Merge pull request #2235 from alalek:ocl_svm_perf_test
This commit is contained in:
commit
e6420c523d
@ -107,3 +107,107 @@ PERF_TEST_P(KNNFixture, KNN,
|
|||||||
OCL_PERF_ELSE
|
OCL_PERF_ELSE
|
||||||
SANITY_CHECK(best_label);
|
SANITY_CHECK(best_label);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
typedef TestBaseWithParam<tuple<int> > SVMFixture;
|
||||||
|
|
||||||
|
// code is based on: samples\cpp\tutorial_code\ml\non_linear_svms\non_linear_svms.cpp
|
||||||
|
PERF_TEST_P(SVMFixture, DISABLED_SVM,
|
||||||
|
testing::Values(50, 100))
|
||||||
|
{
|
||||||
|
|
||||||
|
const int NTRAINING_SAMPLES = get<0>(GetParam()); // Number of training samples per class
|
||||||
|
|
||||||
|
#define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part
|
||||||
|
|
||||||
|
const int WIDTH = 512, HEIGHT = 512;
|
||||||
|
|
||||||
|
Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1);
|
||||||
|
Mat labels (2*NTRAINING_SAMPLES, 1, CV_32FC1);
|
||||||
|
|
||||||
|
RNG rng(100); // Random value generation class
|
||||||
|
|
||||||
|
// Set up the linearly separable part of the training data
|
||||||
|
int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES);
|
||||||
|
|
||||||
|
// Generate random points for the class 1
|
||||||
|
Mat trainClass = trainData.rowRange(0, nLinearSamples);
|
||||||
|
// The x coordinate of the points is in [0, 0.4)
|
||||||
|
Mat c = trainClass.colRange(0, 1);
|
||||||
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH));
|
||||||
|
// The y coordinate of the points is in [0, 1)
|
||||||
|
c = trainClass.colRange(1,2);
|
||||||
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
|
||||||
|
|
||||||
|
// Generate random points for the class 2
|
||||||
|
trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES);
|
||||||
|
// The x coordinate of the points is in [0.6, 1]
|
||||||
|
c = trainClass.colRange(0 , 1);
|
||||||
|
rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH));
|
||||||
|
// The y coordinate of the points is in [0, 1)
|
||||||
|
c = trainClass.colRange(1,2);
|
||||||
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
|
||||||
|
|
||||||
|
//------------------ Set up the non-linearly separable part of the training data ---------------
|
||||||
|
|
||||||
|
// Generate random points for the classes 1 and 2
|
||||||
|
trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples);
|
||||||
|
// The x coordinate of the points is in [0.4, 0.6)
|
||||||
|
c = trainClass.colRange(0,1);
|
||||||
|
rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH));
|
||||||
|
// The y coordinate of the points is in [0, 1)
|
||||||
|
c = trainClass.colRange(1,2);
|
||||||
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
|
||||||
|
|
||||||
|
//------------------------- Set up the labels for the classes ---------------------------------
|
||||||
|
labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1
|
||||||
|
labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2
|
||||||
|
|
||||||
|
//------------------------ Set up the support vector machines parameters --------------------
|
||||||
|
CvSVMParams params;
|
||||||
|
params.svm_type = SVM::C_SVC;
|
||||||
|
params.C = 0.1;
|
||||||
|
params.kernel_type = SVM::LINEAR;
|
||||||
|
params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6);
|
||||||
|
|
||||||
|
Mat dst = Mat::zeros(HEIGHT, WIDTH, CV_8UC1);
|
||||||
|
|
||||||
|
Mat samples(WIDTH*HEIGHT, 2, CV_32FC1);
|
||||||
|
int k = 0;
|
||||||
|
for (int i = 0; i < HEIGHT; ++i)
|
||||||
|
{
|
||||||
|
for (int j = 0; j < WIDTH; ++j)
|
||||||
|
{
|
||||||
|
samples.at<float>(k, 0) = (float)i;
|
||||||
|
samples.at<float>(k, 0) = (float)j;
|
||||||
|
k++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Mat results(WIDTH*HEIGHT, 1, CV_32FC1);
|
||||||
|
|
||||||
|
CvMat samples_ = samples;
|
||||||
|
CvMat results_ = results;
|
||||||
|
|
||||||
|
if(RUN_PLAIN_IMPL)
|
||||||
|
{
|
||||||
|
CvSVM svm;
|
||||||
|
svm.train(trainData, labels, Mat(), Mat(), params);
|
||||||
|
TEST_CYCLE()
|
||||||
|
{
|
||||||
|
svm.predict(&samples_, &results_);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else if(RUN_OCL_IMPL)
|
||||||
|
{
|
||||||
|
CvSVM_OCL svm;
|
||||||
|
svm.train(trainData, labels, Mat(), Mat(), params);
|
||||||
|
OCL_TEST_CYCLE()
|
||||||
|
{
|
||||||
|
svm.predict(&samples_, &results_);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
OCL_PERF_ELSE
|
||||||
|
|
||||||
|
SANITY_CHECK_NOTHING();
|
||||||
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user