added buffered version of pyrDown and pyrUp

added stream support to downsample, upsample, pyrUp and pyrDown
This commit is contained in:
Vladislav Vinogradov 2011-08-01 08:15:31 +00:00
parent cf42f3088d
commit e746b3e8ae
5 changed files with 377 additions and 1015 deletions

View File

@ -441,6 +441,191 @@ namespace cv
explicit Stream(Impl* impl);
};
//////////////////////////////// Filter Engine ////////////////////////////////
/*!
The Base Class for 1D or Row-wise Filters
This is the base class for linear or non-linear filters that process 1D data.
In particular, such filters are used for the "horizontal" filtering parts in separable filters.
*/
class CV_EXPORTS BaseRowFilter_GPU
{
public:
BaseRowFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
virtual ~BaseRowFilter_GPU() {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
int ksize, anchor;
};
/*!
The Base Class for Column-wise Filters
This is the base class for linear or non-linear filters that process columns of 2D arrays.
Such filters are used for the "vertical" filtering parts in separable filters.
*/
class CV_EXPORTS BaseColumnFilter_GPU
{
public:
BaseColumnFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
virtual ~BaseColumnFilter_GPU() {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
int ksize, anchor;
};
/*!
The Base Class for Non-Separable 2D Filters.
This is the base class for linear or non-linear 2D filters.
*/
class CV_EXPORTS BaseFilter_GPU
{
public:
BaseFilter_GPU(const Size& ksize_, const Point& anchor_) : ksize(ksize_), anchor(anchor_) {}
virtual ~BaseFilter_GPU() {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
Size ksize;
Point anchor;
};
/*!
The Base Class for Filter Engine.
The class can be used to apply an arbitrary filtering operation to an image.
It contains all the necessary intermediate buffers.
*/
class CV_EXPORTS FilterEngine_GPU
{
public:
virtual ~FilterEngine_GPU() {}
virtual void apply(const GpuMat& src, GpuMat& dst, Rect roi = Rect(0,0,-1,-1), Stream& stream = Stream::Null()) = 0;
};
//! returns the non-separable filter engine with the specified filter
CV_EXPORTS Ptr<FilterEngine_GPU> createFilter2D_GPU(const Ptr<BaseFilter_GPU>& filter2D, int srcType, int dstType);
//! returns the separable filter engine with the specified filters
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType);
//! returns horizontal 1D box filter
//! supports only CV_8UC1 source type and CV_32FC1 sum type
CV_EXPORTS Ptr<BaseRowFilter_GPU> getRowSumFilter_GPU(int srcType, int sumType, int ksize, int anchor = -1);
//! returns vertical 1D box filter
//! supports only CV_8UC1 sum type and CV_32FC1 dst type
CV_EXPORTS Ptr<BaseColumnFilter_GPU> getColumnSumFilter_GPU(int sumType, int dstType, int ksize, int anchor = -1);
//! returns 2D box filter
//! supports CV_8UC1 and CV_8UC4 source type, dst type must be the same as source type
CV_EXPORTS Ptr<BaseFilter_GPU> getBoxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1, -1));
//! returns box filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createBoxFilter_GPU(int srcType, int dstType, const Size& ksize,
const Point& anchor = Point(-1,-1));
//! returns 2D morphological filter
//! only MORPH_ERODE and MORPH_DILATE are supported
//! supports CV_8UC1 and CV_8UC4 types
//! kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height
CV_EXPORTS Ptr<BaseFilter_GPU> getMorphologyFilter_GPU(int op, int type, const Mat& kernel, const Size& ksize,
Point anchor=Point(-1,-1));
//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat& kernel,
const Point& anchor = Point(-1,-1), int iterations = 1);
//! returns 2D filter with the specified kernel
//! supports CV_8UC1 and CV_8UC4 types
CV_EXPORTS Ptr<BaseFilter_GPU> getLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, const Size& ksize,
Point anchor = Point(-1, -1));
//! returns the non-separable linear filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createLinearFilter_GPU(int srcType, int dstType, const Mat& kernel,
const Point& anchor = Point(-1,-1));
//! returns the primitive row filter with the specified kernel.
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 source type.
//! there are two version of algorithm: NPP and OpenCV.
//! NPP calls when srcType == CV_8UC1 or srcType == CV_8UC4 and bufType == srcType,
//! otherwise calls OpenCV version.
//! NPP supports only BORDER_CONSTANT border type.
//! OpenCV version supports only CV_32F as buffer depth and
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
CV_EXPORTS Ptr<BaseRowFilter_GPU> getLinearRowFilter_GPU(int srcType, int bufType, const Mat& rowKernel,
int anchor = -1, int borderType = BORDER_CONSTANT);
//! returns the primitive column filter with the specified kernel.
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 dst type.
//! there are two version of algorithm: NPP and OpenCV.
//! NPP calls when dstType == CV_8UC1 or dstType == CV_8UC4 and bufType == dstType,
//! otherwise calls OpenCV version.
//! NPP supports only BORDER_CONSTANT border type.
//! OpenCV version supports only CV_32F as buffer depth and
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
CV_EXPORTS Ptr<BaseColumnFilter_GPU> getLinearColumnFilter_GPU(int bufType, int dstType, const Mat& columnKernel,
int anchor = -1, int borderType = BORDER_CONSTANT);
//! returns the separable linear filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel,
const Mat& columnKernel, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT,
int columnBorderType = -1);
//! returns filter engine for the generalized Sobel operator
CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize,
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
//! returns the Gaussian filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, double sigma1, double sigma2 = 0,
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
//! returns maximum filter
CV_EXPORTS Ptr<BaseFilter_GPU> getMaxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));
//! returns minimum filter
CV_EXPORTS Ptr<BaseFilter_GPU> getMinFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));
//! smooths the image using the normalized box filter
//! supports CV_8UC1, CV_8UC4 types
CV_EXPORTS void boxFilter(const GpuMat& src, GpuMat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null());
//! a synonym for normalized box filter
static inline void blur(const GpuMat& src, GpuMat& dst, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null()) { boxFilter(src, dst, -1, ksize, anchor, stream); }
//! erodes the image (applies the local minimum operator)
CV_EXPORTS void erode( const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null());
//! dilates the image (applies the local maximum operator)
CV_EXPORTS void dilate( const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null());
//! applies an advanced morphological operation to the image
CV_EXPORTS void morphologyEx( const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null());
//! applies non-separable 2D linear filter to the image
CV_EXPORTS void filter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernel, Point anchor=Point(-1,-1), Stream& stream = Stream::Null());
//! applies separable 2D linear filter to the image
CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY,
Point anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
//! applies generalized Sobel operator to the image
CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1,
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
//! applies the vertical or horizontal Scharr operator to the image
CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, double scale = 1,
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
//! smooths the image using Gaussian filter.
CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, double sigma1, double sigma2 = 0,
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
//! applies Laplacian operator to the image
//! supports only ksize = 1 and ksize = 3
CV_EXPORTS void Laplacian(const GpuMat& src, GpuMat& dst, int ddepth, int ksize = 1, double scale = 1, Stream& stream = Stream::Null());
////////////////////////////// Arithmetics ///////////////////////////////////
@ -739,16 +924,54 @@ namespace cv
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method);
//! downsamples image
CV_EXPORTS void downsample(const GpuMat& src, GpuMat& dst);
CV_EXPORTS void downsample(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
//! upsamples image
CV_EXPORTS void upsample(const GpuMat& src, GpuMat &dst);
CV_EXPORTS void upsample(const GpuMat& src, GpuMat &dst, Stream& stream = Stream::Null());
//! smoothes the source image and downsamples it
CV_EXPORTS void pyrDown(const GpuMat& src, GpuMat& dst);
CV_EXPORTS void pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
struct CV_EXPORTS PyrDownBuf;
CV_EXPORTS void pyrDown(const GpuMat& src, GpuMat& dst, PyrDownBuf& buf, Stream& stream = Stream::Null());
struct CV_EXPORTS PyrDownBuf
{
PyrDownBuf() : image_type(-1) {}
PyrDownBuf(Size image_size, int image_type_) : image_type(-1) { create(image_size, image_type_); }
void create(Size image_size, int image_type_);
private:
friend void pyrDown(const GpuMat&, GpuMat&, PyrDownBuf&, Stream& stream);
static Mat ker;
GpuMat buf;
Ptr<FilterEngine_GPU> filter;
int image_type;
};
//! upsamples the source image and then smoothes it
CV_EXPORTS void pyrUp(const GpuMat& src, GpuMat& dst);
CV_EXPORTS void pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
struct CV_EXPORTS PyrUpBuf;
CV_EXPORTS void pyrUp(const GpuMat& src, GpuMat& dst, PyrUpBuf& buf, Stream& stream = Stream::Null());
struct CV_EXPORTS PyrUpBuf
{
PyrUpBuf() : image_type(-1) {}
PyrUpBuf(Size image_size, int image_type_) : image_type(-1) { create(image_size, image_type_); }
void create(Size image_size, int image_type_);
private:
friend void pyrUp(const GpuMat&, GpuMat&, PyrUpBuf&, Stream& stream);
static Mat ker;
GpuMat buf;
Ptr<FilterEngine_GPU> filter;
int image_type;
};
//! performs linear blending of two images
//! to avoid accuracy errors sum of weigths shouldn't be very close to zero
@ -835,190 +1058,6 @@ namespace cv
int num_iters=100, float max_dist=8.0, int min_inlier_count=100,
vector<int>* inliers=NULL);
//////////////////////////////// Filter Engine ////////////////////////////////
/*!
The Base Class for 1D or Row-wise Filters
This is the base class for linear or non-linear filters that process 1D data.
In particular, such filters are used for the "horizontal" filtering parts in separable filters.
*/
class CV_EXPORTS BaseRowFilter_GPU
{
public:
BaseRowFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
virtual ~BaseRowFilter_GPU() {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
int ksize, anchor;
};
/*!
The Base Class for Column-wise Filters
This is the base class for linear or non-linear filters that process columns of 2D arrays.
Such filters are used for the "vertical" filtering parts in separable filters.
*/
class CV_EXPORTS BaseColumnFilter_GPU
{
public:
BaseColumnFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
virtual ~BaseColumnFilter_GPU() {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
int ksize, anchor;
};
/*!
The Base Class for Non-Separable 2D Filters.
This is the base class for linear or non-linear 2D filters.
*/
class CV_EXPORTS BaseFilter_GPU
{
public:
BaseFilter_GPU(const Size& ksize_, const Point& anchor_) : ksize(ksize_), anchor(anchor_) {}
virtual ~BaseFilter_GPU() {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
Size ksize;
Point anchor;
};
/*!
The Base Class for Filter Engine.
The class can be used to apply an arbitrary filtering operation to an image.
It contains all the necessary intermediate buffers.
*/
class CV_EXPORTS FilterEngine_GPU
{
public:
virtual ~FilterEngine_GPU() {}
virtual void apply(const GpuMat& src, GpuMat& dst, Rect roi = Rect(0,0,-1,-1), Stream& stream = Stream::Null()) = 0;
};
//! returns the non-separable filter engine with the specified filter
CV_EXPORTS Ptr<FilterEngine_GPU> createFilter2D_GPU(const Ptr<BaseFilter_GPU>& filter2D, int srcType, int dstType);
//! returns the separable filter engine with the specified filters
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType);
//! returns horizontal 1D box filter
//! supports only CV_8UC1 source type and CV_32FC1 sum type
CV_EXPORTS Ptr<BaseRowFilter_GPU> getRowSumFilter_GPU(int srcType, int sumType, int ksize, int anchor = -1);
//! returns vertical 1D box filter
//! supports only CV_8UC1 sum type and CV_32FC1 dst type
CV_EXPORTS Ptr<BaseColumnFilter_GPU> getColumnSumFilter_GPU(int sumType, int dstType, int ksize, int anchor = -1);
//! returns 2D box filter
//! supports CV_8UC1 and CV_8UC4 source type, dst type must be the same as source type
CV_EXPORTS Ptr<BaseFilter_GPU> getBoxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1, -1));
//! returns box filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createBoxFilter_GPU(int srcType, int dstType, const Size& ksize,
const Point& anchor = Point(-1,-1));
//! returns 2D morphological filter
//! only MORPH_ERODE and MORPH_DILATE are supported
//! supports CV_8UC1 and CV_8UC4 types
//! kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height
CV_EXPORTS Ptr<BaseFilter_GPU> getMorphologyFilter_GPU(int op, int type, const Mat& kernel, const Size& ksize,
Point anchor=Point(-1,-1));
//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat& kernel,
const Point& anchor = Point(-1,-1), int iterations = 1);
//! returns 2D filter with the specified kernel
//! supports CV_8UC1 and CV_8UC4 types
CV_EXPORTS Ptr<BaseFilter_GPU> getLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, const Size& ksize,
Point anchor = Point(-1, -1));
//! returns the non-separable linear filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createLinearFilter_GPU(int srcType, int dstType, const Mat& kernel,
const Point& anchor = Point(-1,-1));
//! returns the primitive row filter with the specified kernel.
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 source type.
//! there are two version of algorithm: NPP and OpenCV.
//! NPP calls when srcType == CV_8UC1 or srcType == CV_8UC4 and bufType == srcType,
//! otherwise calls OpenCV version.
//! NPP supports only BORDER_CONSTANT border type.
//! OpenCV version supports only CV_32F as buffer depth and
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
CV_EXPORTS Ptr<BaseRowFilter_GPU> getLinearRowFilter_GPU(int srcType, int bufType, const Mat& rowKernel,
int anchor = -1, int borderType = BORDER_CONSTANT);
//! returns the primitive column filter with the specified kernel.
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 dst type.
//! there are two version of algorithm: NPP and OpenCV.
//! NPP calls when dstType == CV_8UC1 or dstType == CV_8UC4 and bufType == dstType,
//! otherwise calls OpenCV version.
//! NPP supports only BORDER_CONSTANT border type.
//! OpenCV version supports only CV_32F as buffer depth and
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
CV_EXPORTS Ptr<BaseColumnFilter_GPU> getLinearColumnFilter_GPU(int bufType, int dstType, const Mat& columnKernel,
int anchor = -1, int borderType = BORDER_CONSTANT);
//! returns the separable linear filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel,
const Mat& columnKernel, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT,
int columnBorderType = -1);
//! returns filter engine for the generalized Sobel operator
CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize,
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
//! returns the Gaussian filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, double sigma1, double sigma2 = 0,
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
//! returns maximum filter
CV_EXPORTS Ptr<BaseFilter_GPU> getMaxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));
//! returns minimum filter
CV_EXPORTS Ptr<BaseFilter_GPU> getMinFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));
//! smooths the image using the normalized box filter
//! supports CV_8UC1, CV_8UC4 types
CV_EXPORTS void boxFilter(const GpuMat& src, GpuMat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null());
//! a synonym for normalized box filter
static inline void blur(const GpuMat& src, GpuMat& dst, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null()) { boxFilter(src, dst, -1, ksize, anchor, stream); }
//! erodes the image (applies the local minimum operator)
CV_EXPORTS void erode( const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null());
//! dilates the image (applies the local maximum operator)
CV_EXPORTS void dilate( const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null());
//! applies an advanced morphological operation to the image
CV_EXPORTS void morphologyEx( const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null());
//! applies non-separable 2D linear filter to the image
CV_EXPORTS void filter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernel, Point anchor=Point(-1,-1), Stream& stream = Stream::Null());
//! applies separable 2D linear filter to the image
CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY,
Point anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
//! applies generalized Sobel operator to the image
CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1,
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
//! applies the vertical or horizontal Scharr operator to the image
CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, double scale = 1,
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
//! smooths the image using Gaussian filter.
CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, double sigma1, double sigma2 = 0,
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
//! applies Laplacian operator to the image
//! supports only ksize = 1 and ksize = 3
CV_EXPORTS void Laplacian(const GpuMat& src, GpuMat& dst, int ddepth, int ksize = 1, double scale = 1, Stream& stream = Stream::Null());
//////////////////////////////// Image Labeling ////////////////////////////////
//!performs labeling via graph cuts

View File

@ -908,29 +908,31 @@ namespace cv { namespace gpu { namespace imgproc
template <typename T, int cn>
void downsampleCaller(const DevMem2D src, DevMem2D dst)
void downsampleCaller(const DevMem2D src, DevMem2D dst, cudaStream_t stream)
{
dim3 threads(32, 8);
dim3 grid(divUp(dst.cols, threads.x), divUp(dst.rows, threads.y));
downsampleKernel<T,cn><<<grid,threads>>>(DevMem2D_<T>(src), DevMem2D_<T>(dst));
downsampleKernel<T,cn><<<grid, threads, 0, stream>>>(DevMem2D_<T>(src), DevMem2D_<T>(dst));
cudaSafeCall(cudaGetLastError());
cudaSafeCall(cudaDeviceSynchronize());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
template void downsampleCaller<uchar,1>(const DevMem2D src, DevMem2D dst);
template void downsampleCaller<uchar,2>(const DevMem2D src, DevMem2D dst);
template void downsampleCaller<uchar,3>(const DevMem2D src, DevMem2D dst);
template void downsampleCaller<uchar,4>(const DevMem2D src, DevMem2D dst);
template void downsampleCaller<short,1>(const DevMem2D src, DevMem2D dst);
template void downsampleCaller<short,2>(const DevMem2D src, DevMem2D dst);
template void downsampleCaller<short,3>(const DevMem2D src, DevMem2D dst);
template void downsampleCaller<short,4>(const DevMem2D src, DevMem2D dst);
template void downsampleCaller<float,1>(const DevMem2D src, DevMem2D dst);
template void downsampleCaller<float,2>(const DevMem2D src, DevMem2D dst);
template void downsampleCaller<float,3>(const DevMem2D src, DevMem2D dst);
template void downsampleCaller<float,4>(const DevMem2D src, DevMem2D dst);
template void downsampleCaller<uchar,1>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<uchar,2>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<uchar,3>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<uchar,4>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<short,1>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<short,2>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<short,3>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<short,4>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<float,1>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<float,2>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<float,3>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<float,4>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
//////////////////////////////////////////////////////////////////////////
@ -952,29 +954,31 @@ namespace cv { namespace gpu { namespace imgproc
template <typename T, int cn>
void upsampleCaller(const DevMem2D src, DevMem2D dst)
void upsampleCaller(const DevMem2D src, DevMem2D dst, cudaStream_t stream)
{
dim3 threads(32, 8);
dim3 grid(divUp(dst.cols, threads.x), divUp(dst.rows, threads.y));
upsampleKernel<T,cn><<<grid,threads>>>(DevMem2D_<T>(src), DevMem2D_<T>(dst));
upsampleKernel<T,cn><<<grid, threads, 0, stream>>>(DevMem2D_<T>(src), DevMem2D_<T>(dst));
cudaSafeCall(cudaGetLastError());
cudaSafeCall(cudaDeviceSynchronize());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
template void upsampleCaller<uchar,1>(const DevMem2D src, DevMem2D dst);
template void upsampleCaller<uchar,2>(const DevMem2D src, DevMem2D dst);
template void upsampleCaller<uchar,3>(const DevMem2D src, DevMem2D dst);
template void upsampleCaller<uchar,4>(const DevMem2D src, DevMem2D dst);
template void upsampleCaller<short,1>(const DevMem2D src, DevMem2D dst);
template void upsampleCaller<short,2>(const DevMem2D src, DevMem2D dst);
template void upsampleCaller<short,3>(const DevMem2D src, DevMem2D dst);
template void upsampleCaller<short,4>(const DevMem2D src, DevMem2D dst);
template void upsampleCaller<float,1>(const DevMem2D src, DevMem2D dst);
template void upsampleCaller<float,2>(const DevMem2D src, DevMem2D dst);
template void upsampleCaller<float,3>(const DevMem2D src, DevMem2D dst);
template void upsampleCaller<float,4>(const DevMem2D src, DevMem2D dst);
template void upsampleCaller<uchar,1>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<uchar,2>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<uchar,3>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<uchar,4>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<short,1>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<short,2>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<short,3>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<short,4>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<float,1>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<float,2>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<float,3>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<float,4>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
//////////////////////////////////////////////////////////////////////////

View File

@ -79,10 +79,14 @@ void cv::gpu::dft(const GpuMat&, GpuMat&, Size, int) { throw_nogpu(); }
void cv::gpu::ConvolveBuf::create(Size, Size) { throw_nogpu(); }
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool, ConvolveBuf&) { throw_nogpu(); }
void cv::gpu::downsample(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::upsample(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::pyrDown(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::pyrUp(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::downsample(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::upsample(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::pyrDown(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::PyrDownBuf::create(Size, int) { throw_nogpu(); }
void cv::gpu::pyrDown(const GpuMat&, GpuMat&, PyrDownBuf&, Stream&) { throw_nogpu(); }
void cv::gpu::pyrUp(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::PyrUpBuf::create(Size, int) { throw_nogpu(); }
void cv::gpu::pyrUp(const GpuMat&, GpuMat&, PyrUpBuf&, Stream&) { throw_nogpu(); }
@ -1413,15 +1417,15 @@ void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
namespace cv { namespace gpu { namespace imgproc
{
template <typename T, int cn>
void downsampleCaller(const DevMem2D src, DevMem2D dst);
void downsampleCaller(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
}}}
void cv::gpu::downsample(const GpuMat& src, GpuMat& dst)
void cv::gpu::downsample(const GpuMat& src, GpuMat& dst, Stream& stream)
{
CV_Assert(src.depth() < CV_64F && src.channels() <= 4);
typedef void (*Caller)(const DevMem2D, DevMem2D);
typedef void (*Caller)(const DevMem2D, DevMem2D, cudaStream_t stream);
static const Caller callers[6][4] =
{{imgproc::downsampleCaller<uchar,1>, imgproc::downsampleCaller<uchar,2>,
imgproc::downsampleCaller<uchar,3>, imgproc::downsampleCaller<uchar,4>},
@ -1437,7 +1441,7 @@ void cv::gpu::downsample(const GpuMat& src, GpuMat& dst)
CV_Error(CV_StsUnsupportedFormat, "bad number of channels");
dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type());
caller(src, dst.reshape(1));
caller(src, dst.reshape(1), StreamAccessor::getStream(stream));
}
@ -1447,15 +1451,15 @@ void cv::gpu::downsample(const GpuMat& src, GpuMat& dst)
namespace cv { namespace gpu { namespace imgproc
{
template <typename T, int cn>
void upsampleCaller(const DevMem2D src, DevMem2D dst);
void upsampleCaller(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
}}}
void cv::gpu::upsample(const GpuMat& src, GpuMat& dst)
void cv::gpu::upsample(const GpuMat& src, GpuMat& dst, Stream& stream)
{
CV_Assert(src.depth() < CV_64F && src.channels() <= 4);
typedef void (*Caller)(const DevMem2D, DevMem2D);
typedef void (*Caller)(const DevMem2D, DevMem2D, cudaStream_t stream);
static const Caller callers[6][5] =
{{imgproc::upsampleCaller<uchar,1>, imgproc::upsampleCaller<uchar,2>,
imgproc::upsampleCaller<uchar,3>, imgproc::upsampleCaller<uchar,4>},
@ -1471,31 +1475,73 @@ void cv::gpu::upsample(const GpuMat& src, GpuMat& dst)
CV_Error(CV_StsUnsupportedFormat, "bad number of channels");
dst.create(src.rows*2, src.cols*2, src.type());
caller(src, dst.reshape(1));
caller(src, dst.reshape(1), StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// pyrDown
void cv::gpu::pyrDown(const GpuMat& src, GpuMat& dst)
void cv::gpu::pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream)
{
Mat ker = getGaussianKernel(5, 0, std::max(CV_32F, src.depth()));
GpuMat buf;
sepFilter2D(src, buf, src.depth(), ker, ker);
downsample(buf, dst);
PyrDownBuf buf;
pyrDown(src, dst, buf, stream);
}
cv::Mat cv::gpu::PyrDownBuf::ker;
void cv::gpu::PyrDownBuf::create(Size image_size, int image_type_)
{
if (ker.empty() || image_type_ != image_type)
ker = getGaussianKernel(5, 0, std::max(CV_32F, CV_MAT_DEPTH(image_type_)));
ensureSizeIsEnough(image_size.height, image_size.width, image_type_, buf);
if (filter.empty() || image_type_ != image_type)
{
image_type = image_type_;
filter = createSeparableLinearFilter_GPU(image_type, image_type, ker, ker);
}
}
void cv::gpu::pyrDown(const GpuMat& src, GpuMat& dst, PyrDownBuf& buf, Stream& stream)
{
buf.create(src.size(), src.type());
buf.filter->apply(src, buf.buf, Rect(0, 0, src.cols, src.rows), stream);
downsample(buf.buf, dst, stream);
}
//////////////////////////////////////////////////////////////////////////////
// pyrUp
void cv::gpu::pyrUp(const GpuMat& src, GpuMat& dst)
void cv::gpu::pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream)
{
GpuMat buf;
upsample(src, buf);
Mat ker = getGaussianKernel(5, 0, std::max(CV_32F, src.depth())) * 2;
sepFilter2D(buf, dst, buf.depth(), ker, ker);
PyrUpBuf buf;
pyrUp(src, dst, buf, stream);
}
cv::Mat cv::gpu::PyrUpBuf::ker;
void cv::gpu::PyrUpBuf::create(Size image_size, int image_type_)
{
if (ker.empty() || image_type_ != image_type)
ker = getGaussianKernel(5, 0, std::max(CV_32F, CV_MAT_DEPTH(image_type_))) * 2;
ensureSizeIsEnough(image_size.height * 2, image_size.width * 2, image_type_, buf);
if (filter.empty() || image_type_ != image_type)
{
image_type = image_type_;
filter = createSeparableLinearFilter_GPU(image_type, image_type, ker, ker);
}
}
void cv::gpu::pyrUp(const GpuMat& src, GpuMat& dst, PyrUpBuf& buf, Stream& stream)
{
buf.create(src.size(), src.type());
upsample(src, buf.buf, stream);
buf.filter->apply(buf.buf, dst, Rect(0, 0, buf.buf.cols, buf.buf.rows), stream);
}
#endif /* !defined (HAVE_CUDA) */

View File

@ -560,778 +560,3 @@ INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher, testing::Combine(
testing::Values(57, 64, 83, 128, 179, 256, 304)));
#endif // HAVE_CUDA
//struct CV_GpuBFMTest : CV_GpuTestBase
//{
// void run_gpu_test();
//
// void generateData(GpuMat& query, GpuMat& train, int dim, int depth);
//
// virtual void test(const GpuMat& query, const GpuMat& train, BruteForceMatcher_GPU_base& matcher) = 0;
//
// static const int queryDescCount = 300; // must be even number because we split train data in some cases in two
// static const int countFactor = 4; // do not change it
//};
//
//void CV_GpuBFMTest::run_gpu_test()
//{
// BruteForceMatcher_GPU_base::DistType dists[] = {BruteForceMatcher_GPU_base::L1Dist, BruteForceMatcher_GPU_base::L2Dist, BruteForceMatcher_GPU_base::HammingDist};
// const char* dists_str[] = {"L1Dist", "L2Dist", "HammingDist"};
// int dists_count = sizeof(dists) / sizeof(dists[0]);
//
// RNG rng = ts->get_rng();
//
// int dims[] = {rng.uniform(30, 60), 64, rng.uniform(70, 110), 128, rng.uniform(130, 250), 256, rng.uniform(260, 350)};
// int dims_count = sizeof(dims) / sizeof(dims[0]);
//
// for (int dist = 0; dist < dists_count; ++dist)
// {
// int depth_end = dists[dist] == BruteForceMatcher_GPU_base::HammingDist ? CV_32S : CV_32F;
//
// for (int depth = CV_8U; depth <= depth_end; ++depth)
// {
// for (int dim = 0; dim < dims_count; ++dim)
// {
// PRINT_ARGS("dist=%s depth=%s dim=%d", dists_str[dist], getTypeName(depth), dims[dim]);
//
// BruteForceMatcher_GPU_base matcher(dists[dist]);
//
// GpuMat query, train;
// generateData(query, train, dim, depth);
//
// test(query, train, matcher);
// }
// }
// }
//}
//
//void CV_GpuBFMTest::generateData(GpuMat& queryGPU, GpuMat& trainGPU, int dim, int depth)
//{
// RNG& rng = ts->get_rng();
//
// Mat queryBuf, trainBuf;
//
// // Generate query descriptors randomly.
// // Descriptor vector elements are integer values.
// queryBuf.create(queryDescCount, dim, CV_32SC1);
// rng.fill(queryBuf, RNG::UNIFORM, Scalar::all(0), Scalar(3));
// queryBuf.convertTo(queryBuf, CV_32FC1);
//
// // Generate train decriptors as follows:
// // copy each query descriptor to train set countFactor times
// // and perturb some one element of the copied descriptors in
// // in ascending order. General boundaries of the perturbation
// // are (0.f, 1.f).
// trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1);
// float step = 1.f / countFactor;
// for (int qIdx = 0; qIdx < queryDescCount; qIdx++)
// {
// Mat queryDescriptor = queryBuf.row(qIdx);
// for (int c = 0; c < countFactor; c++)
// {
// int tIdx = qIdx * countFactor + c;
// Mat trainDescriptor = trainBuf.row(tIdx);
// queryDescriptor.copyTo(trainDescriptor);
// int elem = rng(dim);
// float diff = rng.uniform(step * c, step * (c + 1));
// trainDescriptor.at<float>(0, elem) += diff;
// }
// }
//
// Mat query, train;
// queryBuf.convertTo(query, depth);
// trainBuf.convertTo(train, depth);
//
// queryGPU.upload(query);
// trainGPU.upload(train);
//}
//
//#define GPU_BFM_TEST(test_name)
// struct CV_GpuBFM_ ##test_name ## _Test : CV_GpuBFMTest
// {
// void test(const GpuMat& query, const GpuMat& train, BruteForceMatcher_GPU_base& matcher);
// };
// TEST(BruteForceMatcher, test_name) { CV_GpuBFM_ ##test_name ## _Test test; test.safe_run(); }
// void CV_GpuBFM_ ##test_name ## _Test::test(const GpuMat& query, const GpuMat& train, BruteForceMatcher_GPU_base& matcher)
//
/////////////////////////////////////////////////////////////////////////////////////////////////////////
//// match
//
//GPU_BFM_TEST(match)
//{
// vector<DMatch> matches;
//
// matcher.match(query, train, matches);
//
// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT);
//
// int badCount = 0;
// for (size_t i = 0; i < matches.size(); i++)
// {
// DMatch match = matches[i];
// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0))
// badCount++;
// }
//
// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT);
//}
//
//GPU_BFM_TEST(match_add)
//{
// vector<DMatch> matches;
//
// // make add() twice to test such case
// matcher.add(vector<GpuMat>(1, train.rowRange(0, train.rows/2)));
// matcher.add(vector<GpuMat>(1, train.rowRange(train.rows/2, train.rows)));
//
// // prepare masks (make first nearest match illegal)
// vector<GpuMat> masks(2);
// for (int mi = 0; mi < 2; mi++)
// {
// masks[mi] = GpuMat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
// for (int di = 0; di < queryDescCount/2; di++)
// masks[mi].col(di * countFactor).setTo(Scalar::all(0));
// }
//
// matcher.match(query, matches, masks);
//
// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT);
//
// int badCount = 0;
// for (size_t i = 0; i < matches.size(); i++)
// {
// DMatch match = matches[i];
// int shift = matcher.isMaskSupported() ? 1 : 0;
// {
// if (i < queryDescCount / 2)
// {
// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + shift) || (match.imgIdx != 0))
// badCount++;
// }
// else
// {
// if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + shift) || (match.imgIdx != 1))
// badCount++;
// }
// }
// }
//
// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT);
//}
//
/////////////////////////////////////////////////////////////////////////////////////////////////////////
//// knnMatch
//
//GPU_BFM_TEST(knnMatch)
//{
// const int knn = 3;
//
// vector< vector<DMatch> > matches;
//
// matcher.knnMatch(query, train, matches, knn);
//
// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT);
//
// int badCount = 0;
// for (size_t i = 0; i < matches.size(); i++)
// {
// if ((int)matches[i].size() != knn)
// badCount++;
// else
// {
// int localBadCount = 0;
// for (int k = 0; k < knn; k++)
// {
// DMatch match = matches[i][k];
// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
// localBadCount++;
// }
// badCount += localBadCount > 0 ? 1 : 0;
// }
// }
//
// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT);
//}
//
//GPU_BFM_TEST(knnMatch_add)
//{
// const int knn = 2;
// vector<vector<DMatch> > matches;
//
// // make add() twice to test such case
// matcher.add(vector<GpuMat>(1,train.rowRange(0, train.rows / 2)));
// matcher.add(vector<GpuMat>(1,train.rowRange(train.rows / 2, train.rows)));
//
// // prepare masks (make first nearest match illegal)
// vector<GpuMat> masks(2);
// for (int mi = 0; mi < 2; mi++ )
// {
// masks[mi] = GpuMat(query.rows, train.rows / 2, CV_8UC1, Scalar::all(1));
// for (int di = 0; di < queryDescCount / 2; di++)
// masks[mi].col(di * countFactor).setTo(Scalar::all(0));
// }
//
// matcher.knnMatch(query, matches, knn, masks);
//
// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT);
//
// int badCount = 0;
// int shift = matcher.isMaskSupported() ? 1 : 0;
// for (size_t i = 0; i < matches.size(); i++)
// {
// if ((int)matches[i].size() != knn)
// badCount++;
// else
// {
// int localBadCount = 0;
// for (int k = 0; k < knn; k++)
// {
// DMatch match = matches[i][k];
// {
// if (i < queryDescCount / 2)
// {
// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
// localBadCount++;
// }
// else
// {
// if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
// localBadCount++;
// }
// }
// }
// badCount += localBadCount > 0 ? 1 : 0;
// }
// }
//
// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT);
//}
//
/////////////////////////////////////////////////////////////////////////////////////////////////////////
//// radiusMatch
//
//GPU_BFM_TEST(radiusMatch)
//{
// CHECK_RETURN(support(GLOBAL_ATOMICS), TS::SKIPPED);
//
// const float radius = 1.f / countFactor;
//
// vector< vector<DMatch> > matches;
//
// matcher.radiusMatch(query, train, matches, radius);
//
// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT);
//
// int badCount = 0;
// for (size_t i = 0; i < matches.size(); i++)
// {
// if ((int)matches[i].size() != 1)
// badCount++;
// else
// {
// DMatch match = matches[i][0];
// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0))
// badCount++;
// }
// }
//
// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT);
//}
//
//GPU_BFM_TEST(radiusMatch_add)
//{
// CHECK_RETURN(support(GLOBAL_ATOMICS), TS::SKIPPED);
//
// int n = 3;
// const float radius = 1.f / countFactor * n;
// vector< vector<DMatch> > matches;
//
// // make add() twice to test such case
// matcher.add(vector<GpuMat>(1,train.rowRange(0, train.rows / 2)));
// matcher.add(vector<GpuMat>(1,train.rowRange(train.rows / 2, train.rows)));
//
// // prepare masks (make first nearest match illegal)
// vector<GpuMat> masks(2);
// for (int mi = 0; mi < 2; mi++)
// {
// masks[mi] = GpuMat(query.rows, train.rows / 2, CV_8UC1, Scalar::all(1));
// for (int di = 0; di < queryDescCount / 2; di++)
// masks[mi].col(di * countFactor).setTo(Scalar::all(0));
// }
//
// matcher.radiusMatch(query, matches, radius, masks);
//
// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT);
//
// int badCount = 0;
// int shift = matcher.isMaskSupported() ? 1 : 0;
// int needMatchCount = matcher.isMaskSupported() ? n-1 : n;
// for (size_t i = 0; i < matches.size(); i++)
// {
// if ((int)matches[i].size() != needMatchCount)
// badCount++;
// else
// {
// int localBadCount = 0;
// for (int k = 0; k < needMatchCount; k++)
// {
// DMatch match = matches[i][k];
// {
// if (i < queryDescCount / 2)
// {
// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
// localBadCount++;
// }
// else
// {
// if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
// localBadCount++;
// }
// }
// }
// badCount += localBadCount > 0 ? 1 : 0;
// }
// }
//
// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT);
//}
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
////struct CV_GpuBruteForceMatcherTest : CV_GpuTestBase
////{
//// void run_gpu_test();
////
//// void emptyDataTest();
//// void dataTest(int dim);
////
//// void generateData(GpuMat& query, GpuMat& train, int dim);
////
//// void matchTest(const GpuMat& query, const GpuMat& train);
//// void knnMatchTest(const GpuMat& query, const GpuMat& train);
//// void radiusMatchTest(const GpuMat& query, const GpuMat& train);
////
//// BruteForceMatcher_GPU< L2<float> > dmatcher;
////
//// static const int queryDescCount = 300; // must be even number because we split train data in some cases in two
//// static const int countFactor = 4; // do not change it
////};
////
////void CV_GpuBruteForceMatcherTest::emptyDataTest()
////{
//// GpuMat queryDescriptors, trainDescriptors, mask;
//// vector<GpuMat> trainDescriptorCollection, masks;
//// vector<DMatch> matches;
//// vector< vector<DMatch> > vmatches;
////
//// try
//// {
//// dmatcher.match(queryDescriptors, trainDescriptors, matches, mask);
//// }
//// catch(...)
//// {
//// PRINTLN("match() on empty descriptors must not generate exception (1)");
//// ts->set_failed_test_info(TS::FAIL_EXCEPTION);
//// }
////
//// try
//// {
//// dmatcher.knnMatch(queryDescriptors, trainDescriptors, vmatches, 2, mask);
//// }
//// catch(...)
//// {
//// PRINTLN("knnMatch() on empty descriptors must not generate exception (1)");
//// ts->set_failed_test_info(TS::FAIL_EXCEPTION);
//// }
////
//// try
//// {
//// dmatcher.radiusMatch(queryDescriptors, trainDescriptors, vmatches, 10.f, mask);
//// }
//// catch(...)
//// {
//// PRINTLN("radiusMatch() on empty descriptors must not generate exception (1)");
//// ts->set_failed_test_info(TS::FAIL_EXCEPTION);
//// }
////
//// try
//// {
//// dmatcher.add(trainDescriptorCollection);
//// }
//// catch(...)
//// {
//// PRINTLN("add() on empty descriptors must not generate exception");
//// ts->set_failed_test_info(TS::FAIL_EXCEPTION);
//// }
////
//// try
//// {
//// dmatcher.match(queryDescriptors, matches, masks);
//// }
//// catch(...)
//// {
//// PRINTLN("match() on empty descriptors must not generate exception (2)");
//// ts->set_failed_test_info(TS::FAIL_EXCEPTION);
//// }
////
//// try
//// {
//// dmatcher.knnMatch(queryDescriptors, vmatches, 2, masks);
//// }
//// catch(...)
//// {
//// PRINTLN("knnMatch() on empty descriptors must not generate exception (2)");
//// ts->set_failed_test_info(TS::FAIL_EXCEPTION);
//// }
////
//// try
//// {
//// dmatcher.radiusMatch( queryDescriptors, vmatches, 10.f, masks );
//// }
//// catch(...)
//// {
//// PRINTLN("radiusMatch() on empty descriptors must not generate exception (2)");
//// ts->set_failed_test_info(TS::FAIL_EXCEPTION);
//// }
////
////}
////
////void CV_GpuBruteForceMatcherTest::generateData(GpuMat& queryGPU, GpuMat& trainGPU, int dim)
////{
//// Mat query, train;
//// RNG& rng = ts->get_rng();
////
//// // Generate query descriptors randomly.
//// // Descriptor vector elements are integer values.
//// Mat buf(queryDescCount, dim, CV_32SC1);
//// rng.fill(buf, RNG::UNIFORM, Scalar::all(0), Scalar(3));
//// buf.convertTo(query, CV_32FC1);
////
//// // Generate train decriptors as follows:
//// // copy each query descriptor to train set countFactor times
//// // and perturb some one element of the copied descriptors in
//// // in ascending order. General boundaries of the perturbation
//// // are (0.f, 1.f).
//// train.create( query.rows*countFactor, query.cols, CV_32FC1 );
//// float step = 1.f / countFactor;
//// for (int qIdx = 0; qIdx < query.rows; qIdx++)
//// {
//// Mat queryDescriptor = query.row(qIdx);
//// for (int c = 0; c < countFactor; c++)
//// {
//// int tIdx = qIdx * countFactor + c;
//// Mat trainDescriptor = train.row(tIdx);
//// queryDescriptor.copyTo(trainDescriptor);
//// int elem = rng(dim);
//// float diff = rng.uniform(step * c, step * (c + 1));
//// trainDescriptor.at<float>(0, elem) += diff;
//// }
//// }
////
//// queryGPU.upload(query);
//// trainGPU.upload(train);
////}
////
////void CV_GpuBruteForceMatcherTest::matchTest(const GpuMat& query, const GpuMat& train)
////{
//// dmatcher.clear();
////
//// // test const version of match()
//// {
//// vector<DMatch> matches;
//// dmatcher.match(query, train, matches);
////
//// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT);
////
//// int badCount = 0;
//// for (size_t i = 0; i < matches.size(); i++)
//// {
//// DMatch match = matches[i];
//// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0))
//// badCount++;
//// }
////
//// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT);
//// }
////
//// // test version of match() with add()
//// {
//// vector<DMatch> matches;
////
//// // make add() twice to test such case
//// dmatcher.add(vector<GpuMat>(1, train.rowRange(0, train.rows/2)));
//// dmatcher.add(vector<GpuMat>(1, train.rowRange(train.rows/2, train.rows)));
////
//// // prepare masks (make first nearest match illegal)
//// vector<GpuMat> masks(2);
//// for (int mi = 0; mi < 2; mi++)
//// {
//// masks[mi] = GpuMat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
//// for (int di = 0; di < queryDescCount/2; di++)
//// masks[mi].col(di * countFactor).setTo(Scalar::all(0));
//// }
////
//// dmatcher.match(query, matches, masks);
////
//// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT);
////
//// int badCount = 0;
//// for (size_t i = 0; i < matches.size(); i++)
//// {
//// DMatch match = matches[i];
//// int shift = dmatcher.isMaskSupported() ? 1 : 0;
//// {
//// if (i < queryDescCount / 2)
//// {
//// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + shift) || (match.imgIdx != 0))
//// badCount++;
//// }
//// else
//// {
//// if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + shift) || (match.imgIdx != 1))
//// badCount++;
//// }
//// }
//// }
////
//// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT);
//// }
////}
////
////void CV_GpuBruteForceMatcherTest::knnMatchTest(const GpuMat& query, const GpuMat& train)
////{
//// dmatcher.clear();
////
//// // test const version of knnMatch()
//// {
//// const int knn = 3;
////
//// vector< vector<DMatch> > matches;
//// dmatcher.knnMatch(query, train, matches, knn);
////
//// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT);
////
//// int badCount = 0;
//// for (size_t i = 0; i < matches.size(); i++)
//// {
//// if ((int)matches[i].size() != knn)
//// badCount++;
//// else
//// {
//// int localBadCount = 0;
//// for (int k = 0; k < knn; k++)
//// {
//// DMatch match = matches[i][k];
//// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
//// localBadCount++;
//// }
//// badCount += localBadCount > 0 ? 1 : 0;
//// }
//// }
////
//// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT);
//// }
////
//// // test version of knnMatch() with add()
//// {
//// const int knn = 2;
//// vector<vector<DMatch> > matches;
////
//// // make add() twice to test such case
//// dmatcher.add(vector<GpuMat>(1,train.rowRange(0, train.rows / 2)));
//// dmatcher.add(vector<GpuMat>(1,train.rowRange(train.rows / 2, train.rows)));
////
//// // prepare masks (make first nearest match illegal)
//// vector<GpuMat> masks(2);
//// for (int mi = 0; mi < 2; mi++ )
//// {
//// masks[mi] = GpuMat(query.rows, train.rows / 2, CV_8UC1, Scalar::all(1));
//// for (int di = 0; di < queryDescCount / 2; di++)
//// masks[mi].col(di * countFactor).setTo(Scalar::all(0));
//// }
////
//// dmatcher.knnMatch(query, matches, knn, masks);
////
//// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT);
////
//// int badCount = 0;
//// int shift = dmatcher.isMaskSupported() ? 1 : 0;
//// for (size_t i = 0; i < matches.size(); i++)
//// {
//// if ((int)matches[i].size() != knn)
//// badCount++;
//// else
//// {
//// int localBadCount = 0;
//// for (int k = 0; k < knn; k++)
//// {
//// DMatch match = matches[i][k];
//// {
//// if (i < queryDescCount / 2)
//// {
//// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
//// localBadCount++;
//// }
//// else
//// {
//// if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
//// localBadCount++;
//// }
//// }
//// }
//// badCount += localBadCount > 0 ? 1 : 0;
//// }
//// }
////
//// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT);
//// }
////}
////
////void CV_GpuBruteForceMatcherTest::radiusMatchTest(const GpuMat& query, const GpuMat& train)
////{
//// CHECK_RETURN(support(GLOBAL_ATOMICS), TS::SKIPPED);
////
//// dmatcher.clear();
////
//// // test const version of match()
//// {
//// const float radius = 1.f / countFactor;
////
//// vector< vector<DMatch> > matches;
//// dmatcher.radiusMatch(query, train, matches, radius);
////
//// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT);
////
//// int badCount = 0;
//// for (size_t i = 0; i < matches.size(); i++)
//// {
//// if ((int)matches[i].size() != 1)
//// badCount++;
//// else
//// {
//// DMatch match = matches[i][0];
//// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0))
//// badCount++;
//// }
//// }
////
//// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT);
//// }
////
//// // test version of match() with add()
//// {
//// int n = 3;
//// const float radius = 1.f / countFactor * n;
//// vector< vector<DMatch> > matches;
////
//// // make add() twice to test such case
//// dmatcher.add(vector<GpuMat>(1,train.rowRange(0, train.rows / 2)));
//// dmatcher.add(vector<GpuMat>(1,train.rowRange(train.rows / 2, train.rows)));
////
//// // prepare masks (make first nearest match illegal)
//// vector<GpuMat> masks(2);
//// for (int mi = 0; mi < 2; mi++)
//// {
//// masks[mi] = GpuMat(query.rows, train.rows / 2, CV_8UC1, Scalar::all(1));
//// for (int di = 0; di < queryDescCount / 2; di++)
//// masks[mi].col(di * countFactor).setTo(Scalar::all(0));
//// }
////
//// dmatcher.radiusMatch(query, matches, radius, masks);
////
//// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT);
////
//// int badCount = 0;
//// int shift = dmatcher.isMaskSupported() ? 1 : 0;
//// int needMatchCount = dmatcher.isMaskSupported() ? n-1 : n;
//// for (size_t i = 0; i < matches.size(); i++)
//// {
//// if ((int)matches[i].size() != needMatchCount)
//// badCount++;
//// else
//// {
//// int localBadCount = 0;
//// for (int k = 0; k < needMatchCount; k++)
//// {
//// DMatch match = matches[i][k];
//// {
//// if (i < queryDescCount / 2)
//// {
//// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
//// localBadCount++;
//// }
//// else
//// {
//// if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
//// localBadCount++;
//// }
//// }
//// }
//// badCount += localBadCount > 0 ? 1 : 0;
//// }
//// }
////
//// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT);
//// }
////}
////
////void CV_GpuBruteForceMatcherTest::dataTest(int dim)
////{
//// GpuMat query, train;
//// generateData(query, train, dim);
////
//// matchTest(query, train);
//// knnMatchTest(query, train);
//// radiusMatchTest(query, train);
////
//// dmatcher.clear();
////}
////
////void CV_GpuBruteForceMatcherTest::run_gpu_test()
////{
//// emptyDataTest();
////
//// dataTest(50);
//// dataTest(64);
//// dataTest(100);
//// dataTest(128);
//// dataTest(200);
//// dataTest(256);
//// dataTest(300);
////}
////
////TEST(BruteForceMatcher, accuracy) { CV_GpuBruteForceMatcherTest test; test.safe_run(); }

View File

@ -866,3 +866,51 @@ TEST(GaussianBlur)
GPU_OFF;
}
}
TEST(pyrDown)
{
gpu::PyrDownBuf buf;
for (int size = 4000; size >= 1000; size -= 1000)
{
SUBTEST << "size " << size;
Mat src; gen(src, 1000, 1000, CV_16SC3, 0, 256);
Mat dst(Size(src.cols / 2, src.rows / 2), src.type());
CPU_ON;
pyrDown(src, dst);
CPU_OFF;
gpu::GpuMat d_src(src);
gpu::GpuMat d_dst(Size(src.cols / 2, src.rows / 2), src.type());
GPU_ON;
gpu::pyrDown(d_src, d_dst, buf);
GPU_OFF;
}
}
TEST(pyrUp)
{
gpu::PyrUpBuf buf;
for (int size = 4000; size >= 1000; size -= 1000)
{
SUBTEST << "size " << size;
Mat src; gen(src, 1000, 1000, CV_16SC3, 0, 256);
Mat dst(Size(src.cols * 2, src.rows * 2), src.type());
CPU_ON;
pyrUp(src, dst);
CPU_OFF;
gpu::GpuMat d_src(src);
gpu::GpuMat d_dst(Size(src.cols * 2, src.rows * 2), src.type());
GPU_ON;
gpu::pyrUp(d_src, d_dst, buf);
GPU_OFF;
}
}