Unified handling of InputOutputArrays in Python wrapper generator

This makes arguments of type InputOutputArray required in python unless they
have a default value in C++.

As result following python functions changes signatures in non-trivial way:

* calcOpticalFlowFarneback
* calcOpticalFlowPyrLK
* calibrateCamera
* findContours
* findTransformECC
* floodFill
* kmeans
* PCACompute
* stereoCalibrate

And the following functions become return their modified inputs as a return
value:

* accumulate
* accumulateProduct
* accumulateSquare
* accumulateWeighted
* circle
* completeSymm
* cornerSubPix
* drawChessboardCorners
* drawContours
* drawDataMatrixCodes
* ellipse
* fillConvexPoly
* fillPoly
* filterSpeckles
* grabCut
* insertChannel
* line
* patchNaNs
* polylines
* randn
* randShuffle
* randu
* rectangle
* setIdentity
* updateMotionHistory
* validateDisparity
* watershed
This commit is contained in:
Andrey Kamaev
2013-03-15 16:55:58 +04:00
parent a1c456b7c3
commit e75df56317
18 changed files with 51 additions and 47 deletions

View File

@@ -27,7 +27,7 @@ if __name__ == '__main__':
img_mask = img_mask[0]
except:
img_mask = '../cpp/left*.jpg'
img_names = glob(img_mask)
debug_dir = args.get('--debug')
square_size = float(args.get('--square_size', 1.0))
@@ -46,7 +46,7 @@ if __name__ == '__main__':
if img is None:
print "Failed to load", fn
continue
h, w = img.shape[:2]
found, corners = cv2.findChessboardCorners(img, pattern_size)
if found:
@@ -65,7 +65,7 @@ if __name__ == '__main__':
print 'ok'
rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h))
rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h), None, None)
print "RMS:", rms
print "camera matrix:\n", camera_matrix
print "distortion coefficients: ", dist_coefs.ravel()

View File

@@ -46,7 +46,7 @@ if __name__ == '__main__':
img = make_image()
h, w = img.shape[:2]
contours0, hierarchy = cv2.findContours( img.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
_, contours0, hierarchy = cv2.findContours( img.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = [cv2.approxPolyDP(cnt, 3, True) for cnt in contours0]
def update(levels):

View File

@@ -14,9 +14,9 @@ from common import mosaic
from digits import *
def main():
try:
try:
src = sys.argv[1]
except:
except:
src = 0
cap = video.create_capture(src)
@@ -35,7 +35,7 @@ def main():
bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10)
bin = cv2.medianBlur(bin, 3)
contours, heirs = cv2.findContours( bin.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
_, contours, heirs = cv2.findContours( bin.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
try:
heirs = heirs[0]
except:

View File

@@ -29,7 +29,7 @@ if __name__ == '__main__':
if img is None:
print 'Failed to load image file:', fn
sys.exit(1)
h, w = img.shape[:2]
mask = np.zeros((h+2, w+2), np.uint8)
seed_pt = None

View File

@@ -32,7 +32,7 @@ if __name__ == '__main__':
points, _ = make_gaussians(cluster_n, img_size)
term_crit = (cv2.TERM_CRITERIA_EPS, 30, 0.1)
ret, labels, centers = cv2.kmeans(points, cluster_n, term_crit, 10, 0)
ret, labels, centers = cv2.kmeans(points, cluster_n, None, term_crit, 10, 0)
img = np.zeros((img_size, img_size, 3), np.uint8)
for (x, y), label in zip(np.int32(points), labels.ravel()):

View File

@@ -63,7 +63,7 @@ if __name__ == '__main__':
while True:
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(prevgray, gray, 0.5, 3, 15, 3, 5, 1.2, 0)
flow = cv2.calcOpticalFlowFarneback(prevgray, gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
prevgray = gray
cv2.imshow('flow', draw_flow(gray, flow))

View File

@@ -24,7 +24,7 @@ def find_squares(img):
bin = cv2.dilate(bin, None)
else:
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)