Move C API of opencv_calib3d to separate file
This commit is contained in:
@@ -115,7 +115,7 @@ calibrateCamera
|
||||
---------------
|
||||
Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
|
||||
|
||||
.. ocv:function:: double calibrateCamera( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags=0, TermCriteria criteria=TermCriteria( TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON) )
|
||||
.. ocv:function:: double calibrateCamera( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags=0, TermCriteria criteria=TermCriteria( TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) )
|
||||
|
||||
.. ocv:pyfunction:: cv2.calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, flags[, criteria]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs
|
||||
|
||||
@@ -454,7 +454,7 @@ findChessboardCorners
|
||||
-------------------------
|
||||
Finds the positions of internal corners of the chessboard.
|
||||
|
||||
.. ocv:function:: bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners, int flags=CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE )
|
||||
.. ocv:function:: bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners, int flags=CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE )
|
||||
|
||||
.. ocv:pyfunction:: cv2.findChessboardCorners(image, patternSize[, corners[, flags]]) -> retval, corners
|
||||
|
||||
@@ -515,7 +515,7 @@ Finds centers in the grid of circles.
|
||||
|
||||
.. ocv:function:: bool findCirclesGrid( InputArray image, Size patternSize, OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID, const Ptr<FeatureDetector> &blobDetector = new SimpleBlobDetector() )
|
||||
|
||||
.. ocv:pyfunction:: cv2.findCirclesGridDefault(image, patternSize[, centers[, flags]]) -> retval, centers
|
||||
.. ocv:pyfunction:: cv2.findCirclesGrid(image, patternSize[, centers[, flags[, blobDetector]]]) -> retval, centers
|
||||
|
||||
:param image: grid view of input circles; it must be an 8-bit grayscale or color image.
|
||||
|
||||
@@ -694,7 +694,7 @@ findEssentialMat
|
||||
------------------
|
||||
Calculates an essential matrix from the corresponding points in two images.
|
||||
|
||||
.. ocv:function:: Mat findEssentialMat( InputArray points1, InputArray points2, double focal=1.0, Point2d pp=Point2d(0, 0), int method=CV_RANSAC, double prob=0.999, double threshold=1.0, OutputArray mask=noArray() )
|
||||
.. ocv:function:: Mat findEssentialMat( InputArray points1, InputArray points2, double focal=1.0, Point2d pp=Point2d(0, 0), int method=RANSAC, double prob=0.999, double threshold=1.0, OutputArray mask=noArray() )
|
||||
|
||||
:param points1: Array of ``N`` ``(N >= 5)`` 2D points from the first image. The point coordinates should be floating-point (single or double precision).
|
||||
|
||||
@@ -975,7 +975,7 @@ initCameraMatrix2D
|
||||
----------------------
|
||||
Finds an initial camera matrix from 3D-2D point correspondences.
|
||||
|
||||
.. ocv:function:: Mat initCameraMatrix2D( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, double aspectRatio=1.)
|
||||
.. ocv:function:: Mat initCameraMatrix2D( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, double aspectRatio=1.0 )
|
||||
|
||||
.. ocv:pyfunction:: cv2.initCameraMatrix2D(objectPoints, imagePoints, imageSize[, aspectRatio]) -> retval
|
||||
|
||||
|
||||
Reference in New Issue
Block a user