Move C API of opencv_calib3d to separate file
This commit is contained in:
@@ -115,7 +115,7 @@ calibrateCamera
|
||||
---------------
|
||||
Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
|
||||
|
||||
.. ocv:function:: double calibrateCamera( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags=0, TermCriteria criteria=TermCriteria( TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON) )
|
||||
.. ocv:function:: double calibrateCamera( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags=0, TermCriteria criteria=TermCriteria( TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) )
|
||||
|
||||
.. ocv:pyfunction:: cv2.calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, flags[, criteria]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs
|
||||
|
||||
@@ -454,7 +454,7 @@ findChessboardCorners
|
||||
-------------------------
|
||||
Finds the positions of internal corners of the chessboard.
|
||||
|
||||
.. ocv:function:: bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners, int flags=CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE )
|
||||
.. ocv:function:: bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners, int flags=CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE )
|
||||
|
||||
.. ocv:pyfunction:: cv2.findChessboardCorners(image, patternSize[, corners[, flags]]) -> retval, corners
|
||||
|
||||
@@ -515,7 +515,7 @@ Finds centers in the grid of circles.
|
||||
|
||||
.. ocv:function:: bool findCirclesGrid( InputArray image, Size patternSize, OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID, const Ptr<FeatureDetector> &blobDetector = new SimpleBlobDetector() )
|
||||
|
||||
.. ocv:pyfunction:: cv2.findCirclesGridDefault(image, patternSize[, centers[, flags]]) -> retval, centers
|
||||
.. ocv:pyfunction:: cv2.findCirclesGrid(image, patternSize[, centers[, flags[, blobDetector]]]) -> retval, centers
|
||||
|
||||
:param image: grid view of input circles; it must be an 8-bit grayscale or color image.
|
||||
|
||||
@@ -694,7 +694,7 @@ findEssentialMat
|
||||
------------------
|
||||
Calculates an essential matrix from the corresponding points in two images.
|
||||
|
||||
.. ocv:function:: Mat findEssentialMat( InputArray points1, InputArray points2, double focal=1.0, Point2d pp=Point2d(0, 0), int method=CV_RANSAC, double prob=0.999, double threshold=1.0, OutputArray mask=noArray() )
|
||||
.. ocv:function:: Mat findEssentialMat( InputArray points1, InputArray points2, double focal=1.0, Point2d pp=Point2d(0, 0), int method=RANSAC, double prob=0.999, double threshold=1.0, OutputArray mask=noArray() )
|
||||
|
||||
:param points1: Array of ``N`` ``(N >= 5)`` 2D points from the first image. The point coordinates should be floating-point (single or double precision).
|
||||
|
||||
@@ -975,7 +975,7 @@ initCameraMatrix2D
|
||||
----------------------
|
||||
Finds an initial camera matrix from 3D-2D point correspondences.
|
||||
|
||||
.. ocv:function:: Mat initCameraMatrix2D( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, double aspectRatio=1.)
|
||||
.. ocv:function:: Mat initCameraMatrix2D( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, double aspectRatio=1.0 )
|
||||
|
||||
.. ocv:pyfunction:: cv2.initCameraMatrix2D(objectPoints, imagePoints, imageSize[, aspectRatio]) -> retval
|
||||
|
||||
|
@@ -7,7 +7,7 @@
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
@@ -44,562 +44,184 @@
|
||||
#ifndef __OPENCV_CALIB3D_HPP__
|
||||
#define __OPENCV_CALIB3D_HPP__
|
||||
|
||||
#ifdef __cplusplus
|
||||
# include "opencv2/core.hpp"
|
||||
#endif
|
||||
#include "opencv2/core/core_c.h"
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/features2d.hpp"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/****************************************************************************************\
|
||||
* Camera Calibration, Pose Estimation and Stereo *
|
||||
\****************************************************************************************/
|
||||
|
||||
typedef struct CvPOSITObject CvPOSITObject;
|
||||
|
||||
/* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */
|
||||
CVAPI(CvPOSITObject*) cvCreatePOSITObject( CvPoint3D32f* points, int point_count );
|
||||
|
||||
|
||||
/* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of
|
||||
an object given its model and projection in a weak-perspective case */
|
||||
CVAPI(void) cvPOSIT( CvPOSITObject* posit_object, CvPoint2D32f* image_points,
|
||||
double focal_length, CvTermCriteria criteria,
|
||||
float* rotation_matrix, float* translation_vector);
|
||||
|
||||
/* Releases CvPOSITObject structure */
|
||||
CVAPI(void) cvReleasePOSITObject( CvPOSITObject** posit_object );
|
||||
|
||||
/* updates the number of RANSAC iterations */
|
||||
CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob,
|
||||
int model_points, int max_iters );
|
||||
|
||||
CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst );
|
||||
|
||||
/* Calculates fundamental matrix given a set of corresponding points */
|
||||
#define CV_FM_7POINT 1
|
||||
#define CV_FM_8POINT 2
|
||||
|
||||
#define CV_LMEDS 4
|
||||
#define CV_RANSAC 8
|
||||
|
||||
#define CV_FM_LMEDS_ONLY CV_LMEDS
|
||||
#define CV_FM_RANSAC_ONLY CV_RANSAC
|
||||
#define CV_FM_LMEDS CV_LMEDS
|
||||
#define CV_FM_RANSAC CV_RANSAC
|
||||
|
||||
enum
|
||||
{
|
||||
CV_ITERATIVE = 0,
|
||||
CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
|
||||
CV_P3P = 2 // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
|
||||
};
|
||||
|
||||
CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2,
|
||||
CvMat* fundamental_matrix,
|
||||
int method CV_DEFAULT(CV_FM_RANSAC),
|
||||
double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99),
|
||||
CvMat* status CV_DEFAULT(NULL) );
|
||||
|
||||
/* For each input point on one of images
|
||||
computes parameters of the corresponding
|
||||
epipolar line on the other image */
|
||||
CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points,
|
||||
int which_image,
|
||||
const CvMat* fundamental_matrix,
|
||||
CvMat* correspondent_lines );
|
||||
|
||||
/* Triangulation functions */
|
||||
|
||||
CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2,
|
||||
CvMat* projPoints1, CvMat* projPoints2,
|
||||
CvMat* points4D);
|
||||
|
||||
CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2,
|
||||
CvMat* new_points1, CvMat* new_points2);
|
||||
|
||||
|
||||
/* Computes the optimal new camera matrix according to the free scaling parameter alpha:
|
||||
alpha=0 - only valid pixels will be retained in the undistorted image
|
||||
alpha=1 - all the source image pixels will be retained in the undistorted image
|
||||
*/
|
||||
CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix,
|
||||
const CvMat* dist_coeffs,
|
||||
CvSize image_size, double alpha,
|
||||
CvMat* new_camera_matrix,
|
||||
CvSize new_imag_size CV_DEFAULT(cvSize(0,0)),
|
||||
CvRect* valid_pixel_ROI CV_DEFAULT(0),
|
||||
int center_principal_point CV_DEFAULT(0));
|
||||
|
||||
/* Converts rotation vector to rotation matrix or vice versa */
|
||||
CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst,
|
||||
CvMat* jacobian CV_DEFAULT(0) );
|
||||
|
||||
/* Finds perspective transformation between the object plane and image (view) plane */
|
||||
CVAPI(int) cvFindHomography( const CvMat* src_points,
|
||||
const CvMat* dst_points,
|
||||
CvMat* homography,
|
||||
int method CV_DEFAULT(0),
|
||||
double ransacReprojThreshold CV_DEFAULT(3),
|
||||
CvMat* mask CV_DEFAULT(0));
|
||||
|
||||
/* Computes RQ decomposition for 3x3 matrices */
|
||||
CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ,
|
||||
CvMat *matrixQx CV_DEFAULT(NULL),
|
||||
CvMat *matrixQy CV_DEFAULT(NULL),
|
||||
CvMat *matrixQz CV_DEFAULT(NULL),
|
||||
CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));
|
||||
|
||||
/* Computes projection matrix decomposition */
|
||||
CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr,
|
||||
CvMat *rotMatr, CvMat *posVect,
|
||||
CvMat *rotMatrX CV_DEFAULT(NULL),
|
||||
CvMat *rotMatrY CV_DEFAULT(NULL),
|
||||
CvMat *rotMatrZ CV_DEFAULT(NULL),
|
||||
CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));
|
||||
|
||||
/* Computes d(AB)/dA and d(AB)/dB */
|
||||
CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB );
|
||||
|
||||
/* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)),
|
||||
t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */
|
||||
CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1,
|
||||
const CvMat* _rvec2, const CvMat* _tvec2,
|
||||
CvMat* _rvec3, CvMat* _tvec3,
|
||||
CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0),
|
||||
CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0),
|
||||
CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0),
|
||||
CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) );
|
||||
|
||||
/* Projects object points to the view plane using
|
||||
the specified extrinsic and intrinsic camera parameters */
|
||||
CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector,
|
||||
const CvMat* translation_vector, const CvMat* camera_matrix,
|
||||
const CvMat* distortion_coeffs, CvMat* image_points,
|
||||
CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL),
|
||||
CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL),
|
||||
CvMat* dpddist CV_DEFAULT(NULL),
|
||||
double aspect_ratio CV_DEFAULT(0));
|
||||
|
||||
/* Finds extrinsic camera parameters from
|
||||
a few known corresponding point pairs and intrinsic parameters */
|
||||
CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points,
|
||||
const CvMat* image_points,
|
||||
const CvMat* camera_matrix,
|
||||
const CvMat* distortion_coeffs,
|
||||
CvMat* rotation_vector,
|
||||
CvMat* translation_vector,
|
||||
int use_extrinsic_guess CV_DEFAULT(0) );
|
||||
|
||||
/* Computes initial estimate of the intrinsic camera parameters
|
||||
in case of planar calibration target (e.g. chessboard) */
|
||||
CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points,
|
||||
const CvMat* image_points,
|
||||
const CvMat* npoints, CvSize image_size,
|
||||
CvMat* camera_matrix,
|
||||
double aspect_ratio CV_DEFAULT(1.) );
|
||||
|
||||
#define CV_CALIB_CB_ADAPTIVE_THRESH 1
|
||||
#define CV_CALIB_CB_NORMALIZE_IMAGE 2
|
||||
#define CV_CALIB_CB_FILTER_QUADS 4
|
||||
#define CV_CALIB_CB_FAST_CHECK 8
|
||||
|
||||
// Performs a fast check if a chessboard is in the input image. This is a workaround to
|
||||
// a problem of cvFindChessboardCorners being slow on images with no chessboard
|
||||
// - src: input image
|
||||
// - size: chessboard size
|
||||
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
|
||||
// 0 if there is no chessboard, -1 in case of error
|
||||
CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size);
|
||||
|
||||
/* Detects corners on a chessboard calibration pattern */
|
||||
CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size,
|
||||
CvPoint2D32f* corners,
|
||||
int* corner_count CV_DEFAULT(NULL),
|
||||
int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) );
|
||||
|
||||
/* Draws individual chessboard corners or the whole chessboard detected */
|
||||
CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size,
|
||||
CvPoint2D32f* corners,
|
||||
int count, int pattern_was_found );
|
||||
|
||||
#define CV_CALIB_USE_INTRINSIC_GUESS 1
|
||||
#define CV_CALIB_FIX_ASPECT_RATIO 2
|
||||
#define CV_CALIB_FIX_PRINCIPAL_POINT 4
|
||||
#define CV_CALIB_ZERO_TANGENT_DIST 8
|
||||
#define CV_CALIB_FIX_FOCAL_LENGTH 16
|
||||
#define CV_CALIB_FIX_K1 32
|
||||
#define CV_CALIB_FIX_K2 64
|
||||
#define CV_CALIB_FIX_K3 128
|
||||
#define CV_CALIB_FIX_K4 2048
|
||||
#define CV_CALIB_FIX_K5 4096
|
||||
#define CV_CALIB_FIX_K6 8192
|
||||
#define CV_CALIB_RATIONAL_MODEL 16384
|
||||
#define CV_CALIB_THIN_PRISM_MODEL 32768
|
||||
#define CV_CALIB_FIX_S1_S2_S3_S4 65536
|
||||
|
||||
|
||||
/* Finds intrinsic and extrinsic camera parameters
|
||||
from a few views of known calibration pattern */
|
||||
CVAPI(double) cvCalibrateCamera2( const CvMat* object_points,
|
||||
const CvMat* image_points,
|
||||
const CvMat* point_counts,
|
||||
CvSize image_size,
|
||||
CvMat* camera_matrix,
|
||||
CvMat* distortion_coeffs,
|
||||
CvMat* rotation_vectors CV_DEFAULT(NULL),
|
||||
CvMat* translation_vectors CV_DEFAULT(NULL),
|
||||
int flags CV_DEFAULT(0),
|
||||
CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
|
||||
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)) );
|
||||
|
||||
/* Computes various useful characteristics of the camera from the data computed by
|
||||
cvCalibrateCamera2 */
|
||||
CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix,
|
||||
CvSize image_size,
|
||||
double aperture_width CV_DEFAULT(0),
|
||||
double aperture_height CV_DEFAULT(0),
|
||||
double *fovx CV_DEFAULT(NULL),
|
||||
double *fovy CV_DEFAULT(NULL),
|
||||
double *focal_length CV_DEFAULT(NULL),
|
||||
CvPoint2D64f *principal_point CV_DEFAULT(NULL),
|
||||
double *pixel_aspect_ratio CV_DEFAULT(NULL));
|
||||
|
||||
#define CV_CALIB_FIX_INTRINSIC 256
|
||||
#define CV_CALIB_SAME_FOCAL_LENGTH 512
|
||||
|
||||
/* Computes the transformation from one camera coordinate system to another one
|
||||
from a few correspondent views of the same calibration target. Optionally, calibrates
|
||||
both cameras */
|
||||
CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1,
|
||||
const CvMat* image_points2, const CvMat* npoints,
|
||||
CvMat* camera_matrix1, CvMat* dist_coeffs1,
|
||||
CvMat* camera_matrix2, CvMat* dist_coeffs2,
|
||||
CvSize image_size, CvMat* R, CvMat* T,
|
||||
CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0),
|
||||
CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
|
||||
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)),
|
||||
int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC));
|
||||
|
||||
#define CV_CALIB_ZERO_DISPARITY 1024
|
||||
|
||||
/* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both
|
||||
views parallel (=> to make all the epipolar lines horizontal or vertical) */
|
||||
CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2,
|
||||
const CvMat* dist_coeffs1, const CvMat* dist_coeffs2,
|
||||
CvSize image_size, const CvMat* R, const CvMat* T,
|
||||
CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2,
|
||||
CvMat* Q CV_DEFAULT(0),
|
||||
int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY),
|
||||
double alpha CV_DEFAULT(-1),
|
||||
CvSize new_image_size CV_DEFAULT(cvSize(0,0)),
|
||||
CvRect* valid_pix_ROI1 CV_DEFAULT(0),
|
||||
CvRect* valid_pix_ROI2 CV_DEFAULT(0));
|
||||
|
||||
/* Computes rectification transformations for uncalibrated pair of images using a set
|
||||
of point correspondences */
|
||||
CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2,
|
||||
const CvMat* F, CvSize img_size,
|
||||
CvMat* H1, CvMat* H2,
|
||||
double threshold CV_DEFAULT(5));
|
||||
|
||||
|
||||
|
||||
/* stereo correspondence parameters and functions */
|
||||
|
||||
#define CV_STEREO_BM_NORMALIZED_RESPONSE 0
|
||||
#define CV_STEREO_BM_XSOBEL 1
|
||||
|
||||
/* Block matching algorithm structure */
|
||||
typedef struct CvStereoBMState
|
||||
{
|
||||
// pre-filtering (normalization of input images)
|
||||
int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now
|
||||
int preFilterSize; // averaging window size: ~5x5..21x21
|
||||
int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap]
|
||||
|
||||
// correspondence using Sum of Absolute Difference (SAD)
|
||||
int SADWindowSize; // ~5x5..21x21
|
||||
int minDisparity; // minimum disparity (can be negative)
|
||||
int numberOfDisparities; // maximum disparity - minimum disparity (> 0)
|
||||
|
||||
// post-filtering
|
||||
int textureThreshold; // the disparity is only computed for pixels
|
||||
// with textured enough neighborhood
|
||||
int uniquenessRatio; // accept the computed disparity d* only if
|
||||
// SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.)
|
||||
// for any d != d*+/-1 within the search range.
|
||||
int speckleWindowSize; // disparity variation window
|
||||
int speckleRange; // acceptable range of variation in window
|
||||
|
||||
int trySmallerWindows; // if 1, the results may be more accurate,
|
||||
// at the expense of slower processing
|
||||
CvRect roi1, roi2;
|
||||
int disp12MaxDiff;
|
||||
|
||||
// temporary buffers
|
||||
CvMat* preFilteredImg0;
|
||||
CvMat* preFilteredImg1;
|
||||
CvMat* slidingSumBuf;
|
||||
CvMat* cost;
|
||||
CvMat* disp;
|
||||
} CvStereoBMState;
|
||||
|
||||
#define CV_STEREO_BM_BASIC 0
|
||||
#define CV_STEREO_BM_FISH_EYE 1
|
||||
#define CV_STEREO_BM_NARROW 2
|
||||
|
||||
CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC),
|
||||
int numberOfDisparities CV_DEFAULT(0));
|
||||
|
||||
CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state );
|
||||
|
||||
CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right,
|
||||
CvArr* disparity, CvStereoBMState* state );
|
||||
|
||||
CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
|
||||
int numberOfDisparities, int SADWindowSize );
|
||||
|
||||
CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost,
|
||||
int minDisparity, int numberOfDisparities,
|
||||
int disp12MaxDiff CV_DEFAULT(1) );
|
||||
|
||||
/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */
|
||||
CVAPI(void) cvReprojectImageTo3D( const CvArr* disparityImage,
|
||||
CvArr* _3dImage, const CvMat* Q,
|
||||
int handleMissingValues CV_DEFAULT(0) );
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
class CV_EXPORTS CvLevMarq
|
||||
{
|
||||
public:
|
||||
CvLevMarq();
|
||||
CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
|
||||
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
|
||||
bool completeSymmFlag=false );
|
||||
~CvLevMarq();
|
||||
void init( int nparams, int nerrs, CvTermCriteria criteria=
|
||||
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
|
||||
bool completeSymmFlag=false );
|
||||
bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
|
||||
bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
|
||||
|
||||
void clear();
|
||||
void step();
|
||||
enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
|
||||
|
||||
cv::Ptr<CvMat> mask;
|
||||
cv::Ptr<CvMat> prevParam;
|
||||
cv::Ptr<CvMat> param;
|
||||
cv::Ptr<CvMat> J;
|
||||
cv::Ptr<CvMat> err;
|
||||
cv::Ptr<CvMat> JtJ;
|
||||
cv::Ptr<CvMat> JtJN;
|
||||
cv::Ptr<CvMat> JtErr;
|
||||
cv::Ptr<CvMat> JtJV;
|
||||
cv::Ptr<CvMat> JtJW;
|
||||
double prevErrNorm, errNorm;
|
||||
int lambdaLg10;
|
||||
CvTermCriteria criteria;
|
||||
int state;
|
||||
int iters;
|
||||
bool completeSymmFlag;
|
||||
};
|
||||
|
||||
namespace cv
|
||||
{
|
||||
//! converts rotation vector to rotation matrix or vice versa using Rodrigues transformation
|
||||
CV_EXPORTS_W void Rodrigues(InputArray src, OutputArray dst, OutputArray jacobian=noArray());
|
||||
|
||||
//! type of the robust estimation algorithm
|
||||
enum
|
||||
{
|
||||
LMEDS=CV_LMEDS, //!< least-median algorithm
|
||||
RANSAC=CV_RANSAC //!< RANSAC algorithm
|
||||
};
|
||||
enum { LMEDS = 4, //!< least-median algorithm
|
||||
RANSAC = 8 //!< RANSAC algorithm
|
||||
};
|
||||
|
||||
enum { ITERATIVE = 0,
|
||||
EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
|
||||
P3P = 2 // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
|
||||
};
|
||||
|
||||
enum { CALIB_CB_ADAPTIVE_THRESH = 1,
|
||||
CALIB_CB_NORMALIZE_IMAGE = 2,
|
||||
CALIB_CB_FILTER_QUADS = 4,
|
||||
CALIB_CB_FAST_CHECK = 8
|
||||
};
|
||||
|
||||
enum { CALIB_CB_SYMMETRIC_GRID = 1,
|
||||
CALIB_CB_ASYMMETRIC_GRID = 2,
|
||||
CALIB_CB_CLUSTERING = 4
|
||||
};
|
||||
|
||||
enum { CALIB_USE_INTRINSIC_GUESS = 0x00001,
|
||||
CALIB_FIX_ASPECT_RATIO = 0x00002,
|
||||
CALIB_FIX_PRINCIPAL_POINT = 0x00004,
|
||||
CALIB_ZERO_TANGENT_DIST = 0x00008,
|
||||
CALIB_FIX_FOCAL_LENGTH = 0x00010,
|
||||
CALIB_FIX_K1 = 0x00020,
|
||||
CALIB_FIX_K2 = 0x00040,
|
||||
CALIB_FIX_K3 = 0x00080,
|
||||
CALIB_FIX_K4 = 0x00800,
|
||||
CALIB_FIX_K5 = 0x01000,
|
||||
CALIB_FIX_K6 = 0x02000,
|
||||
CALIB_RATIONAL_MODEL = 0x04000,
|
||||
CALIB_THIN_PRISM_MODEL = 0x08000,
|
||||
CALIB_FIX_S1_S2_S3_S4 = 0x10000,
|
||||
// only for stereo
|
||||
CALIB_FIX_INTRINSIC = 0x00100,
|
||||
CALIB_SAME_FOCAL_LENGTH = 0x00200,
|
||||
// for stereo rectification
|
||||
CALIB_ZERO_DISPARITY = 0x00400
|
||||
};
|
||||
|
||||
//! the algorithm for finding fundamental matrix
|
||||
enum { FM_7POINT = 1, //!< 7-point algorithm
|
||||
FM_8POINT = 2, //!< 8-point algorithm
|
||||
FM_LMEDS = 4, //!< least-median algorithm
|
||||
FM_RANSAC = 8 //!< RANSAC algorithm
|
||||
};
|
||||
|
||||
|
||||
|
||||
//! converts rotation vector to rotation matrix or vice versa using Rodrigues transformation
|
||||
CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
|
||||
|
||||
//! computes the best-fit perspective transformation mapping srcPoints to dstPoints.
|
||||
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
|
||||
int method=0, double ransacReprojThreshold=3,
|
||||
int method = 0, double ransacReprojThreshold = 3,
|
||||
OutputArray mask=noArray());
|
||||
|
||||
//! variant of findHomography for backward compatibility
|
||||
CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
|
||||
OutputArray mask, int method=0, double ransacReprojThreshold=3);
|
||||
OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );
|
||||
|
||||
//! Computes RQ decomposition of 3x3 matrix
|
||||
CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
|
||||
OutputArray Qx=noArray(),
|
||||
OutputArray Qy=noArray(),
|
||||
OutputArray Qz=noArray());
|
||||
OutputArray Qx = noArray(),
|
||||
OutputArray Qy = noArray(),
|
||||
OutputArray Qz = noArray());
|
||||
|
||||
//! Decomposes the projection matrix into camera matrix and the rotation martix and the translation vector
|
||||
CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
|
||||
OutputArray rotMatrix, OutputArray transVect,
|
||||
OutputArray rotMatrixX=noArray(),
|
||||
OutputArray rotMatrixY=noArray(),
|
||||
OutputArray rotMatrixZ=noArray(),
|
||||
OutputArray eulerAngles=noArray() );
|
||||
OutputArray rotMatrixX = noArray(),
|
||||
OutputArray rotMatrixY = noArray(),
|
||||
OutputArray rotMatrixZ = noArray(),
|
||||
OutputArray eulerAngles =noArray() );
|
||||
|
||||
//! computes derivatives of the matrix product w.r.t each of the multiplied matrix coefficients
|
||||
CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B,
|
||||
OutputArray dABdA,
|
||||
OutputArray dABdB );
|
||||
CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );
|
||||
|
||||
//! composes 2 [R|t] transformations together. Also computes the derivatives of the result w.r.t the arguments
|
||||
CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
|
||||
InputArray rvec2, InputArray tvec2,
|
||||
OutputArray rvec3, OutputArray tvec3,
|
||||
OutputArray dr3dr1=noArray(), OutputArray dr3dt1=noArray(),
|
||||
OutputArray dr3dr2=noArray(), OutputArray dr3dt2=noArray(),
|
||||
OutputArray dt3dr1=noArray(), OutputArray dt3dt1=noArray(),
|
||||
OutputArray dt3dr2=noArray(), OutputArray dt3dt2=noArray() );
|
||||
OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
|
||||
OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
|
||||
OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
|
||||
OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );
|
||||
|
||||
//! projects points from the model coordinate space to the image coordinates. Also computes derivatives of the image coordinates w.r.t the intrinsic and extrinsic camera parameters
|
||||
CV_EXPORTS_W void projectPoints( InputArray objectPoints,
|
||||
InputArray rvec, InputArray tvec,
|
||||
InputArray cameraMatrix, InputArray distCoeffs,
|
||||
OutputArray imagePoints,
|
||||
OutputArray jacobian=noArray(),
|
||||
double aspectRatio=0 );
|
||||
OutputArray jacobian = noArray(),
|
||||
double aspectRatio = 0 );
|
||||
|
||||
//! computes the camera pose from a few 3D points and the corresponding projections. The outliers are not handled.
|
||||
enum
|
||||
{
|
||||
ITERATIVE=CV_ITERATIVE,
|
||||
EPNP=CV_EPNP,
|
||||
P3P=CV_P3P
|
||||
};
|
||||
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
|
||||
InputArray cameraMatrix, InputArray distCoeffs,
|
||||
OutputArray rvec, OutputArray tvec,
|
||||
bool useExtrinsicGuess=false, int flags=ITERATIVE);
|
||||
bool useExtrinsicGuess = false, int flags = ITERATIVE );
|
||||
|
||||
//! computes the camera pose from a few 3D points and the corresponding projections. The outliers are possible.
|
||||
CV_EXPORTS_W void solvePnPRansac( InputArray objectPoints,
|
||||
InputArray imagePoints,
|
||||
InputArray cameraMatrix,
|
||||
InputArray distCoeffs,
|
||||
OutputArray rvec,
|
||||
OutputArray tvec,
|
||||
bool useExtrinsicGuess = false,
|
||||
int iterationsCount = 100,
|
||||
float reprojectionError = 8.0,
|
||||
int minInliersCount = 100,
|
||||
OutputArray inliers = noArray(),
|
||||
int flags = ITERATIVE);
|
||||
CV_EXPORTS_W void solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
|
||||
InputArray cameraMatrix, InputArray distCoeffs,
|
||||
OutputArray rvec, OutputArray tvec,
|
||||
bool useExtrinsicGuess = false, int iterationsCount = 100,
|
||||
float reprojectionError = 8.0, int minInliersCount = 100,
|
||||
OutputArray inliers = noArray(), int flags = ITERATIVE );
|
||||
|
||||
//! initializes camera matrix from a few 3D points and the corresponding projections.
|
||||
CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
|
||||
InputArrayOfArrays imagePoints,
|
||||
Size imageSize, double aspectRatio=1. );
|
||||
|
||||
enum { CALIB_CB_ADAPTIVE_THRESH = 1, CALIB_CB_NORMALIZE_IMAGE = 2,
|
||||
CALIB_CB_FILTER_QUADS = 4, CALIB_CB_FAST_CHECK = 8 };
|
||||
Size imageSize, double aspectRatio = 1.0 );
|
||||
|
||||
//! finds checkerboard pattern of the specified size in the image
|
||||
CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize,
|
||||
OutputArray corners,
|
||||
int flags=CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE );
|
||||
CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
|
||||
int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );
|
||||
|
||||
//! finds subpixel-accurate positions of the chessboard corners
|
||||
CV_EXPORTS bool find4QuadCornerSubpix(InputArray img, InputOutputArray corners, Size region_size);
|
||||
CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );
|
||||
|
||||
//! draws the checkerboard pattern (found or partly found) in the image
|
||||
CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
|
||||
InputArray corners, bool patternWasFound );
|
||||
|
||||
enum { CALIB_CB_SYMMETRIC_GRID = 1, CALIB_CB_ASYMMETRIC_GRID = 2,
|
||||
CALIB_CB_CLUSTERING = 4 };
|
||||
|
||||
//! finds circles' grid pattern of the specified size in the image
|
||||
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
|
||||
OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID,
|
||||
const Ptr<FeatureDetector> &blobDetector = new SimpleBlobDetector());
|
||||
|
||||
//! the deprecated function. Use findCirclesGrid() instead of it.
|
||||
CV_EXPORTS_W bool findCirclesGridDefault( InputArray image, Size patternSize,
|
||||
OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID );
|
||||
enum
|
||||
{
|
||||
CALIB_USE_INTRINSIC_GUESS = CV_CALIB_USE_INTRINSIC_GUESS,
|
||||
CALIB_FIX_ASPECT_RATIO = CV_CALIB_FIX_ASPECT_RATIO,
|
||||
CALIB_FIX_PRINCIPAL_POINT = CV_CALIB_FIX_PRINCIPAL_POINT,
|
||||
CALIB_ZERO_TANGENT_DIST = CV_CALIB_ZERO_TANGENT_DIST,
|
||||
CALIB_FIX_FOCAL_LENGTH = CV_CALIB_FIX_FOCAL_LENGTH,
|
||||
CALIB_FIX_K1 = CV_CALIB_FIX_K1,
|
||||
CALIB_FIX_K2 = CV_CALIB_FIX_K2,
|
||||
CALIB_FIX_K3 = CV_CALIB_FIX_K3,
|
||||
CALIB_FIX_K4 = CV_CALIB_FIX_K4,
|
||||
CALIB_FIX_K5 = CV_CALIB_FIX_K5,
|
||||
CALIB_FIX_K6 = CV_CALIB_FIX_K6,
|
||||
CALIB_RATIONAL_MODEL = CV_CALIB_RATIONAL_MODEL,
|
||||
CALIB_THIN_PRISM_MODEL = CV_CALIB_THIN_PRISM_MODEL,
|
||||
CALIB_FIX_S1_S2_S3_S4=CV_CALIB_FIX_S1_S2_S3_S4,
|
||||
// only for stereo
|
||||
CALIB_FIX_INTRINSIC = CV_CALIB_FIX_INTRINSIC,
|
||||
CALIB_SAME_FOCAL_LENGTH = CV_CALIB_SAME_FOCAL_LENGTH,
|
||||
// for stereo rectification
|
||||
CALIB_ZERO_DISPARITY = CV_CALIB_ZERO_DISPARITY
|
||||
};
|
||||
OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
|
||||
const Ptr<FeatureDetector> &blobDetector = new SimpleBlobDetector());
|
||||
|
||||
//! finds intrinsic and extrinsic camera parameters from several fews of a known calibration pattern.
|
||||
CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
|
||||
InputArrayOfArrays imagePoints,
|
||||
Size imageSize,
|
||||
InputOutputArray cameraMatrix,
|
||||
InputOutputArray distCoeffs,
|
||||
InputArrayOfArrays imagePoints, Size imageSize,
|
||||
InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
|
||||
OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
|
||||
int flags=0, TermCriteria criteria = TermCriteria(
|
||||
TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON) );
|
||||
int flags = 0, TermCriteria criteria = TermCriteria(
|
||||
TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
|
||||
|
||||
//! computes several useful camera characteristics from the camera matrix, camera frame resolution and the physical sensor size.
|
||||
CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix,
|
||||
Size imageSize,
|
||||
double apertureWidth,
|
||||
double apertureHeight,
|
||||
CV_OUT double& fovx,
|
||||
CV_OUT double& fovy,
|
||||
CV_OUT double& focalLength,
|
||||
CV_OUT Point2d& principalPoint,
|
||||
CV_OUT double& aspectRatio );
|
||||
CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
|
||||
double apertureWidth, double apertureHeight,
|
||||
CV_OUT double& fovx, CV_OUT double& fovy,
|
||||
CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
|
||||
CV_OUT double& aspectRatio );
|
||||
|
||||
//! finds intrinsic and extrinsic parameters of a stereo camera
|
||||
CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
|
||||
InputArrayOfArrays imagePoints1,
|
||||
InputArrayOfArrays imagePoints2,
|
||||
InputOutputArray cameraMatrix1,
|
||||
InputOutputArray distCoeffs1,
|
||||
InputOutputArray cameraMatrix2,
|
||||
InputOutputArray distCoeffs2,
|
||||
Size imageSize, OutputArray R,
|
||||
OutputArray T, OutputArray E, OutputArray F,
|
||||
InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
|
||||
InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
|
||||
InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
|
||||
Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6),
|
||||
int flags=CALIB_FIX_INTRINSIC );
|
||||
int flags = CALIB_FIX_INTRINSIC );
|
||||
|
||||
|
||||
//! computes the rectification transformation for a stereo camera from its intrinsic and extrinsic parameters
|
||||
CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
|
||||
InputArray cameraMatrix2, InputArray distCoeffs2,
|
||||
Size imageSize, InputArray R, InputArray T,
|
||||
OutputArray R1, OutputArray R2,
|
||||
OutputArray P1, OutputArray P2,
|
||||
OutputArray Q, int flags=CALIB_ZERO_DISPARITY,
|
||||
double alpha=-1, Size newImageSize=Size(),
|
||||
CV_OUT Rect* validPixROI1=0, CV_OUT Rect* validPixROI2=0 );
|
||||
InputArray cameraMatrix2, InputArray distCoeffs2,
|
||||
Size imageSize, InputArray R, InputArray T,
|
||||
OutputArray R1, OutputArray R2,
|
||||
OutputArray P1, OutputArray P2,
|
||||
OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
|
||||
double alpha = -1, Size newImageSize = Size(),
|
||||
CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );
|
||||
|
||||
//! computes the rectification transformation for an uncalibrated stereo camera (zero distortion is assumed)
|
||||
CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
|
||||
InputArray F, Size imgSize,
|
||||
OutputArray H1, OutputArray H2,
|
||||
double threshold=5 );
|
||||
double threshold = 5 );
|
||||
|
||||
//! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
|
||||
CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
|
||||
@@ -615,8 +237,9 @@ CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distC
|
||||
|
||||
//! returns the optimal new camera matrix
|
||||
CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
|
||||
Size imageSize, double alpha, Size newImgSize=Size(),
|
||||
CV_OUT Rect* validPixROI=0, bool centerPrincipalPoint=false);
|
||||
Size imageSize, double alpha, Size newImgSize = Size(),
|
||||
CV_OUT Rect* validPixROI = 0,
|
||||
bool centerPrincipalPoint = false);
|
||||
|
||||
//! converts point coordinates from normal pixel coordinates to homogeneous coordinates ((x,y)->(x,y,1))
|
||||
CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
|
||||
@@ -627,44 +250,36 @@ CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst
|
||||
//! for backward compatibility
|
||||
CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
|
||||
|
||||
//! the algorithm for finding fundamental matrix
|
||||
enum
|
||||
{
|
||||
FM_7POINT = CV_FM_7POINT, //!< 7-point algorithm
|
||||
FM_8POINT = CV_FM_8POINT, //!< 8-point algorithm
|
||||
FM_LMEDS = CV_FM_LMEDS, //!< least-median algorithm
|
||||
FM_RANSAC = CV_FM_RANSAC //!< RANSAC algorithm
|
||||
};
|
||||
|
||||
//! finds fundamental matrix from a set of corresponding 2D points
|
||||
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
|
||||
int method=FM_RANSAC,
|
||||
double param1=3., double param2=0.99,
|
||||
OutputArray mask=noArray());
|
||||
int method = FM_RANSAC,
|
||||
double param1 = 3., double param2 = 0.99,
|
||||
OutputArray mask = noArray() );
|
||||
|
||||
//! variant of findFundamentalMat for backward compatibility
|
||||
CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
|
||||
OutputArray mask, int method=FM_RANSAC,
|
||||
double param1=3., double param2=0.99);
|
||||
OutputArray mask, int method = FM_RANSAC,
|
||||
double param1 = 3., double param2 = 0.99 );
|
||||
|
||||
//! finds essential matrix from a set of corresponding 2D points using five-point algorithm
|
||||
CV_EXPORTS Mat findEssentialMat( InputArray points1, InputArray points2, double focal = 1.0, Point2d pp = Point2d(0, 0),
|
||||
int method = CV_RANSAC,
|
||||
double prob = 0.999, double threshold = 1.0, OutputArray mask = noArray() );
|
||||
CV_EXPORTS Mat findEssentialMat( InputArray points1, InputArray points2,
|
||||
double focal = 1.0, Point2d pp = Point2d(0, 0),
|
||||
int method = RANSAC, double prob = 0.999,
|
||||
double threshold = 1.0, OutputArray mask = noArray() );
|
||||
|
||||
//! decompose essential matrix to possible rotation matrix and one translation vector
|
||||
CV_EXPORTS void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
|
||||
|
||||
//! recover relative camera pose from a set of corresponding 2D points
|
||||
CV_EXPORTS int recoverPose( InputArray E, InputArray points1, InputArray points2, OutputArray R, OutputArray t,
|
||||
CV_EXPORTS int recoverPose( InputArray E, InputArray points1, InputArray points2,
|
||||
OutputArray R, OutputArray t,
|
||||
double focal = 1.0, Point2d pp = Point2d(0, 0),
|
||||
InputOutputArray mask = noArray());
|
||||
InputOutputArray mask = noArray() );
|
||||
|
||||
|
||||
//! finds coordinates of epipolar lines corresponding the specified points
|
||||
CV_EXPORTS void computeCorrespondEpilines( InputArray points,
|
||||
int whichImage, InputArray F,
|
||||
OutputArray lines );
|
||||
CV_EXPORTS void computeCorrespondEpilines( InputArray points, int whichImage,
|
||||
InputArray F, OutputArray lines );
|
||||
|
||||
CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
|
||||
InputArray projPoints1, InputArray projPoints2,
|
||||
@@ -673,13 +288,39 @@ CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
|
||||
CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
|
||||
OutputArray newPoints1, OutputArray newPoints2 );
|
||||
|
||||
//! filters off speckles (small regions of incorrectly computed disparity)
|
||||
CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
|
||||
int maxSpeckleSize, double maxDiff,
|
||||
InputOutputArray buf = noArray() );
|
||||
|
||||
//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
|
||||
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
|
||||
int minDisparity, int numberOfDisparities,
|
||||
int SADWindowSize );
|
||||
|
||||
//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
|
||||
CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
|
||||
int minDisparity, int numberOfDisparities,
|
||||
int disp12MaxDisp = 1 );
|
||||
|
||||
//! reprojects disparity image to 3D: (x,y,d)->(X,Y,Z) using the matrix Q returned by cv::stereoRectify
|
||||
CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
|
||||
OutputArray _3dImage, InputArray Q,
|
||||
bool handleMissingValues = false,
|
||||
int ddepth = -1 );
|
||||
|
||||
CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst,
|
||||
OutputArray out, OutputArray inliers,
|
||||
double ransacThreshold = 3, double confidence = 0.99);
|
||||
|
||||
|
||||
template<> CV_EXPORTS void Ptr<CvStereoBMState>::delete_obj();
|
||||
|
||||
class CV_EXPORTS_W StereoMatcher : public Algorithm
|
||||
{
|
||||
public:
|
||||
enum { DISP_SHIFT=4, DISP_SCALE=(1 << DISP_SHIFT) };
|
||||
enum { DISP_SHIFT = 4,
|
||||
DISP_SCALE = (1 << DISP_SHIFT)
|
||||
};
|
||||
|
||||
CV_WRAP virtual void compute( InputArray left, InputArray right,
|
||||
OutputArray disparity ) = 0;
|
||||
@@ -704,10 +345,13 @@ public:
|
||||
};
|
||||
|
||||
|
||||
|
||||
class CV_EXPORTS_W StereoBM : public StereoMatcher
|
||||
{
|
||||
public:
|
||||
enum { PREFILTER_NORMALIZED_RESPONSE = 0, PREFILTER_XSOBEL = 1 };
|
||||
enum { PREFILTER_NORMALIZED_RESPONSE = 0,
|
||||
PREFILTER_XSOBEL = 1
|
||||
};
|
||||
|
||||
CV_WRAP virtual int getPreFilterType() const = 0;
|
||||
CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
|
||||
@@ -734,13 +378,15 @@ public:
|
||||
CV_WRAP virtual void setROI2(Rect roi2) = 0;
|
||||
};
|
||||
|
||||
CV_EXPORTS_W Ptr<StereoBM> createStereoBM(int numDisparities=0, int blockSize=21);
|
||||
CV_EXPORTS_W Ptr<StereoBM> createStereoBM(int numDisparities = 0, int blockSize = 21);
|
||||
|
||||
|
||||
class CV_EXPORTS_W StereoSGBM : public StereoMatcher
|
||||
{
|
||||
public:
|
||||
enum { MODE_SGBM=0, MODE_HH=1 };
|
||||
enum { MODE_SGBM = 0,
|
||||
MODE_HH = 1
|
||||
};
|
||||
|
||||
CV_WRAP virtual int getPreFilterCap() const = 0;
|
||||
CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
|
||||
@@ -760,38 +406,11 @@ public:
|
||||
|
||||
|
||||
CV_EXPORTS_W Ptr<StereoSGBM> createStereoSGBM(int minDisparity, int numDisparities, int blockSize,
|
||||
int P1=0, int P2=0, int disp12MaxDiff=0,
|
||||
int preFilterCap=0, int uniquenessRatio=0,
|
||||
int speckleWindowSize=0, int speckleRange=0,
|
||||
int mode=StereoSGBM::MODE_SGBM);
|
||||
int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
|
||||
int preFilterCap = 0, int uniquenessRatio = 0,
|
||||
int speckleWindowSize = 0, int speckleRange = 0,
|
||||
int mode = StereoSGBM::MODE_SGBM);
|
||||
|
||||
//! filters off speckles (small regions of incorrectly computed disparity)
|
||||
CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
|
||||
int maxSpeckleSize, double maxDiff,
|
||||
InputOutputArray buf=noArray() );
|
||||
|
||||
//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
|
||||
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
|
||||
int minDisparity, int numberOfDisparities,
|
||||
int SADWindowSize );
|
||||
|
||||
//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
|
||||
CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
|
||||
int minDisparity, int numberOfDisparities,
|
||||
int disp12MaxDisp=1 );
|
||||
|
||||
//! reprojects disparity image to 3D: (x,y,d)->(X,Y,Z) using the matrix Q returned by cv::stereoRectify
|
||||
CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
|
||||
OutputArray _3dImage, InputArray Q,
|
||||
bool handleMissingValues=false,
|
||||
int ddepth=-1 );
|
||||
|
||||
CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst,
|
||||
OutputArray out, OutputArray inliers,
|
||||
double ransacThreshold=3, double confidence=0.99);
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
} // cv
|
||||
|
||||
#endif
|
||||
|
413
modules/calib3d/include/opencv2/calib3d/calib3d_c.h
Normal file
413
modules/calib3d/include/opencv2/calib3d/calib3d_c.h
Normal file
@@ -0,0 +1,413 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_CALIB3D_C_H__
|
||||
#define __OPENCV_CALIB3D_C_H__
|
||||
|
||||
#include "opencv2/core/core_c.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/****************************************************************************************\
|
||||
* Camera Calibration, Pose Estimation and Stereo *
|
||||
\****************************************************************************************/
|
||||
|
||||
typedef struct CvPOSITObject CvPOSITObject;
|
||||
|
||||
/* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */
|
||||
CVAPI(CvPOSITObject*) cvCreatePOSITObject( CvPoint3D32f* points, int point_count );
|
||||
|
||||
|
||||
/* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of
|
||||
an object given its model and projection in a weak-perspective case */
|
||||
CVAPI(void) cvPOSIT( CvPOSITObject* posit_object, CvPoint2D32f* image_points,
|
||||
double focal_length, CvTermCriteria criteria,
|
||||
float* rotation_matrix, float* translation_vector);
|
||||
|
||||
/* Releases CvPOSITObject structure */
|
||||
CVAPI(void) cvReleasePOSITObject( CvPOSITObject** posit_object );
|
||||
|
||||
/* updates the number of RANSAC iterations */
|
||||
CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob,
|
||||
int model_points, int max_iters );
|
||||
|
||||
CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst );
|
||||
|
||||
/* Calculates fundamental matrix given a set of corresponding points */
|
||||
#define CV_FM_7POINT 1
|
||||
#define CV_FM_8POINT 2
|
||||
|
||||
#define CV_LMEDS 4
|
||||
#define CV_RANSAC 8
|
||||
|
||||
#define CV_FM_LMEDS_ONLY CV_LMEDS
|
||||
#define CV_FM_RANSAC_ONLY CV_RANSAC
|
||||
#define CV_FM_LMEDS CV_LMEDS
|
||||
#define CV_FM_RANSAC CV_RANSAC
|
||||
|
||||
enum
|
||||
{
|
||||
CV_ITERATIVE = 0,
|
||||
CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
|
||||
CV_P3P = 2 // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
|
||||
};
|
||||
|
||||
CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2,
|
||||
CvMat* fundamental_matrix,
|
||||
int method CV_DEFAULT(CV_FM_RANSAC),
|
||||
double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99),
|
||||
CvMat* status CV_DEFAULT(NULL) );
|
||||
|
||||
/* For each input point on one of images
|
||||
computes parameters of the corresponding
|
||||
epipolar line on the other image */
|
||||
CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points,
|
||||
int which_image,
|
||||
const CvMat* fundamental_matrix,
|
||||
CvMat* correspondent_lines );
|
||||
|
||||
/* Triangulation functions */
|
||||
|
||||
CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2,
|
||||
CvMat* projPoints1, CvMat* projPoints2,
|
||||
CvMat* points4D);
|
||||
|
||||
CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2,
|
||||
CvMat* new_points1, CvMat* new_points2);
|
||||
|
||||
|
||||
/* Computes the optimal new camera matrix according to the free scaling parameter alpha:
|
||||
alpha=0 - only valid pixels will be retained in the undistorted image
|
||||
alpha=1 - all the source image pixels will be retained in the undistorted image
|
||||
*/
|
||||
CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix,
|
||||
const CvMat* dist_coeffs,
|
||||
CvSize image_size, double alpha,
|
||||
CvMat* new_camera_matrix,
|
||||
CvSize new_imag_size CV_DEFAULT(cvSize(0,0)),
|
||||
CvRect* valid_pixel_ROI CV_DEFAULT(0),
|
||||
int center_principal_point CV_DEFAULT(0));
|
||||
|
||||
/* Converts rotation vector to rotation matrix or vice versa */
|
||||
CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst,
|
||||
CvMat* jacobian CV_DEFAULT(0) );
|
||||
|
||||
/* Finds perspective transformation between the object plane and image (view) plane */
|
||||
CVAPI(int) cvFindHomography( const CvMat* src_points,
|
||||
const CvMat* dst_points,
|
||||
CvMat* homography,
|
||||
int method CV_DEFAULT(0),
|
||||
double ransacReprojThreshold CV_DEFAULT(3),
|
||||
CvMat* mask CV_DEFAULT(0));
|
||||
|
||||
/* Computes RQ decomposition for 3x3 matrices */
|
||||
CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ,
|
||||
CvMat *matrixQx CV_DEFAULT(NULL),
|
||||
CvMat *matrixQy CV_DEFAULT(NULL),
|
||||
CvMat *matrixQz CV_DEFAULT(NULL),
|
||||
CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));
|
||||
|
||||
/* Computes projection matrix decomposition */
|
||||
CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr,
|
||||
CvMat *rotMatr, CvMat *posVect,
|
||||
CvMat *rotMatrX CV_DEFAULT(NULL),
|
||||
CvMat *rotMatrY CV_DEFAULT(NULL),
|
||||
CvMat *rotMatrZ CV_DEFAULT(NULL),
|
||||
CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));
|
||||
|
||||
/* Computes d(AB)/dA and d(AB)/dB */
|
||||
CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB );
|
||||
|
||||
/* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)),
|
||||
t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */
|
||||
CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1,
|
||||
const CvMat* _rvec2, const CvMat* _tvec2,
|
||||
CvMat* _rvec3, CvMat* _tvec3,
|
||||
CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0),
|
||||
CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0),
|
||||
CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0),
|
||||
CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) );
|
||||
|
||||
/* Projects object points to the view plane using
|
||||
the specified extrinsic and intrinsic camera parameters */
|
||||
CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector,
|
||||
const CvMat* translation_vector, const CvMat* camera_matrix,
|
||||
const CvMat* distortion_coeffs, CvMat* image_points,
|
||||
CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL),
|
||||
CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL),
|
||||
CvMat* dpddist CV_DEFAULT(NULL),
|
||||
double aspect_ratio CV_DEFAULT(0));
|
||||
|
||||
/* Finds extrinsic camera parameters from
|
||||
a few known corresponding point pairs and intrinsic parameters */
|
||||
CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points,
|
||||
const CvMat* image_points,
|
||||
const CvMat* camera_matrix,
|
||||
const CvMat* distortion_coeffs,
|
||||
CvMat* rotation_vector,
|
||||
CvMat* translation_vector,
|
||||
int use_extrinsic_guess CV_DEFAULT(0) );
|
||||
|
||||
/* Computes initial estimate of the intrinsic camera parameters
|
||||
in case of planar calibration target (e.g. chessboard) */
|
||||
CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points,
|
||||
const CvMat* image_points,
|
||||
const CvMat* npoints, CvSize image_size,
|
||||
CvMat* camera_matrix,
|
||||
double aspect_ratio CV_DEFAULT(1.) );
|
||||
|
||||
#define CV_CALIB_CB_ADAPTIVE_THRESH 1
|
||||
#define CV_CALIB_CB_NORMALIZE_IMAGE 2
|
||||
#define CV_CALIB_CB_FILTER_QUADS 4
|
||||
#define CV_CALIB_CB_FAST_CHECK 8
|
||||
|
||||
// Performs a fast check if a chessboard is in the input image. This is a workaround to
|
||||
// a problem of cvFindChessboardCorners being slow on images with no chessboard
|
||||
// - src: input image
|
||||
// - size: chessboard size
|
||||
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
|
||||
// 0 if there is no chessboard, -1 in case of error
|
||||
CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size);
|
||||
|
||||
/* Detects corners on a chessboard calibration pattern */
|
||||
CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size,
|
||||
CvPoint2D32f* corners,
|
||||
int* corner_count CV_DEFAULT(NULL),
|
||||
int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) );
|
||||
|
||||
/* Draws individual chessboard corners or the whole chessboard detected */
|
||||
CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size,
|
||||
CvPoint2D32f* corners,
|
||||
int count, int pattern_was_found );
|
||||
|
||||
#define CV_CALIB_USE_INTRINSIC_GUESS 1
|
||||
#define CV_CALIB_FIX_ASPECT_RATIO 2
|
||||
#define CV_CALIB_FIX_PRINCIPAL_POINT 4
|
||||
#define CV_CALIB_ZERO_TANGENT_DIST 8
|
||||
#define CV_CALIB_FIX_FOCAL_LENGTH 16
|
||||
#define CV_CALIB_FIX_K1 32
|
||||
#define CV_CALIB_FIX_K2 64
|
||||
#define CV_CALIB_FIX_K3 128
|
||||
#define CV_CALIB_FIX_K4 2048
|
||||
#define CV_CALIB_FIX_K5 4096
|
||||
#define CV_CALIB_FIX_K6 8192
|
||||
#define CV_CALIB_RATIONAL_MODEL 16384
|
||||
#define CV_CALIB_THIN_PRISM_MODEL 32768
|
||||
#define CV_CALIB_FIX_S1_S2_S3_S4 65536
|
||||
|
||||
|
||||
/* Finds intrinsic and extrinsic camera parameters
|
||||
from a few views of known calibration pattern */
|
||||
CVAPI(double) cvCalibrateCamera2( const CvMat* object_points,
|
||||
const CvMat* image_points,
|
||||
const CvMat* point_counts,
|
||||
CvSize image_size,
|
||||
CvMat* camera_matrix,
|
||||
CvMat* distortion_coeffs,
|
||||
CvMat* rotation_vectors CV_DEFAULT(NULL),
|
||||
CvMat* translation_vectors CV_DEFAULT(NULL),
|
||||
int flags CV_DEFAULT(0),
|
||||
CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
|
||||
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)) );
|
||||
|
||||
/* Computes various useful characteristics of the camera from the data computed by
|
||||
cvCalibrateCamera2 */
|
||||
CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix,
|
||||
CvSize image_size,
|
||||
double aperture_width CV_DEFAULT(0),
|
||||
double aperture_height CV_DEFAULT(0),
|
||||
double *fovx CV_DEFAULT(NULL),
|
||||
double *fovy CV_DEFAULT(NULL),
|
||||
double *focal_length CV_DEFAULT(NULL),
|
||||
CvPoint2D64f *principal_point CV_DEFAULT(NULL),
|
||||
double *pixel_aspect_ratio CV_DEFAULT(NULL));
|
||||
|
||||
#define CV_CALIB_FIX_INTRINSIC 256
|
||||
#define CV_CALIB_SAME_FOCAL_LENGTH 512
|
||||
|
||||
/* Computes the transformation from one camera coordinate system to another one
|
||||
from a few correspondent views of the same calibration target. Optionally, calibrates
|
||||
both cameras */
|
||||
CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1,
|
||||
const CvMat* image_points2, const CvMat* npoints,
|
||||
CvMat* camera_matrix1, CvMat* dist_coeffs1,
|
||||
CvMat* camera_matrix2, CvMat* dist_coeffs2,
|
||||
CvSize image_size, CvMat* R, CvMat* T,
|
||||
CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0),
|
||||
CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
|
||||
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)),
|
||||
int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC));
|
||||
|
||||
#define CV_CALIB_ZERO_DISPARITY 1024
|
||||
|
||||
/* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both
|
||||
views parallel (=> to make all the epipolar lines horizontal or vertical) */
|
||||
CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2,
|
||||
const CvMat* dist_coeffs1, const CvMat* dist_coeffs2,
|
||||
CvSize image_size, const CvMat* R, const CvMat* T,
|
||||
CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2,
|
||||
CvMat* Q CV_DEFAULT(0),
|
||||
int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY),
|
||||
double alpha CV_DEFAULT(-1),
|
||||
CvSize new_image_size CV_DEFAULT(cvSize(0,0)),
|
||||
CvRect* valid_pix_ROI1 CV_DEFAULT(0),
|
||||
CvRect* valid_pix_ROI2 CV_DEFAULT(0));
|
||||
|
||||
/* Computes rectification transformations for uncalibrated pair of images using a set
|
||||
of point correspondences */
|
||||
CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2,
|
||||
const CvMat* F, CvSize img_size,
|
||||
CvMat* H1, CvMat* H2,
|
||||
double threshold CV_DEFAULT(5));
|
||||
|
||||
|
||||
|
||||
/* stereo correspondence parameters and functions */
|
||||
|
||||
#define CV_STEREO_BM_NORMALIZED_RESPONSE 0
|
||||
#define CV_STEREO_BM_XSOBEL 1
|
||||
|
||||
/* Block matching algorithm structure */
|
||||
typedef struct CvStereoBMState
|
||||
{
|
||||
// pre-filtering (normalization of input images)
|
||||
int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now
|
||||
int preFilterSize; // averaging window size: ~5x5..21x21
|
||||
int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap]
|
||||
|
||||
// correspondence using Sum of Absolute Difference (SAD)
|
||||
int SADWindowSize; // ~5x5..21x21
|
||||
int minDisparity; // minimum disparity (can be negative)
|
||||
int numberOfDisparities; // maximum disparity - minimum disparity (> 0)
|
||||
|
||||
// post-filtering
|
||||
int textureThreshold; // the disparity is only computed for pixels
|
||||
// with textured enough neighborhood
|
||||
int uniquenessRatio; // accept the computed disparity d* only if
|
||||
// SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.)
|
||||
// for any d != d*+/-1 within the search range.
|
||||
int speckleWindowSize; // disparity variation window
|
||||
int speckleRange; // acceptable range of variation in window
|
||||
|
||||
int trySmallerWindows; // if 1, the results may be more accurate,
|
||||
// at the expense of slower processing
|
||||
CvRect roi1, roi2;
|
||||
int disp12MaxDiff;
|
||||
|
||||
// temporary buffers
|
||||
CvMat* preFilteredImg0;
|
||||
CvMat* preFilteredImg1;
|
||||
CvMat* slidingSumBuf;
|
||||
CvMat* cost;
|
||||
CvMat* disp;
|
||||
} CvStereoBMState;
|
||||
|
||||
#define CV_STEREO_BM_BASIC 0
|
||||
#define CV_STEREO_BM_FISH_EYE 1
|
||||
#define CV_STEREO_BM_NARROW 2
|
||||
|
||||
CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC),
|
||||
int numberOfDisparities CV_DEFAULT(0));
|
||||
|
||||
CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state );
|
||||
|
||||
CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right,
|
||||
CvArr* disparity, CvStereoBMState* state );
|
||||
|
||||
CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
|
||||
int numberOfDisparities, int SADWindowSize );
|
||||
|
||||
CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost,
|
||||
int minDisparity, int numberOfDisparities,
|
||||
int disp12MaxDiff CV_DEFAULT(1) );
|
||||
|
||||
/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */
|
||||
CVAPI(void) cvReprojectImageTo3D( const CvArr* disparityImage,
|
||||
CvArr* _3dImage, const CvMat* Q,
|
||||
int handleMissingValues CV_DEFAULT(0) );
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
class CV_EXPORTS CvLevMarq
|
||||
{
|
||||
public:
|
||||
CvLevMarq();
|
||||
CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
|
||||
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
|
||||
bool completeSymmFlag=false );
|
||||
~CvLevMarq();
|
||||
void init( int nparams, int nerrs, CvTermCriteria criteria=
|
||||
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
|
||||
bool completeSymmFlag=false );
|
||||
bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
|
||||
bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
|
||||
|
||||
void clear();
|
||||
void step();
|
||||
enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
|
||||
|
||||
cv::Ptr<CvMat> mask;
|
||||
cv::Ptr<CvMat> prevParam;
|
||||
cv::Ptr<CvMat> param;
|
||||
cv::Ptr<CvMat> J;
|
||||
cv::Ptr<CvMat> err;
|
||||
cv::Ptr<CvMat> JtJ;
|
||||
cv::Ptr<CvMat> JtJN;
|
||||
cv::Ptr<CvMat> JtErr;
|
||||
cv::Ptr<CvMat> JtJV;
|
||||
cv::Ptr<CvMat> JtJW;
|
||||
double prevErrNorm, errNorm;
|
||||
int lambdaLg10;
|
||||
CvTermCriteria criteria;
|
||||
int state;
|
||||
int iters;
|
||||
bool completeSymmFlag;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#endif /* __OPENCV_CALIB3D_C_H__ */
|
@@ -10,7 +10,7 @@ using namespace perf;
|
||||
using std::tr1::make_tuple;
|
||||
using std::tr1::get;
|
||||
|
||||
CV_ENUM(pnpAlgo, CV_ITERATIVE, CV_EPNP /*, CV_P3P*/)
|
||||
CV_ENUM(pnpAlgo, ITERATIVE, EPNP /*, P3P*/)
|
||||
|
||||
typedef std::tr1::tuple<int, pnpAlgo> PointsNum_Algo_t;
|
||||
typedef perf::TestBaseWithParam<PointsNum_Algo_t> PointsNum_Algo;
|
||||
@@ -20,7 +20,7 @@ typedef perf::TestBaseWithParam<int> PointsNum;
|
||||
PERF_TEST_P(PointsNum_Algo, solvePnP,
|
||||
testing::Combine(
|
||||
testing::Values(/*4,*/ 3*9, 7*13), //TODO: find why results on 4 points are too unstable
|
||||
testing::Values((int)CV_ITERATIVE, (int)CV_EPNP)
|
||||
testing::Values((int)ITERATIVE, (int)EPNP)
|
||||
)
|
||||
)
|
||||
{
|
||||
@@ -93,7 +93,7 @@ PERF_TEST(PointsNum_Algo, solveP3P)
|
||||
|
||||
TEST_CYCLE_N(1000)
|
||||
{
|
||||
solvePnP(points3d, points2d, intrinsics, distortion, rvec, tvec, false, CV_P3P);
|
||||
solvePnP(points3d, points2d, intrinsics, distortion, rvec, tvec, false, P3P);
|
||||
}
|
||||
|
||||
SANITY_CHECK(rvec, 1e-6);
|
||||
|
@@ -61,6 +61,7 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
#include "circlesgrid.hpp"
|
||||
#include <stdarg.h>
|
||||
|
||||
|
@@ -42,6 +42,7 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
#include <stdio.h>
|
||||
#include <iterator>
|
||||
|
||||
@@ -825,7 +826,7 @@ CV_IMPL void cvProjectPoints2( const CvMat* objectPoints,
|
||||
dpdk_p[dpdk_step+7] = fy*y*cdist*(-icdist2)*icdist2*r6;
|
||||
if( _dpdk->cols > 8 )
|
||||
{
|
||||
dpdk_p[8] = fx*r2; //s1
|
||||
dpdk_p[8] = fx*r2; //s1
|
||||
dpdk_p[9] = fx*r4; //s2
|
||||
dpdk_p[10] = 0;//s3
|
||||
dpdk_p[11] = 0;//s4
|
||||
@@ -1255,7 +1256,7 @@ CV_IMPL double cvCalibrateCamera2( const CvMat* objectPoints,
|
||||
//when the thin prism model is used the distortion coefficients matrix must have 12 parameters
|
||||
if((flags & CV_CALIB_THIN_PRISM_MODEL) && (distCoeffs->cols*distCoeffs->rows != 12))
|
||||
CV_Error( CV_StsBadArg, "Thin prism model must have 12 parameters in the distortion matrix" );
|
||||
|
||||
|
||||
nimages = npoints->rows*npoints->cols;
|
||||
npstep = npoints->rows == 1 ? 1 : npoints->step/CV_ELEM_SIZE(npoints->type);
|
||||
|
||||
|
@@ -41,6 +41,7 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
@@ -202,12 +202,12 @@ void CirclesGridClusterFinder::findCorners(const std::vector<cv::Point2f> &hull2
|
||||
//corners are the most sharp angles (6)
|
||||
Mat anglesMat = Mat(angles);
|
||||
Mat sortedIndices;
|
||||
sortIdx(anglesMat, sortedIndices, CV_SORT_EVERY_COLUMN + CV_SORT_DESCENDING);
|
||||
sortIdx(anglesMat, sortedIndices, SORT_EVERY_COLUMN + SORT_DESCENDING);
|
||||
CV_Assert(sortedIndices.type() == CV_32SC1);
|
||||
CV_Assert(sortedIndices.cols == 1);
|
||||
const int cornersCount = isAsymmetricGrid ? 6 : 4;
|
||||
Mat cornersIndices;
|
||||
cv::sort(sortedIndices.rowRange(0, cornersCount), cornersIndices, CV_SORT_EVERY_COLUMN + CV_SORT_ASCENDING);
|
||||
cv::sort(sortedIndices.rowRange(0, cornersCount), cornersIndices, SORT_EVERY_COLUMN + SORT_ASCENDING);
|
||||
corners.clear();
|
||||
for(int i=0; i<cornersCount; i++)
|
||||
{
|
||||
@@ -438,15 +438,15 @@ bool Graph::doesVertexExist(size_t id) const
|
||||
|
||||
void Graph::addVertex(size_t id)
|
||||
{
|
||||
assert( !doesVertexExist( id ) );
|
||||
CV_Assert( !doesVertexExist( id ) );
|
||||
|
||||
vertices.insert(std::pair<size_t, Vertex> (id, Vertex()));
|
||||
}
|
||||
|
||||
void Graph::addEdge(size_t id1, size_t id2)
|
||||
{
|
||||
assert( doesVertexExist( id1 ) );
|
||||
assert( doesVertexExist( id2 ) );
|
||||
CV_Assert( doesVertexExist( id1 ) );
|
||||
CV_Assert( doesVertexExist( id2 ) );
|
||||
|
||||
vertices[id1].neighbors.insert(id2);
|
||||
vertices[id2].neighbors.insert(id1);
|
||||
@@ -454,8 +454,8 @@ void Graph::addEdge(size_t id1, size_t id2)
|
||||
|
||||
void Graph::removeEdge(size_t id1, size_t id2)
|
||||
{
|
||||
assert( doesVertexExist( id1 ) );
|
||||
assert( doesVertexExist( id2 ) );
|
||||
CV_Assert( doesVertexExist( id1 ) );
|
||||
CV_Assert( doesVertexExist( id2 ) );
|
||||
|
||||
vertices[id1].neighbors.erase(id2);
|
||||
vertices[id2].neighbors.erase(id1);
|
||||
@@ -463,8 +463,8 @@ void Graph::removeEdge(size_t id1, size_t id2)
|
||||
|
||||
bool Graph::areVerticesAdjacent(size_t id1, size_t id2) const
|
||||
{
|
||||
assert( doesVertexExist( id1 ) );
|
||||
assert( doesVertexExist( id2 ) );
|
||||
CV_Assert( doesVertexExist( id1 ) );
|
||||
CV_Assert( doesVertexExist( id2 ) );
|
||||
|
||||
Vertices::const_iterator it = vertices.find(id1);
|
||||
return it->second.neighbors.find(id2) != it->second.neighbors.end();
|
||||
@@ -477,7 +477,7 @@ size_t Graph::getVerticesCount() const
|
||||
|
||||
size_t Graph::getDegree(size_t id) const
|
||||
{
|
||||
assert( doesVertexExist(id) );
|
||||
CV_Assert( doesVertexExist(id) );
|
||||
|
||||
Vertices::const_iterator it = vertices.find(id);
|
||||
return it->second.neighbors.size();
|
||||
@@ -495,7 +495,7 @@ void Graph::floydWarshall(cv::Mat &distanceMatrix, int infinity) const
|
||||
distanceMatrix.at<int> ((int)it1->first, (int)it1->first) = 0;
|
||||
for (Neighbors::const_iterator it2 = it1->second.neighbors.begin(); it2 != it1->second.neighbors.end(); it2++)
|
||||
{
|
||||
assert( it1->first != *it2 );
|
||||
CV_Assert( it1->first != *it2 );
|
||||
distanceMatrix.at<int> ((int)it1->first, (int)*it2) = edgeWeight;
|
||||
}
|
||||
}
|
||||
@@ -524,7 +524,7 @@ void Graph::floydWarshall(cv::Mat &distanceMatrix, int infinity) const
|
||||
|
||||
const Graph::Neighbors& Graph::getNeighbors(size_t id) const
|
||||
{
|
||||
assert( doesVertexExist(id) );
|
||||
CV_Assert( doesVertexExist(id) );
|
||||
|
||||
Vertices::const_iterator it = vertices.find(id);
|
||||
return it->second.neighbors;
|
||||
@@ -604,7 +604,7 @@ bool CirclesGridFinder::findHoles()
|
||||
}
|
||||
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "Unkown pattern type");
|
||||
CV_Error(Error::StsBadArg, "Unkown pattern type");
|
||||
}
|
||||
return (isDetectionCorrect());
|
||||
//CV_Error( 0, "Detection is not correct" );
|
||||
@@ -813,7 +813,7 @@ void CirclesGridFinder::findMCS(const std::vector<Point2f> &basis, std::vector<G
|
||||
Mat CirclesGridFinder::rectifyGrid(Size detectedGridSize, const std::vector<Point2f>& centers,
|
||||
const std::vector<Point2f> &keypoints, std::vector<Point2f> &warpedKeypoints)
|
||||
{
|
||||
assert( !centers.empty() );
|
||||
CV_Assert( !centers.empty() );
|
||||
const float edgeLength = 30;
|
||||
const Point2f offset(150, 150);
|
||||
|
||||
@@ -832,7 +832,7 @@ Mat CirclesGridFinder::rectifyGrid(Size detectedGridSize, const std::vector<Poin
|
||||
}
|
||||
}
|
||||
|
||||
Mat H = findHomography(Mat(centers), Mat(dstPoints), CV_RANSAC);
|
||||
Mat H = findHomography(Mat(centers), Mat(dstPoints), RANSAC);
|
||||
//Mat H = findHomography( Mat( corners ), Mat( dstPoints ) );
|
||||
|
||||
std::vector<Point2f> srcKeypoints;
|
||||
@@ -912,7 +912,7 @@ void CirclesGridFinder::findCandidateLine(std::vector<size_t> &line, size_t seed
|
||||
}
|
||||
}
|
||||
|
||||
assert( line.size() == seeds.size() );
|
||||
CV_Assert( line.size() == seeds.size() );
|
||||
}
|
||||
|
||||
void CirclesGridFinder::findCandidateHoles(std::vector<size_t> &above, std::vector<size_t> &below, bool addRow, Point2f basisVec,
|
||||
@@ -927,9 +927,9 @@ void CirclesGridFinder::findCandidateHoles(std::vector<size_t> &above, std::vect
|
||||
size_t lastIdx = addRow ? holes.size() - 1 : holes[0].size() - 1;
|
||||
findCandidateLine(below, lastIdx, addRow, basisVec, belowSeeds);
|
||||
|
||||
assert( below.size() == above.size() );
|
||||
assert( belowSeeds.size() == aboveSeeds.size() );
|
||||
assert( below.size() == belowSeeds.size() );
|
||||
CV_Assert( below.size() == above.size() );
|
||||
CV_Assert( belowSeeds.size() == aboveSeeds.size() );
|
||||
CV_Assert( below.size() == belowSeeds.size() );
|
||||
}
|
||||
|
||||
bool CirclesGridFinder::areCentersNew(const std::vector<size_t> &newCenters, const std::vector<std::vector<size_t> > &holes)
|
||||
@@ -1000,10 +1000,10 @@ void CirclesGridFinder::insertWinner(float aboveConfidence, float belowConfidenc
|
||||
float CirclesGridFinder::computeGraphConfidence(const std::vector<Graph> &basisGraphs, bool addRow,
|
||||
const std::vector<size_t> &points, const std::vector<size_t> &seeds)
|
||||
{
|
||||
assert( points.size() == seeds.size() );
|
||||
CV_Assert( points.size() == seeds.size() );
|
||||
float confidence = 0;
|
||||
const size_t vCount = basisGraphs[0].getVerticesCount();
|
||||
assert( basisGraphs[0].getVerticesCount() == basisGraphs[1].getVerticesCount() );
|
||||
CV_Assert( basisGraphs[0].getVerticesCount() == basisGraphs[1].getVerticesCount() );
|
||||
|
||||
for (size_t i = 0; i < seeds.size(); i++)
|
||||
{
|
||||
@@ -1087,7 +1087,7 @@ void CirclesGridFinder::findBasis(const std::vector<Point2f> &samples, std::vect
|
||||
const int clustersCount = 4;
|
||||
kmeans(Mat(samples).reshape(1, 0), clustersCount, bestLabels, termCriteria, parameters.kmeansAttempts,
|
||||
KMEANS_RANDOM_CENTERS, centers);
|
||||
assert( centers.type() == CV_32FC1 );
|
||||
CV_Assert( centers.type() == CV_32FC1 );
|
||||
|
||||
std::vector<int> basisIndices;
|
||||
//TODO: only remove duplicate
|
||||
@@ -1204,7 +1204,7 @@ void CirclesGridFinder::computeRNG(Graph &rng, std::vector<cv::Point2f> &vectors
|
||||
|
||||
void computePredecessorMatrix(const Mat &dm, int verticesCount, Mat &predecessorMatrix)
|
||||
{
|
||||
assert( dm.type() == CV_32SC1 );
|
||||
CV_Assert( dm.type() == CV_32SC1 );
|
||||
predecessorMatrix.create(verticesCount, verticesCount, CV_32SC1);
|
||||
predecessorMatrix = -1;
|
||||
for (int i = 0; i < predecessorMatrix.rows; i++)
|
||||
@@ -1253,7 +1253,6 @@ size_t CirclesGridFinder::findLongestPath(std::vector<Graph> &basisGraphs, Path
|
||||
|
||||
double maxVal;
|
||||
Point maxLoc;
|
||||
assert (infinity < 0);
|
||||
minMaxLoc(distanceMatrix, 0, &maxVal, 0, &maxLoc);
|
||||
|
||||
if (maxVal > longestPaths[0].length)
|
||||
@@ -1594,9 +1593,3 @@ size_t CirclesGridFinder::getFirstCorner(std::vector<Point> &largeCornerIndices,
|
||||
|
||||
return cornerIdx;
|
||||
}
|
||||
|
||||
bool cv::findCirclesGridDefault( InputArray image, Size patternSize,
|
||||
OutputArray centers, int flags )
|
||||
{
|
||||
return findCirclesGrid(image, patternSize, centers, flags);
|
||||
}
|
||||
|
@@ -41,6 +41,7 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
|
||||
/************************************************************************************\
|
||||
Some backward compatibility stuff, to be moved to legacy or compat module
|
||||
|
@@ -41,6 +41,7 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
|
||||
CvStereoBMState* cvCreateStereoBMState( int /*preset*/, int numberOfDisparities )
|
||||
{
|
||||
@@ -83,10 +84,6 @@ void cvReleaseStereoBMState( CvStereoBMState** state )
|
||||
cvFree( state );
|
||||
}
|
||||
|
||||
template<> void cv::Ptr<CvStereoBMState>::delete_obj()
|
||||
{ cvReleaseStereoBMState(&obj); }
|
||||
|
||||
|
||||
void cvFindStereoCorrespondenceBM( const CvArr* leftarr, const CvArr* rightarr,
|
||||
CvArr* disparr, CvStereoBMState* state )
|
||||
{
|
||||
|
@@ -2,6 +2,7 @@
|
||||
#define epnp_h
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/core/core_c.h"
|
||||
|
||||
class epnp {
|
||||
public:
|
||||
|
@@ -435,7 +435,7 @@ cv::Mat cv::findEssentialMat( InputArray _points1, InputArray _points2, double f
|
||||
threshold /= focal;
|
||||
|
||||
Mat E;
|
||||
if( method == CV_RANSAC )
|
||||
if( method == RANSAC )
|
||||
createRANSACPointSetRegistrator(new EMEstimatorCallback, 5, threshold, prob)->run(points1, points2, E, _mask);
|
||||
else
|
||||
createLMeDSPointSetRegistrator(new EMEstimatorCallback, 5, prob)->run(points1, points2, E, _mask);
|
||||
|
@@ -181,12 +181,12 @@ public:
|
||||
LtL[j][k] += Lx[j]*Lx[k] + Ly[j]*Ly[k];
|
||||
}
|
||||
completeSymm( _LtL );
|
||||
|
||||
|
||||
eigen( _LtL, matW, matV );
|
||||
_Htemp = _invHnorm*_H0;
|
||||
_H0 = _Htemp*_Hnorm2;
|
||||
_H0.convertTo(_model, _H0.type(), 1./_H0.at<double>(2,2) );
|
||||
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -292,7 +292,7 @@ cv::Mat cv::findHomography( InputArray _points1, InputArray _points2,
|
||||
{
|
||||
npoints = p.checkVector(3, -1, false);
|
||||
if( npoints < 0 )
|
||||
CV_Error(CV_StsBadArg, "The input arrays should be 2D or 3D point sets");
|
||||
CV_Error(Error::StsBadArg, "The input arrays should be 2D or 3D point sets");
|
||||
if( npoints == 0 )
|
||||
return Mat();
|
||||
convertPointsFromHomogeneous(p, p);
|
||||
@@ -317,7 +317,7 @@ cv::Mat cv::findHomography( InputArray _points1, InputArray _points2,
|
||||
else if( method == LMEDS )
|
||||
result = createLMeDSPointSetRegistrator(cb, 4, confidence, maxIters)->run(src, dst, H, tempMask);
|
||||
else
|
||||
CV_Error(CV_StsBadArg, "Unknown estimation method");
|
||||
CV_Error(Error::StsBadArg, "Unknown estimation method");
|
||||
|
||||
if( result && npoints > 4 )
|
||||
{
|
||||
@@ -475,7 +475,7 @@ static int run7Point( const Mat& _m1, const Mat& _m2, Mat& _fmatrix )
|
||||
return n;
|
||||
}
|
||||
|
||||
|
||||
|
||||
static int run8Point( const Mat& _m1, const Mat& _m2, Mat& _fmatrix )
|
||||
{
|
||||
double a[9*9], w[9], v[9*9];
|
||||
@@ -585,11 +585,11 @@ static int run8Point( const Mat& _m1, const Mat& _m2, Mat& _fmatrix )
|
||||
gemm( T2, F0, 1., 0, 0., TF, GEMM_1_T );
|
||||
F0 = Mat(3, 3, CV_64F, fmatrix);
|
||||
gemm( TF, T1, 1., 0, 0., F0, 0 );
|
||||
|
||||
|
||||
// make F(3,3) = 1
|
||||
if( fabs(F0.at<double>(2,2)) > FLT_EPSILON )
|
||||
F0 *= 1./F0.at<double>(2,2);
|
||||
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -671,7 +671,7 @@ cv::Mat cv::findFundamentalMat( InputArray _points1, InputArray _points2,
|
||||
{
|
||||
npoints = p.checkVector(3, -1, false);
|
||||
if( npoints < 0 )
|
||||
CV_Error(CV_StsBadArg, "The input arrays should be 2D or 3D point sets");
|
||||
CV_Error(Error::StsBadArg, "The input arrays should be 2D or 3D point sets");
|
||||
if( npoints == 0 )
|
||||
return Mat();
|
||||
convertPointsFromHomogeneous(p, p);
|
||||
@@ -739,7 +739,7 @@ void cv::computeCorrespondEpilines( InputArray _points, int whichImage,
|
||||
{
|
||||
npoints = points.checkVector(3);
|
||||
if( npoints < 0 )
|
||||
CV_Error( CV_StsBadArg, "The input should be a 2D or 3D point set");
|
||||
CV_Error( Error::StsBadArg, "The input should be a 2D or 3D point set");
|
||||
Mat temp;
|
||||
convertPointsFromHomogeneous(points, temp);
|
||||
points = temp;
|
||||
@@ -893,7 +893,7 @@ void cv::convertPointsFromHomogeneous( InputArray _src, OutputArray _dst )
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "");
|
||||
CV_Error(Error::StsUnsupportedFormat, "");
|
||||
}
|
||||
|
||||
|
||||
@@ -974,7 +974,7 @@ void cv::convertPointsToHomogeneous( InputArray _src, OutputArray _dst )
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "");
|
||||
CV_Error(Error::StsUnsupportedFormat, "");
|
||||
}
|
||||
|
||||
|
||||
|
@@ -39,6 +39,7 @@
|
||||
//
|
||||
//M*/
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
|
||||
/* POSIT structure */
|
||||
struct CvPOSITObject
|
||||
|
@@ -53,7 +53,7 @@ namespace cv
|
||||
int RANSACUpdateNumIters( double p, double ep, int modelPoints, int maxIters )
|
||||
{
|
||||
if( modelPoints <= 0 )
|
||||
CV_Error( CV_StsOutOfRange, "the number of model points should be positive" );
|
||||
CV_Error( Error::StsOutOfRange, "the number of model points should be positive" );
|
||||
|
||||
p = MAX(p, 0.);
|
||||
p = MIN(p, 1.);
|
||||
|
@@ -108,7 +108,7 @@ static void findCorner(const std::vector<Point2f>& contour, Point2f point, Point
|
||||
min_idx = (int)i;
|
||||
}
|
||||
}
|
||||
assert(min_idx >= 0);
|
||||
CV_Assert(min_idx >= 0);
|
||||
|
||||
// temporary solution, have to make something more precise
|
||||
corner = contour[min_idx];
|
||||
|
@@ -43,6 +43,8 @@
|
||||
#include "precomp.hpp"
|
||||
#include "epnp.h"
|
||||
#include "p3p.h"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
|
||||
#include <iostream>
|
||||
using namespace cv;
|
||||
|
||||
@@ -57,7 +59,7 @@ bool cv::solvePnP( InputArray _opoints, InputArray _ipoints,
|
||||
_tvec.create(3, 1, CV_64F);
|
||||
Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
|
||||
|
||||
if (flags == CV_EPNP)
|
||||
if (flags == EPNP)
|
||||
{
|
||||
cv::Mat undistortedPoints;
|
||||
cv::undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
|
||||
@@ -68,7 +70,7 @@ bool cv::solvePnP( InputArray _opoints, InputArray _ipoints,
|
||||
cv::Rodrigues(R, rvec);
|
||||
return true;
|
||||
}
|
||||
else if (flags == CV_P3P)
|
||||
else if (flags == P3P)
|
||||
{
|
||||
CV_Assert( npoints == 4);
|
||||
cv::Mat undistortedPoints;
|
||||
@@ -81,7 +83,7 @@ bool cv::solvePnP( InputArray _opoints, InputArray _ipoints,
|
||||
cv::Rodrigues(R, rvec);
|
||||
return result;
|
||||
}
|
||||
else if (flags == CV_ITERATIVE)
|
||||
else if (flags == ITERATIVE)
|
||||
{
|
||||
CvMat c_objectPoints = opoints, c_imagePoints = ipoints;
|
||||
CvMat c_cameraMatrix = cameraMatrix, c_distCoeffs = distCoeffs;
|
||||
@@ -342,7 +344,7 @@ void cv::solvePnPRansac(InputArray _opoints, InputArray _ipoints,
|
||||
|
||||
if (localInliers.size() >= (size_t)pnpransac::MIN_POINTS_COUNT)
|
||||
{
|
||||
if (flags != CV_P3P)
|
||||
if (flags != P3P)
|
||||
{
|
||||
int i, pointsCount = (int)localInliers.size();
|
||||
Mat inlierObjectPoints(1, pointsCount, CV_32FC3), inlierImagePoints(1, pointsCount, CV_32FC2);
|
||||
|
@@ -84,7 +84,7 @@ struct StereoBMParams
|
||||
int disp12MaxDiff;
|
||||
int dispType;
|
||||
};
|
||||
|
||||
|
||||
|
||||
static void prefilterNorm( const Mat& src, Mat& dst, int winsize, int ftzero, uchar* buf )
|
||||
{
|
||||
@@ -783,46 +783,46 @@ public:
|
||||
{
|
||||
params = StereoBMParams(_numDisparities, _SADWindowSize);
|
||||
}
|
||||
|
||||
|
||||
void compute( InputArray leftarr, InputArray rightarr, OutputArray disparr )
|
||||
{
|
||||
Mat left0 = leftarr.getMat(), right0 = rightarr.getMat();
|
||||
int dtype = disparr.fixedType() ? disparr.type() : params.dispType;
|
||||
|
||||
if (left0.size() != right0.size())
|
||||
CV_Error( CV_StsUnmatchedSizes, "All the images must have the same size" );
|
||||
CV_Error( Error::StsUnmatchedSizes, "All the images must have the same size" );
|
||||
|
||||
if (left0.type() != CV_8UC1 || right0.type() != CV_8UC1)
|
||||
CV_Error( CV_StsUnsupportedFormat, "Both input images must have CV_8UC1" );
|
||||
CV_Error( Error::StsUnsupportedFormat, "Both input images must have CV_8UC1" );
|
||||
|
||||
if (dtype != CV_16SC1 && dtype != CV_32FC1)
|
||||
CV_Error( CV_StsUnsupportedFormat, "Disparity image must have CV_16SC1 or CV_32FC1 format" );
|
||||
CV_Error( Error::StsUnsupportedFormat, "Disparity image must have CV_16SC1 or CV_32FC1 format" );
|
||||
|
||||
disparr.create(left0.size(), dtype);
|
||||
Mat disp0 = disparr.getMat();
|
||||
|
||||
if( params.preFilterType != PREFILTER_NORMALIZED_RESPONSE &&
|
||||
params.preFilterType != PREFILTER_XSOBEL )
|
||||
CV_Error( CV_StsOutOfRange, "preFilterType must be = CV_STEREO_BM_NORMALIZED_RESPONSE" );
|
||||
CV_Error( Error::StsOutOfRange, "preFilterType must be = CV_STEREO_BM_NORMALIZED_RESPONSE" );
|
||||
|
||||
if( params.preFilterSize < 5 || params.preFilterSize > 255 || params.preFilterSize % 2 == 0 )
|
||||
CV_Error( CV_StsOutOfRange, "preFilterSize must be odd and be within 5..255" );
|
||||
CV_Error( Error::StsOutOfRange, "preFilterSize must be odd and be within 5..255" );
|
||||
|
||||
if( params.preFilterCap < 1 || params.preFilterCap > 63 )
|
||||
CV_Error( CV_StsOutOfRange, "preFilterCap must be within 1..63" );
|
||||
CV_Error( Error::StsOutOfRange, "preFilterCap must be within 1..63" );
|
||||
|
||||
if( params.SADWindowSize < 5 || params.SADWindowSize > 255 || params.SADWindowSize % 2 == 0 ||
|
||||
params.SADWindowSize >= std::min(left0.cols, left0.rows) )
|
||||
CV_Error( CV_StsOutOfRange, "SADWindowSize must be odd, be within 5..255 and be not larger than image width or height" );
|
||||
CV_Error( Error::StsOutOfRange, "SADWindowSize must be odd, be within 5..255 and be not larger than image width or height" );
|
||||
|
||||
if( params.numDisparities <= 0 || params.numDisparities % 16 != 0 )
|
||||
CV_Error( CV_StsOutOfRange, "numDisparities must be positive and divisble by 16" );
|
||||
CV_Error( Error::StsOutOfRange, "numDisparities must be positive and divisble by 16" );
|
||||
|
||||
if( params.textureThreshold < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "texture threshold must be non-negative" );
|
||||
CV_Error( Error::StsOutOfRange, "texture threshold must be non-negative" );
|
||||
|
||||
if( params.uniquenessRatio < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "uniqueness ratio must be non-negative" );
|
||||
CV_Error( Error::StsOutOfRange, "uniqueness ratio must be non-negative" );
|
||||
|
||||
preFilteredImg0.create( left0.size(), CV_8U );
|
||||
preFilteredImg1.create( left0.size(), CV_8U );
|
||||
@@ -887,15 +887,15 @@ public:
|
||||
R2.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect,
|
||||
params.minDisparity, params.numDisparities,
|
||||
params.SADWindowSize);
|
||||
|
||||
|
||||
parallel_for_(Range(0, nstripes),
|
||||
FindStereoCorrespInvoker(left, right, disp, ¶ms, nstripes,
|
||||
bufSize0, useShorts, validDisparityRect,
|
||||
slidingSumBuf, cost));
|
||||
|
||||
|
||||
if( params.speckleRange >= 0 && params.speckleWindowSize > 0 )
|
||||
filterSpeckles(disp, FILTERED, params.speckleWindowSize, params.speckleRange, slidingSumBuf);
|
||||
|
||||
|
||||
if (disp0.data != disp.data)
|
||||
disp.convertTo(disp0, disp0.type(), 1./(1 << DISPARITY_SHIFT), 0);
|
||||
}
|
||||
@@ -963,7 +963,7 @@ public:
|
||||
void read(const FileNode& fn)
|
||||
{
|
||||
FileNode n = fn["name"];
|
||||
CV_Assert( n.isString() && strcmp(n.node->data.str.ptr, name_) == 0 );
|
||||
CV_Assert( n.isString() && String(n) == name_ );
|
||||
params.minDisparity = (int)fn["minDisparity"];
|
||||
params.numDisparities = (int)fn["numDisparities"];
|
||||
params.SADWindowSize = (int)fn["blockSize"];
|
||||
|
@@ -919,7 +919,7 @@ public:
|
||||
void read(const FileNode& fn)
|
||||
{
|
||||
FileNode n = fn["name"];
|
||||
CV_Assert( n.isString() && strcmp(n.node->data.str.ptr, name_) == 0 );
|
||||
CV_Assert( n.isString() && String(n) == name_ );
|
||||
params.minDisparity = (int)fn["minDisparity"];
|
||||
params.numDisparities = (int)fn["numDisparities"];
|
||||
params.SADWindowSize = (int)fn["blockSize"];
|
||||
|
@@ -40,6 +40,7 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
|
||||
// cvCorrectMatches function is Copyright (C) 2009, Jostein Austvik Jacobsen.
|
||||
// cvTriangulatePoints function is derived from icvReconstructPointsFor3View, originally by Valery Mosyagin.
|
||||
|
@@ -40,6 +40,7 @@
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
|
||||
#include <limits>
|
||||
|
||||
|
@@ -327,7 +327,7 @@ protected:
|
||||
Mat camMat_est = Mat::eye(3, 3, CV_64F), distCoeffs_est = Mat::zeros(1, 5, CV_64F);
|
||||
vector<Mat> rvecs_est, tvecs_est;
|
||||
|
||||
int flags = /*CV_CALIB_FIX_K3|*/CV_CALIB_FIX_K4|CV_CALIB_FIX_K5|CV_CALIB_FIX_K6; //CALIB_FIX_K3; //CALIB_FIX_ASPECT_RATIO | | CALIB_ZERO_TANGENT_DIST;
|
||||
int flags = /*CALIB_FIX_K3|*/CALIB_FIX_K4|CALIB_FIX_K5|CALIB_FIX_K6; //CALIB_FIX_K3; //CALIB_FIX_ASPECT_RATIO | | CALIB_ZERO_TANGENT_DIST;
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 100, DBL_EPSILON);
|
||||
double rep_error = calibrateCamera(objectPoints, imagePoints, imgSize, camMat_est, distCoeffs_est, rvecs_est, tvecs_est, flags, criteria);
|
||||
rep_error /= brdsNum * cornersSize.area();
|
||||
|
@@ -41,6 +41,7 @@
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "test_chessboardgenerator.hpp"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
|
@@ -161,15 +161,15 @@ Mat cv::ChessBoardGenerator::generateChessBoard(const Mat& bg, const Mat& camMat
|
||||
if (rendererResolutionMultiplier == 1)
|
||||
{
|
||||
result = bg.clone();
|
||||
drawContours(result, whole_contour, -1, Scalar::all(255), CV_FILLED, CV_AA);
|
||||
drawContours(result, squares_black, -1, Scalar::all(0), CV_FILLED, CV_AA);
|
||||
drawContours(result, whole_contour, -1, Scalar::all(255), FILLED, LINE_AA);
|
||||
drawContours(result, squares_black, -1, Scalar::all(0), FILLED, LINE_AA);
|
||||
}
|
||||
else
|
||||
{
|
||||
Mat tmp;
|
||||
resize(bg, tmp, bg.size() * rendererResolutionMultiplier);
|
||||
drawContours(tmp, whole_contour, -1, Scalar::all(255), CV_FILLED, CV_AA);
|
||||
drawContours(tmp, squares_black, -1, Scalar::all(0), CV_FILLED, CV_AA);
|
||||
drawContours(tmp, whole_contour, -1, Scalar::all(255), FILLED, LINE_AA);
|
||||
drawContours(tmp, squares_black, -1, Scalar::all(0), FILLED, LINE_AA);
|
||||
resize(tmp, result, bg.size(), 0, 0, INTER_AREA);
|
||||
}
|
||||
|
||||
|
@@ -57,14 +57,14 @@ void show_points( const Mat& gray, const Mat& u, const vector<Point2f>& v, Size
|
||||
merge(vector<Mat>(3, gray), rgb);
|
||||
|
||||
for(size_t i = 0; i < v.size(); i++ )
|
||||
circle( rgb, v[i], 3, CV_RGB(255, 0, 0), CV_FILLED);
|
||||
circle( rgb, v[i], 3, Scalar(255, 0, 0), FILLED);
|
||||
|
||||
if( !u.empty() )
|
||||
{
|
||||
const Point2f* u_data = u.ptr<Point2f>();
|
||||
size_t count = u.cols * u.rows;
|
||||
for(size_t i = 0; i < count; i++ )
|
||||
circle( rgb, u_data[i], 3, CV_RGB(0, 255, 0), CV_FILLED);
|
||||
circle( rgb, u_data[i], 3, Scalar(0, 255, 0), FILLED);
|
||||
}
|
||||
if (!v.empty())
|
||||
{
|
||||
@@ -208,7 +208,7 @@ void CV_ChessboardDetectorTest::run_batch( const string& filename )
|
||||
}
|
||||
|
||||
int progress = 0;
|
||||
int max_idx = board_list.node->data.seq->total/2;
|
||||
int max_idx = board_list.size()/2;
|
||||
double sum_error = 0.0;
|
||||
int count = 0;
|
||||
|
||||
@@ -244,7 +244,7 @@ void CV_ChessboardDetectorTest::run_batch( const string& filename )
|
||||
switch( pattern )
|
||||
{
|
||||
case CHESSBOARD:
|
||||
result = findChessboardCorners(gray, pattern_size, v, CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_NORMALIZE_IMAGE);
|
||||
result = findChessboardCorners(gray, pattern_size, v, CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE);
|
||||
break;
|
||||
case CIRCLES_GRID:
|
||||
result = findCirclesGrid(gray, pattern_size, v);
|
||||
@@ -459,7 +459,7 @@ bool CV_ChessboardDetectorTest::checkByGenerator()
|
||||
vector<Point>& cnt = cnts[0];
|
||||
cnt.push_back(cg[ 0]); cnt.push_back(cg[0+2]);
|
||||
cnt.push_back(cg[7+0]); cnt.push_back(cg[7+2]);
|
||||
cv::drawContours(cb, cnts, -1, Scalar::all(128), CV_FILLED);
|
||||
cv::drawContours(cb, cnts, -1, Scalar::all(128), FILLED);
|
||||
|
||||
found = findChessboardCorners(cb, cbg.cornersSize(), corners_found);
|
||||
if (found)
|
||||
|
@@ -41,6 +41,7 @@
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "test_chessboardgenerator.hpp"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
|
||||
#include <limits>
|
||||
|
||||
|
@@ -41,6 +41,7 @@
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
|
||||
class CV_ChessboardDetectorTimingTest : public cvtest::BaseTest
|
||||
{
|
||||
|
@@ -40,6 +40,7 @@
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
@@ -65,7 +65,7 @@
|
||||
#define METHODS_COUNT 3
|
||||
|
||||
int NORM_TYPE[COUNT_NORM_TYPES] = {cv::NORM_L1, cv::NORM_L2, cv::NORM_INF};
|
||||
int METHOD[METHODS_COUNT] = {0, CV_RANSAC, CV_LMEDS};
|
||||
int METHOD[METHODS_COUNT] = {0, cv::RANSAC, cv::LMEDS};
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
@@ -309,7 +309,7 @@ void CV_HomographyTest::run(int)
|
||||
switch (method)
|
||||
{
|
||||
case 0:
|
||||
case CV_LMEDS:
|
||||
case LMEDS:
|
||||
{
|
||||
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method),
|
||||
cv::findHomography(src_mat_2f, dst_vec, method),
|
||||
@@ -339,14 +339,14 @@ void CV_HomographyTest::run(int)
|
||||
|
||||
continue;
|
||||
}
|
||||
case CV_RANSAC:
|
||||
case RANSAC:
|
||||
{
|
||||
cv::Mat mask [4]; double diff;
|
||||
|
||||
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, CV_RANSAC, reproj_threshold, mask[0]),
|
||||
cv::findHomography(src_mat_2f, dst_vec, CV_RANSAC, reproj_threshold, mask[1]),
|
||||
cv::findHomography(src_vec, dst_mat_2f, CV_RANSAC, reproj_threshold, mask[2]),
|
||||
cv::findHomography(src_vec, dst_vec, CV_RANSAC, reproj_threshold, mask[3]) };
|
||||
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, RANSAC, reproj_threshold, mask[0]),
|
||||
cv::findHomography(src_mat_2f, dst_vec, RANSAC, reproj_threshold, mask[1]),
|
||||
cv::findHomography(src_vec, dst_mat_2f, RANSAC, reproj_threshold, mask[2]),
|
||||
cv::findHomography(src_vec, dst_vec, RANSAC, reproj_threshold, mask[3]) };
|
||||
|
||||
for (int j = 0; j < 4; ++j)
|
||||
{
|
||||
@@ -411,7 +411,7 @@ void CV_HomographyTest::run(int)
|
||||
switch (method)
|
||||
{
|
||||
case 0:
|
||||
case CV_LMEDS:
|
||||
case LMEDS:
|
||||
{
|
||||
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f),
|
||||
cv::findHomography(src_mat_2f, dst_vec),
|
||||
@@ -466,14 +466,14 @@ void CV_HomographyTest::run(int)
|
||||
|
||||
continue;
|
||||
}
|
||||
case CV_RANSAC:
|
||||
case RANSAC:
|
||||
{
|
||||
cv::Mat mask_res [4];
|
||||
|
||||
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, CV_RANSAC, reproj_threshold, mask_res[0]),
|
||||
cv::findHomography(src_mat_2f, dst_vec, CV_RANSAC, reproj_threshold, mask_res[1]),
|
||||
cv::findHomography(src_vec, dst_mat_2f, CV_RANSAC, reproj_threshold, mask_res[2]),
|
||||
cv::findHomography(src_vec, dst_vec, CV_RANSAC, reproj_threshold, mask_res[3]) };
|
||||
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, RANSAC, reproj_threshold, mask_res[0]),
|
||||
cv::findHomography(src_mat_2f, dst_vec, RANSAC, reproj_threshold, mask_res[1]),
|
||||
cv::findHomography(src_vec, dst_mat_2f, RANSAC, reproj_threshold, mask_res[2]),
|
||||
cv::findHomography(src_vec, dst_vec, RANSAC, reproj_threshold, mask_res[3]) };
|
||||
|
||||
for (int j = 0; j < 4; ++j)
|
||||
{
|
||||
|
@@ -40,6 +40,7 @@
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
@@ -41,6 +41,7 @@
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "opencv2/calib3d/calib3d_c.h"
|
||||
#include <string>
|
||||
#include <limits>
|
||||
|
||||
|
@@ -54,9 +54,9 @@ class CV_solvePnPRansac_Test : public cvtest::BaseTest
|
||||
public:
|
||||
CV_solvePnPRansac_Test()
|
||||
{
|
||||
eps[CV_ITERATIVE] = 1.0e-2;
|
||||
eps[CV_EPNP] = 1.0e-2;
|
||||
eps[CV_P3P] = 1.0e-2;
|
||||
eps[ITERATIVE] = 1.0e-2;
|
||||
eps[EPNP] = 1.0e-2;
|
||||
eps[P3P] = 1.0e-2;
|
||||
totalTestsCount = 10;
|
||||
}
|
||||
~CV_solvePnPRansac_Test() {}
|
||||
@@ -193,9 +193,9 @@ class CV_solvePnP_Test : public CV_solvePnPRansac_Test
|
||||
public:
|
||||
CV_solvePnP_Test()
|
||||
{
|
||||
eps[CV_ITERATIVE] = 1.0e-6;
|
||||
eps[CV_EPNP] = 1.0e-6;
|
||||
eps[CV_P3P] = 1.0e-4;
|
||||
eps[ITERATIVE] = 1.0e-6;
|
||||
eps[EPNP] = 1.0e-6;
|
||||
eps[P3P] = 1.0e-4;
|
||||
totalTestsCount = 1000;
|
||||
}
|
||||
|
||||
|
@@ -75,7 +75,7 @@ void computeTextureBasedMasks( const Mat& _img, Mat* texturelessMask, Mat* textu
|
||||
if( !texturelessMask && !texturedMask )
|
||||
return;
|
||||
if( _img.empty() )
|
||||
CV_Error( CV_StsBadArg, "img is empty" );
|
||||
CV_Error( Error::StsBadArg, "img is empty" );
|
||||
|
||||
Mat img = _img;
|
||||
if( _img.channels() > 1)
|
||||
@@ -95,21 +95,21 @@ void computeTextureBasedMasks( const Mat& _img, Mat* texturelessMask, Mat* textu
|
||||
void checkTypeAndSizeOfDisp( const Mat& dispMap, const Size* sz )
|
||||
{
|
||||
if( dispMap.empty() )
|
||||
CV_Error( CV_StsBadArg, "dispMap is empty" );
|
||||
CV_Error( Error::StsBadArg, "dispMap is empty" );
|
||||
if( dispMap.type() != CV_32FC1 )
|
||||
CV_Error( CV_StsBadArg, "dispMap must have CV_32FC1 type" );
|
||||
CV_Error( Error::StsBadArg, "dispMap must have CV_32FC1 type" );
|
||||
if( sz && (dispMap.rows != sz->height || dispMap.cols != sz->width) )
|
||||
CV_Error( CV_StsBadArg, "dispMap has incorrect size" );
|
||||
CV_Error( Error::StsBadArg, "dispMap has incorrect size" );
|
||||
}
|
||||
|
||||
void checkTypeAndSizeOfMask( const Mat& mask, Size sz )
|
||||
{
|
||||
if( mask.empty() )
|
||||
CV_Error( CV_StsBadArg, "mask is empty" );
|
||||
CV_Error( Error::StsBadArg, "mask is empty" );
|
||||
if( mask.type() != CV_8UC1 )
|
||||
CV_Error( CV_StsBadArg, "mask must have CV_8UC1 type" );
|
||||
CV_Error( Error::StsBadArg, "mask must have CV_8UC1 type" );
|
||||
if( mask.rows != sz.height || mask.cols != sz.width )
|
||||
CV_Error( CV_StsBadArg, "mask has incorrect size" );
|
||||
CV_Error( Error::StsBadArg, "mask has incorrect size" );
|
||||
}
|
||||
|
||||
void checkDispMapsAndUnknDispMasks( const Mat& leftDispMap, const Mat& rightDispMap,
|
||||
@@ -143,7 +143,7 @@ void checkDispMapsAndUnknDispMasks( const Mat& leftDispMap, const Mat& rightDisp
|
||||
minMaxLoc( rightDispMap, &rightMinVal, 0, 0, 0, ~rightUnknDispMask );
|
||||
}
|
||||
if( leftMinVal < 0 || rightMinVal < 0)
|
||||
CV_Error( CV_StsBadArg, "known disparity values must be positive" );
|
||||
CV_Error( Error::StsBadArg, "known disparity values must be positive" );
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -163,7 +163,7 @@ void computeOcclusionBasedMasks( const Mat& leftDisp, const Mat& _rightDisp,
|
||||
if( _rightDisp.empty() )
|
||||
{
|
||||
if( !rightUnknDispMask.empty() )
|
||||
CV_Error( CV_StsBadArg, "rightUnknDispMask must be empty if _rightDisp is empty" );
|
||||
CV_Error( Error::StsBadArg, "rightUnknDispMask must be empty if _rightDisp is empty" );
|
||||
rightDisp.create(leftDisp.size(), CV_32FC1);
|
||||
rightDisp.setTo(Scalar::all(0) );
|
||||
for( int leftY = 0; leftY < leftDisp.rows; leftY++ )
|
||||
@@ -230,9 +230,9 @@ void computeDepthDiscontMask( const Mat& disp, Mat& depthDiscontMask, const Mat&
|
||||
float dispGap = EVAL_DISP_GAP, int discontWidth = EVAL_DISCONT_WIDTH )
|
||||
{
|
||||
if( disp.empty() )
|
||||
CV_Error( CV_StsBadArg, "disp is empty" );
|
||||
CV_Error( Error::StsBadArg, "disp is empty" );
|
||||
if( disp.type() != CV_32FC1 )
|
||||
CV_Error( CV_StsBadArg, "disp must have CV_32FC1 type" );
|
||||
CV_Error( Error::StsBadArg, "disp must have CV_32FC1 type" );
|
||||
if( !unknDispMask.empty() )
|
||||
checkTypeAndSizeOfMask( unknDispMask, disp.size() );
|
||||
|
||||
@@ -571,9 +571,9 @@ int CV_StereoMatchingTest::processStereoMatchingResults( FileStorage& fs, int ca
|
||||
if( isWrite )
|
||||
{
|
||||
fs << caseNames[caseIdx] << "{";
|
||||
cvWriteComment( fs.fs, RMS_STR.c_str(), 0 );
|
||||
//cvWriteComment( fs.fs, RMS_STR.c_str(), 0 );
|
||||
writeErrors( RMS_STR, rmss, &fs );
|
||||
cvWriteComment( fs.fs, BAD_PXLS_FRACTION_STR.c_str(), 0 );
|
||||
//cvWriteComment( fs.fs, BAD_PXLS_FRACTION_STR.c_str(), 0 );
|
||||
writeErrors( BAD_PXLS_FRACTION_STR, badPxlsFractions, &fs );
|
||||
fs << "}"; // datasetName
|
||||
}
|
||||
|
Reference in New Issue
Block a user