CascadeClassifier refactored. Most of the members and methods are private now.
This commit is contained in:
@@ -258,6 +258,7 @@ public:
|
||||
{ return featuresPtr[featureIdx].calc(offset) * varianceNormFactor; }
|
||||
virtual double calcOrd(int featureIdx) const
|
||||
{ return (*this)(featureIdx); }
|
||||
|
||||
private:
|
||||
Size origWinSize;
|
||||
Ptr<vector<Feature> > features;
|
||||
@@ -440,6 +441,7 @@ bool HaarEvaluator::setWindow( Point pt )
|
||||
nf = 1.;
|
||||
varianceNormFactor = 1./nf;
|
||||
offset = (int)pOffset;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -614,7 +616,7 @@ CascadeClassifier::~CascadeClassifier()
|
||||
|
||||
bool CascadeClassifier::empty() const
|
||||
{
|
||||
return oldCascade.empty() && stages.empty();
|
||||
return oldCascade.empty() && data.stages.empty();
|
||||
}
|
||||
|
||||
bool CascadeClassifier::load(const string& filename)
|
||||
@@ -635,31 +637,31 @@ bool CascadeClassifier::load(const string& filename)
|
||||
}
|
||||
|
||||
template<class FEval>
|
||||
inline int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_feval )
|
||||
inline int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator )
|
||||
{
|
||||
int si, nstages = (int)cascade.stages.size();
|
||||
int nstages = (int)cascade.data.stages.size();
|
||||
int nodeOfs = 0, leafOfs = 0;
|
||||
FEval& feval = (FEval&)*_feval;
|
||||
float* cascadeLeaves = &cascade.leaves[0];
|
||||
CascadeClassifier::DTreeNode* cascadeNodes = &cascade.nodes[0];
|
||||
CascadeClassifier::DTree* cascadeWeaks = &cascade.classifiers[0];
|
||||
CascadeClassifier::Stage* cascadeStages = &cascade.stages[0];
|
||||
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
|
||||
float* cascadeLeaves = &cascade.data.leaves[0];
|
||||
CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
|
||||
CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
|
||||
CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];
|
||||
|
||||
for( si = 0; si < nstages; si++ )
|
||||
for( int si = 0; si < nstages; si++ )
|
||||
{
|
||||
CascadeClassifier::Stage& stage = cascadeStages[si];
|
||||
CascadeClassifier::Data::Stage& stage = cascadeStages[si];
|
||||
int wi, ntrees = stage.ntrees;
|
||||
double sum = 0;
|
||||
|
||||
for( wi = 0; wi < ntrees; wi++ )
|
||||
{
|
||||
CascadeClassifier::DTree& weak = cascadeWeaks[stage.first + wi];
|
||||
CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi];
|
||||
int idx = 0, root = nodeOfs;
|
||||
|
||||
do
|
||||
{
|
||||
CascadeClassifier::DTreeNode& node = cascadeNodes[root + idx];
|
||||
double val = feval(node.featureIdx);
|
||||
CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx];
|
||||
double val = featureEvaluator(node.featureIdx);
|
||||
idx = val < node.threshold ? node.left : node.right;
|
||||
}
|
||||
while( idx > 0 );
|
||||
@@ -674,32 +676,32 @@ inline int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_f
|
||||
}
|
||||
|
||||
template<class FEval>
|
||||
inline int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_feval )
|
||||
inline int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator )
|
||||
{
|
||||
int si, nstages = (int)cascade.stages.size();
|
||||
int nstages = (int)cascade.data.stages.size();
|
||||
int nodeOfs = 0, leafOfs = 0;
|
||||
FEval& feval = (FEval&)*_feval;
|
||||
size_t subsetSize = (cascade.ncategories + 31)/32;
|
||||
int* cascadeSubsets = &cascade.subsets[0];
|
||||
float* cascadeLeaves = &cascade.leaves[0];
|
||||
CascadeClassifier::DTreeNode* cascadeNodes = &cascade.nodes[0];
|
||||
CascadeClassifier::DTree* cascadeWeaks = &cascade.classifiers[0];
|
||||
CascadeClassifier::Stage* cascadeStages = &cascade.stages[0];
|
||||
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
|
||||
size_t subsetSize = (cascade.data.ncategories + 31)/32;
|
||||
int* cascadeSubsets = &cascade.data.subsets[0];
|
||||
float* cascadeLeaves = &cascade.data.leaves[0];
|
||||
CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
|
||||
CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
|
||||
CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];
|
||||
|
||||
for( si = 0; si < nstages; si++ )
|
||||
for(int si = 0; si < nstages; si++ )
|
||||
{
|
||||
CascadeClassifier::Stage& stage = cascadeStages[si];
|
||||
CascadeClassifier::Data::Stage& stage = cascadeStages[si];
|
||||
int wi, ntrees = stage.ntrees;
|
||||
double sum = 0;
|
||||
|
||||
for( wi = 0; wi < ntrees; wi++ )
|
||||
{
|
||||
CascadeClassifier::DTree& weak = cascadeWeaks[stage.first + wi];
|
||||
CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi];
|
||||
int idx = 0, root = nodeOfs;
|
||||
do
|
||||
{
|
||||
CascadeClassifier::DTreeNode& node = cascadeNodes[root + idx];
|
||||
int c = feval(node.featureIdx);
|
||||
CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx];
|
||||
int c = featureEvaluator(node.featureIdx);
|
||||
const int* subset = &cascadeSubsets[(root + idx)*subsetSize];
|
||||
idx = (subset[c>>5] & (1 << (c & 31))) ? node.left : node.right;
|
||||
}
|
||||
@@ -715,25 +717,25 @@ inline int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator>
|
||||
}
|
||||
|
||||
template<class FEval>
|
||||
inline int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_feval )
|
||||
inline int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator )
|
||||
{
|
||||
int nodeOfs = 0, leafOfs = 0;
|
||||
FEval& feval = (FEval&)*_feval;
|
||||
float* cascadeLeaves = &cascade.leaves[0];
|
||||
CascadeClassifier::DTreeNode* cascadeNodes = &cascade.nodes[0];
|
||||
CascadeClassifier::Stage* cascadeStages = &cascade.stages[0];
|
||||
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
|
||||
float* cascadeLeaves = &cascade.data.leaves[0];
|
||||
CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
|
||||
CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];
|
||||
|
||||
int nstages = (int)cascade.stages.size();
|
||||
int nstages = (int)cascade.data.stages.size();
|
||||
for( int stageIdx = 0; stageIdx < nstages; stageIdx++ )
|
||||
{
|
||||
CascadeClassifier::Stage& stage = cascadeStages[stageIdx];
|
||||
CascadeClassifier::Data::Stage& stage = cascadeStages[stageIdx];
|
||||
double sum = 0.0;
|
||||
|
||||
int ntrees = stage.ntrees;
|
||||
for( int i = 0; i < ntrees; i++, nodeOfs++, leafOfs+= 2 )
|
||||
{
|
||||
CascadeClassifier::DTreeNode& node = cascadeNodes[nodeOfs];
|
||||
double value = feval(node.featureIdx);
|
||||
CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs];
|
||||
double value = featureEvaluator(node.featureIdx);
|
||||
sum += cascadeLeaves[ value < node.threshold ? leafOfs : leafOfs + 1 ];
|
||||
}
|
||||
|
||||
@@ -745,27 +747,27 @@ inline int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator
|
||||
}
|
||||
|
||||
template<class FEval>
|
||||
inline int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_feval )
|
||||
inline int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator )
|
||||
{
|
||||
int si, nstages = (int)cascade.stages.size();
|
||||
int nstages = (int)cascade.data.stages.size();
|
||||
int nodeOfs = 0, leafOfs = 0;
|
||||
FEval& feval = (FEval&)*_feval;
|
||||
size_t subsetSize = (cascade.ncategories + 31)/32;
|
||||
int* cascadeSubsets = &cascade.subsets[0];
|
||||
float* cascadeLeaves = &cascade.leaves[0];
|
||||
CascadeClassifier::DTreeNode* cascadeNodes = &cascade.nodes[0];
|
||||
CascadeClassifier::Stage* cascadeStages = &cascade.stages[0];
|
||||
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
|
||||
size_t subsetSize = (cascade.data.ncategories + 31)/32;
|
||||
int* cascadeSubsets = &cascade.data.subsets[0];
|
||||
float* cascadeLeaves = &cascade.data.leaves[0];
|
||||
CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
|
||||
CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];
|
||||
|
||||
for( si = 0; si < nstages; si++ )
|
||||
for( int si = 0; si < nstages; si++ )
|
||||
{
|
||||
CascadeClassifier::Stage& stage = cascadeStages[si];
|
||||
CascadeClassifier::Data::Stage& stage = cascadeStages[si];
|
||||
int wi, ntrees = stage.ntrees;
|
||||
double sum = 0;
|
||||
|
||||
for( wi = 0; wi < ntrees; wi++ )
|
||||
{
|
||||
CascadeClassifier::DTreeNode& node = cascadeNodes[nodeOfs];
|
||||
int c = feval(node.featureIdx);
|
||||
CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs];
|
||||
int c = featureEvaluator(node.featureIdx);
|
||||
const int* subset = &cascadeSubsets[nodeOfs*subsetSize];
|
||||
sum += cascadeLeaves[ subset[c>>5] & (1 << (c & 31)) ? leafOfs : leafOfs+1];
|
||||
nodeOfs++;
|
||||
@@ -780,43 +782,30 @@ inline int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvalu
|
||||
int CascadeClassifier::runAt( Ptr<FeatureEvaluator>& featureEvaluator, Point pt )
|
||||
{
|
||||
CV_Assert( oldCascade.empty() );
|
||||
/*if( !oldCascade.empty() )
|
||||
return cvRunHaarClassifierCascade(oldCascade, pt, 0);*/
|
||||
|
||||
assert(featureType == FeatureEvaluator::HAAR ||
|
||||
featureType == FeatureEvaluator::LBP);
|
||||
assert(data.featureType == FeatureEvaluator::HAAR ||
|
||||
data.featureType == FeatureEvaluator::LBP);
|
||||
|
||||
return !featureEvaluator->setWindow(pt) ? -1 :
|
||||
isStumpBased ? ( featureType == FeatureEvaluator::HAAR ?
|
||||
data.isStumpBased ? ( data.featureType == FeatureEvaluator::HAAR ?
|
||||
predictOrderedStump<HaarEvaluator>( *this, featureEvaluator ) :
|
||||
predictCategoricalStump<LBPEvaluator>( *this, featureEvaluator ) ) :
|
||||
( featureType == FeatureEvaluator::HAAR ?
|
||||
( data.featureType == FeatureEvaluator::HAAR ?
|
||||
predictOrdered<HaarEvaluator>( *this, featureEvaluator ) :
|
||||
predictCategorical<LBPEvaluator>( *this, featureEvaluator ) );
|
||||
}
|
||||
|
||||
bool CascadeClassifier::setImage( Ptr<FeatureEvaluator>& featureEvaluator, const Mat& image )
|
||||
{
|
||||
/*if( !oldCascade.empty() )
|
||||
{
|
||||
Mat sum(image.rows+1, image.cols+1, CV_32S);
|
||||
Mat tilted(image.rows+1, image.cols+1, CV_32S);
|
||||
Mat sqsum(image.rows+1, image.cols+1, CV_64F);
|
||||
integral(image, sum, sqsum, tilted);
|
||||
CvMat _sum = sum, _sqsum = sqsum, _tilted = tilted;
|
||||
cvSetImagesForHaarClassifierCascade( oldCascade, &_sum, &_sqsum, &_tilted, 1. );
|
||||
return true;
|
||||
}*/
|
||||
return empty() ? false : featureEvaluator->setImage(image, origWinSize);
|
||||
return empty() ? false : featureEvaluator->setImage(image, data.origWinSize);
|
||||
}
|
||||
|
||||
|
||||
struct CascadeClassifierInvoker
|
||||
{
|
||||
CascadeClassifierInvoker( CascadeClassifier& _cc, Size _sz1, int _stripSize, int _yStep, double _factor, ConcurrentRectVector& _vec )
|
||||
{
|
||||
classifier = &_cc;
|
||||
processingAreaSize = _sz1;
|
||||
processingRectSize = _sz1;
|
||||
stripSize = _stripSize;
|
||||
yStep = _yStep;
|
||||
scalingFactor = _factor;
|
||||
@@ -825,19 +814,19 @@ struct CascadeClassifierInvoker
|
||||
|
||||
void operator()(const BlockedRange& range) const
|
||||
{
|
||||
Ptr<FeatureEvaluator> evaluator = classifier->feval->clone();
|
||||
Size winSize(cvRound(classifier->origWinSize.width * scalingFactor), cvRound(classifier->origWinSize.height * scalingFactor));
|
||||
Ptr<FeatureEvaluator> evaluator = classifier->featureEvaluator->clone();
|
||||
Size winSize(cvRound(classifier->data.origWinSize.width * scalingFactor), cvRound(classifier->data.origWinSize.height * scalingFactor));
|
||||
|
||||
int y1 = range.begin() * stripSize;
|
||||
int y2 = min(range.end() * stripSize, processingAreaSize.height);
|
||||
int y2 = min(range.end() * stripSize, processingRectSize.height);
|
||||
for( int y = y1; y < y2; y += yStep )
|
||||
{
|
||||
for( int x = 0; x < processingAreaSize.width; x += yStep )
|
||||
for( int x = 0; x < processingRectSize.width; x += yStep )
|
||||
{
|
||||
int result = classifier->runAt(evaluator, Point(x, y));
|
||||
if( result > 0 )
|
||||
rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor),
|
||||
winSize.width, winSize.height));
|
||||
winSize.width, winSize.height));
|
||||
if( result == 0 )
|
||||
x += yStep;
|
||||
}
|
||||
@@ -846,14 +835,46 @@ struct CascadeClassifierInvoker
|
||||
|
||||
CascadeClassifier* classifier;
|
||||
ConcurrentRectVector* rectangles;
|
||||
Size processingAreaSize;
|
||||
Size processingRectSize;
|
||||
int stripSize, yStep;
|
||||
double scalingFactor;
|
||||
};
|
||||
|
||||
|
||||
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
|
||||
|
||||
bool CascadeClassifier::detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
|
||||
int stripSize, int yStep, double factor, vector<Rect>& candidates )
|
||||
{
|
||||
if( !featureEvaluator->setImage( image, data.origWinSize ) )
|
||||
return false;
|
||||
|
||||
ConcurrentRectVector concurrentCandidates;
|
||||
parallel_for(BlockedRange(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor, concurrentCandidates));
|
||||
candidates.insert( candidates.end(), concurrentCandidates.begin(), concurrentCandidates.end() );
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool CascadeClassifier::isOldFormatCascade() const
|
||||
{
|
||||
return !oldCascade.empty();
|
||||
}
|
||||
|
||||
int CascadeClassifier::getFeatureType() const
|
||||
{
|
||||
return featureEvaluator->getFeatureType();
|
||||
}
|
||||
|
||||
Size CascadeClassifier::getOriginalWindowSize() const
|
||||
{
|
||||
return data.origWinSize;
|
||||
}
|
||||
|
||||
bool CascadeClassifier::setImage(const Mat& image)
|
||||
{
|
||||
featureEvaluator->setImage(image, data.origWinSize);
|
||||
}
|
||||
|
||||
void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
|
||||
double scaleFactor, int minNeighbors,
|
||||
int flags, Size minObjectSize, Size maxObjectSize )
|
||||
@@ -865,7 +886,7 @@ void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& object
|
||||
if( empty() )
|
||||
return;
|
||||
|
||||
if( !oldCascade.empty() )
|
||||
if( isOldFormatCascade() )
|
||||
{
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
CvMat _image = image;
|
||||
@@ -892,51 +913,50 @@ void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& object
|
||||
}
|
||||
|
||||
Mat imageBuffer(image.rows + 1, image.cols + 1, CV_8U);
|
||||
ConcurrentRectVector candidates;
|
||||
vector<Rect> candidates;
|
||||
|
||||
for( double factor = 1; ; factor *= scaleFactor )
|
||||
{
|
||||
int stripCount, stripSize;
|
||||
Size originalWindowSize = getOriginalWindowSize();
|
||||
|
||||
Size windowSize( cvRound(origWinSize.width*factor), cvRound(origWinSize.height*factor) );
|
||||
Size windowSize( cvRound(originalWindowSize.width*factor), cvRound(originalWindowSize.height*factor) );
|
||||
Size scaledImageSize( cvRound( grayImage.cols/factor ), cvRound( grayImage.rows/factor ) );
|
||||
Size processingAreaSize( scaledImageSize.width - origWinSize.width, scaledImageSize.height - origWinSize.height );
|
||||
Size processingRectSize( scaledImageSize.width - originalWindowSize.width, scaledImageSize.height - originalWindowSize.height );
|
||||
|
||||
if( processingAreaSize.width <= 0 || processingAreaSize.height <= 0 )
|
||||
if( processingRectSize.width <= 0 || processingRectSize.height <= 0 )
|
||||
break;
|
||||
if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height )
|
||||
break;
|
||||
if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
|
||||
continue;
|
||||
|
||||
Mat scaledImage( scaledImageSize, CV_8U, imageBuffer.data );
|
||||
resize( grayImage, scaledImage, scaledImageSize, 0, 0, CV_INTER_LINEAR );
|
||||
|
||||
int yStep = factor > 2. ? 1 : 2;
|
||||
int stripCount, stripSize;
|
||||
|
||||
#ifdef HAVE_TBB
|
||||
const int PTS_PER_THREAD = 1000;
|
||||
stripCount = ((processingAreaSize.width/yStep)*(processingAreaSize.height + yStep-1)/yStep + PTS_PER_THREAD/2)/PTS_PER_THREAD;
|
||||
stripCount = ((processingRectSize.width/yStep)*(processingRectSize.height + yStep-1)/yStep + PTS_PER_THREAD/2)/PTS_PER_THREAD;
|
||||
stripCount = std::min(std::max(stripCount, 1), 100);
|
||||
stripSize = (((processingAreaSize.height + stripCount - 1)/stripCount + yStep-1)/yStep)*yStep;
|
||||
stripSize = (((processingRectSize.height + stripCount - 1)/stripCount + yStep-1)/yStep)*yStep;
|
||||
#else
|
||||
stripCount = 1;
|
||||
stripSize = processingAreaSize.height;
|
||||
stripSize = processingRectSize.height;
|
||||
#endif
|
||||
|
||||
Mat scaledImage( scaledImageSize, CV_8U, imageBuffer.data );
|
||||
resize( grayImage, scaledImage, scaledImageSize, 0, 0, CV_INTER_LINEAR );
|
||||
if( !feval->setImage( scaledImage, origWinSize ) )
|
||||
if( !detectSingleScale( scaledImage, stripCount, processingRectSize, stripSize, yStep, factor, candidates ) )
|
||||
break;
|
||||
|
||||
parallel_for(BlockedRange(0, stripCount), CascadeClassifierInvoker(*this, processingAreaSize, stripSize, yStep, factor, candidates));
|
||||
}
|
||||
|
||||
|
||||
objects.resize(candidates.size());
|
||||
std::copy(candidates.begin(), candidates.end(), objects.begin());
|
||||
|
||||
groupRectangles( objects, minNeighbors, GROUP_EPS );
|
||||
}
|
||||
|
||||
|
||||
bool CascadeClassifier::read(const FileNode& root)
|
||||
bool CascadeClassifier::Data::read(const FileNode &root)
|
||||
{
|
||||
// load stage params
|
||||
string stageTypeStr = (string)root[CC_STAGE_TYPE];
|
||||
@@ -944,7 +964,7 @@ bool CascadeClassifier::read(const FileNode& root)
|
||||
stageType = BOOST;
|
||||
else
|
||||
return false;
|
||||
|
||||
|
||||
string featureTypeStr = (string)root[CC_FEATURE_TYPE];
|
||||
if( featureTypeStr == CC_HAAR )
|
||||
featureType = FeatureEvaluator::HAAR;
|
||||
@@ -952,33 +972,33 @@ bool CascadeClassifier::read(const FileNode& root)
|
||||
featureType = FeatureEvaluator::LBP;
|
||||
else
|
||||
return false;
|
||||
|
||||
|
||||
origWinSize.width = (int)root[CC_WIDTH];
|
||||
origWinSize.height = (int)root[CC_HEIGHT];
|
||||
CV_Assert( origWinSize.height > 0 && origWinSize.width > 0 );
|
||||
|
||||
|
||||
isStumpBased = (int)(root[CC_STAGE_PARAMS][CC_MAX_DEPTH]) == 1 ? true : false;
|
||||
|
||||
// load feature params
|
||||
FileNode fn = root[CC_FEATURE_PARAMS];
|
||||
if( fn.empty() )
|
||||
return false;
|
||||
|
||||
|
||||
ncategories = fn[CC_MAX_CAT_COUNT];
|
||||
int subsetSize = (ncategories + 31)/32,
|
||||
nodeStep = 3 + ( ncategories>0 ? subsetSize : 1 );
|
||||
|
||||
|
||||
// load stages
|
||||
fn = root[CC_STAGES];
|
||||
if( fn.empty() )
|
||||
return false;
|
||||
|
||||
|
||||
stages.reserve(fn.size());
|
||||
classifiers.clear();
|
||||
nodes.clear();
|
||||
|
||||
|
||||
FileNodeIterator it = fn.begin(), it_end = fn.end();
|
||||
|
||||
|
||||
for( int si = 0; it != it_end; si++, ++it )
|
||||
{
|
||||
FileNode fns = *it;
|
||||
@@ -991,7 +1011,7 @@ bool CascadeClassifier::read(const FileNode& root)
|
||||
stage.first = (int)classifiers.size();
|
||||
stages.push_back(stage);
|
||||
classifiers.reserve(stages[si].first + stages[si].ntrees);
|
||||
|
||||
|
||||
FileNodeIterator it1 = fns.begin(), it1_end = fns.end();
|
||||
for( ; it1 != it1_end; ++it1 ) // weak trees
|
||||
{
|
||||
@@ -1000,56 +1020,62 @@ bool CascadeClassifier::read(const FileNode& root)
|
||||
FileNode leafValues = fnw[CC_LEAF_VALUES];
|
||||
if( internalNodes.empty() || leafValues.empty() )
|
||||
return false;
|
||||
|
||||
DTree tree;
|
||||
tree.nodeCount = (int)internalNodes.size()/nodeStep;
|
||||
classifiers.push_back(tree);
|
||||
|
||||
|
||||
nodes.reserve(nodes.size() + tree.nodeCount);
|
||||
leaves.reserve(leaves.size() + leafValues.size());
|
||||
if( subsetSize > 0 )
|
||||
subsets.reserve(subsets.size() + tree.nodeCount*subsetSize);
|
||||
|
||||
FileNodeIterator it2 = internalNodes.begin(), it2_end = internalNodes.end();
|
||||
|
||||
for( ; it2 != it2_end; ) // nodes
|
||||
|
||||
FileNodeIterator internalNodesIter = internalNodes.begin(), internalNodesEnd = internalNodes.end();
|
||||
|
||||
for( ; internalNodesIter != internalNodesEnd; ) // nodes
|
||||
{
|
||||
DTreeNode node;
|
||||
node.left = (int)*it2; ++it2;
|
||||
node.right = (int)*it2; ++it2;
|
||||
node.featureIdx = (int)*it2; ++it2;
|
||||
node.left = (int)*internalNodesIter; ++internalNodesIter;
|
||||
node.right = (int)*internalNodesIter; ++internalNodesIter;
|
||||
node.featureIdx = (int)*internalNodesIter; ++internalNodesIter;
|
||||
if( subsetSize > 0 )
|
||||
{
|
||||
for( int j = 0; j < subsetSize; j++, ++it2 )
|
||||
subsets.push_back((int)*it2);
|
||||
for( int j = 0; j < subsetSize; j++, ++internalNodesIter )
|
||||
subsets.push_back((int)*internalNodesIter);
|
||||
node.threshold = 0.f;
|
||||
}
|
||||
else
|
||||
{
|
||||
node.threshold = (float)*it2; ++it2;
|
||||
node.threshold = (float)*internalNodesIter; ++internalNodesIter;
|
||||
}
|
||||
nodes.push_back(node);
|
||||
}
|
||||
|
||||
it2 = leafValues.begin(), it2_end = leafValues.end();
|
||||
|
||||
for( ; it2 != it2_end; ++it2 ) // leaves
|
||||
leaves.push_back((float)*it2);
|
||||
|
||||
internalNodesIter = leafValues.begin(), internalNodesEnd = leafValues.end();
|
||||
|
||||
for( ; internalNodesIter != internalNodesEnd; ++internalNodesIter ) // leaves
|
||||
leaves.push_back((float)*internalNodesIter);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool CascadeClassifier::read(const FileNode& root)
|
||||
{
|
||||
if( !data.read(root) )
|
||||
return false;
|
||||
|
||||
// load features
|
||||
feval = FeatureEvaluator::create(featureType);
|
||||
fn = root[CC_FEATURES];
|
||||
featureEvaluator = FeatureEvaluator::create(data.featureType);
|
||||
FileNode fn = root[CC_FEATURES];
|
||||
if( fn.empty() )
|
||||
return false;
|
||||
|
||||
return feval->read(fn);
|
||||
return featureEvaluator->read(fn);
|
||||
}
|
||||
|
||||
template<> void Ptr<CvHaarClassifierCascade>::delete_obj()
|
||||
{ cvReleaseHaarClassifierCascade(&obj); }
|
||||
|
||||
} // namespace cv
|
||||
|
||||
/* End of file. */
|
||||
|
||||
|
Reference in New Issue
Block a user