, DFT_REAL_OUTPUT)
# define OCL_TEST_P(test_case_name, test_name) \
class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : \
public test_case_name { \
public: \
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() { } \
virtual void TestBody(); \
void OCLTestBody(); \
private: \
static int AddToRegistry() \
{ \
::testing::UnitTest::GetInstance()->parameterized_test_registry(). \
GetTestCasePatternHolder<test_case_name>(\
#test_case_name, __FILE__, __LINE__)->AddTestPattern(\
#test_case_name, \
#test_name, \
new ::testing::internal::TestMetaFactory< \
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>()); \
return 0; \
} \
\
static int gtest_registering_dummy_; \
GTEST_DISALLOW_COPY_AND_ASSIGN_(\
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)); \
}; \
\
int GTEST_TEST_CLASS_NAME_(test_case_name, \
test_name)::gtest_registering_dummy_ = \
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::AddToRegistry(); \
\
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() \
{ \
try \
{ \
OCLTestBody(); \
} \
catch (const cv::Exception & ex) \
{ \
if (ex.code == cv::Error::OpenCLDoubleNotSupported)\
std::cout << "Test skipped (selected device does not support double)" << std::endl; \
else if (ex.code == cv::Error::OpenCLNoAMDBlasFft) \
std::cout << "Test skipped (AMD Blas / Fft libraries are not available)" << std::endl; \
else \
throw; \
} \
} \
\
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::OCLTestBody()
#endif // __OPENCV_TEST_UTILITY_HPP__