Merge pull request #1903 from ilya-lavrenov:tapi_warp
This commit is contained in:
commit
e585f145f6
@ -286,7 +286,7 @@ public:
|
||||
Kernel();
|
||||
Kernel(const char* kname, const Program& prog);
|
||||
Kernel(const char* kname, const ProgramSource2& prog,
|
||||
const String& buildopts, String* errmsg=0);
|
||||
const String& buildopts = String(), String* errmsg=0);
|
||||
~Kernel();
|
||||
Kernel(const Kernel& k);
|
||||
Kernel& operator = (const Kernel& k);
|
||||
|
@ -578,6 +578,7 @@ Mat UMat::getMat(int accessFlags) const
|
||||
u->currAllocator->map(u, accessFlags | ACCESS_READ);
|
||||
CV_Assert(u->data != 0);
|
||||
Mat hdr(dims, size.p, type(), u->data + offset, step.p);
|
||||
hdr.flags = flags;
|
||||
hdr.u = u;
|
||||
hdr.datastart = u->data;
|
||||
hdr.data = hdr.datastart + offset;
|
||||
|
@ -2010,6 +2010,8 @@ static bool ocl_resize( InputArray _src, OutputArray _dst, Size dsize,
|
||||
iscale_x, iscale_y, 1.0f / (iscale_x * iscale_y));
|
||||
|
||||
k.create("resizeAREA_FAST", ocl::imgproc::resize_oclsrc, buildOption);
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
int smap_tab_size = dst.cols * iscale_x + dst.rows * iscale_y;
|
||||
AutoBuffer<int> dmap_tab(dst.cols + dst.rows), smap_tab(smap_tab_size);
|
||||
@ -2026,6 +2028,8 @@ static bool ocl_resize( InputArray _src, OutputArray _dst, Size dsize,
|
||||
{
|
||||
buildOption = buildOption + format(" -D convertToT=%s", ocl::convertTypeStr(wdepth, depth, cn, cvt[0]));
|
||||
k.create("resizeAREA", ocl::imgproc::resize_oclsrc, buildOption);
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
Size ssize = src.size();
|
||||
int xytab_size = (ssize.width + ssize.height) << 1;
|
||||
@ -3383,6 +3387,78 @@ private:
|
||||
const void *ctab;
|
||||
};
|
||||
|
||||
static bool ocl_remap(InputArray _src, OutputArray _dst, InputArray _map1, InputArray _map2,
|
||||
int interpolation, int borderType, const Scalar& borderValue)
|
||||
{
|
||||
int cn = _src.channels(), type = _src.type(), depth = _src.depth();
|
||||
|
||||
if (borderType == BORDER_TRANSPARENT || cn == 3 || !(interpolation == INTER_LINEAR || interpolation == INTER_NEAREST)
|
||||
|| _map1.type() == CV_16SC1 || _map2.type() == CV_16SC1)
|
||||
return false;
|
||||
|
||||
UMat src = _src.getUMat(), map1 = _map1.getUMat(), map2 = _map2.getUMat();
|
||||
|
||||
if( (map1.type() == CV_16SC2 && (map2.type() == CV_16UC1 || map2.empty())) ||
|
||||
(map2.type() == CV_16SC2 && (map1.type() == CV_16UC1 || map1.empty())) )
|
||||
{
|
||||
if (map1.type() != CV_16SC2)
|
||||
std::swap(map1, map2);
|
||||
}
|
||||
else
|
||||
CV_Assert( map1.type() == CV_32FC2 || (map1.type() == CV_32FC1 && map2.type() == CV_32FC1) );
|
||||
|
||||
_dst.create(map1.size(), type);
|
||||
UMat dst = _dst.getUMat();
|
||||
|
||||
String kernelName = "remap";
|
||||
if (map1.type() == CV_32FC2 && map2.empty())
|
||||
kernelName += "_32FC2";
|
||||
else if (map1.type() == CV_16SC2)
|
||||
{
|
||||
kernelName += "_16SC2";
|
||||
if (!map2.empty())
|
||||
kernelName += "_16UC1";
|
||||
}
|
||||
else if (map1.type() == CV_32FC1 && map2.type() == CV_32FC1)
|
||||
kernelName += "_2_32FC1";
|
||||
else
|
||||
CV_Error(Error::StsBadArg, "Unsupported map types");
|
||||
|
||||
static const char * const interMap[] = { "INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_LINEAR", "INTER_LANCZOS" };
|
||||
static const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP",
|
||||
"BORDER_REFLECT_101", "BORDER_TRANSPARENT" };
|
||||
String buildOptions = format("-D %s -D %s -D T=%s", interMap[interpolation], borderMap[borderType], ocl::typeToStr(type));
|
||||
|
||||
if (interpolation != INTER_NEAREST)
|
||||
{
|
||||
char cvt[3][40];
|
||||
int wdepth = std::max(CV_32F, dst.depth());
|
||||
buildOptions = buildOptions
|
||||
+ format(" -D WT=%s -D convertToT=%s -D convertToWT=%s"
|
||||
" -D convertToWT2=%s -D WT2=%s",
|
||||
ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)),
|
||||
ocl::convertTypeStr(wdepth, depth, cn, cvt[0]),
|
||||
ocl::convertTypeStr(depth, wdepth, cn, cvt[1]),
|
||||
ocl::convertTypeStr(CV_32S, wdepth, 2, cvt[2]),
|
||||
ocl::typeToStr(CV_MAKE_TYPE(wdepth, 2)));
|
||||
}
|
||||
|
||||
ocl::Kernel k(kernelName.c_str(), ocl::imgproc::remap_oclsrc, buildOptions);
|
||||
|
||||
Mat scalar(1, 1, type, borderValue);
|
||||
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnly(src), dstarg = ocl::KernelArg::WriteOnly(dst),
|
||||
map1arg = ocl::KernelArg::ReadOnlyNoSize(map1),
|
||||
scalararg = ocl::KernelArg::Constant((void*)scalar.data, scalar.elemSize());
|
||||
|
||||
if (map2.empty())
|
||||
k.args(srcarg, dstarg, map1arg, scalararg);
|
||||
else
|
||||
k.args(srcarg, dstarg, map1arg, ocl::KernelArg::ReadOnlyNoSize(map2), scalararg);
|
||||
|
||||
size_t globalThreads[2] = { dst.cols, dst.rows };
|
||||
return k.run(2, globalThreads, NULL, false);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void cv::remap( InputArray _src, OutputArray _dst,
|
||||
@ -3422,11 +3498,13 @@ void cv::remap( InputArray _src, OutputArray _dst,
|
||||
remapLanczos4<Cast<double, double>, float, 1>, 0
|
||||
};
|
||||
|
||||
CV_Assert( _map1.size().area() > 0 );
|
||||
CV_Assert( _map2.empty() || (_map2.size() == _map1.size()));
|
||||
|
||||
if (ocl::useOpenCL() && _dst.isUMat() && ocl_remap(_src, _dst, _map1, _map2, interpolation, borderType, borderValue))
|
||||
return;
|
||||
|
||||
Mat src = _src.getMat(), map1 = _map1.getMat(), map2 = _map2.getMat();
|
||||
|
||||
CV_Assert( map1.size().area() > 0 );
|
||||
CV_Assert( !map2.data || (map2.size() == map1.size()));
|
||||
|
||||
_dst.create( map1.size(), src.type() );
|
||||
Mat dst = _dst.getMat();
|
||||
if( dst.data == src.data )
|
||||
@ -3789,6 +3867,89 @@ private:
|
||||
};
|
||||
#endif
|
||||
|
||||
enum { OCL_OP_PERSPECTIVE = 1, OCL_OP_AFFINE = 0 };
|
||||
|
||||
static bool ocl_warpTransform(InputArray _src, OutputArray _dst, InputArray _M0,
|
||||
Size dsize, int flags, int borderType, const Scalar& borderValue,
|
||||
int op_type)
|
||||
{
|
||||
CV_Assert(op_type == OCL_OP_AFFINE || op_type == OCL_OP_PERSPECTIVE);
|
||||
|
||||
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), wdepth = depth;
|
||||
double doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
|
||||
|
||||
int interpolation = flags & INTER_MAX;
|
||||
if( interpolation == INTER_AREA )
|
||||
interpolation = INTER_LINEAR;
|
||||
|
||||
if ( !(borderType == cv::BORDER_CONSTANT &&
|
||||
(interpolation == cv::INTER_NEAREST || interpolation == cv::INTER_LINEAR || interpolation == cv::INTER_CUBIC)) ||
|
||||
(!doubleSupport && depth == CV_64F) || cn > 4 || cn == 3)
|
||||
return false;
|
||||
|
||||
const char * const interpolationMap[3] = { "NEAREST", "LINEAR", "CUBIC" };
|
||||
ocl::ProgramSource2 program = op_type == OCL_OP_AFFINE ?
|
||||
ocl::imgproc::warp_affine_oclsrc : ocl::imgproc::warp_perspective_oclsrc;
|
||||
const char * const kernelName = op_type == OCL_OP_AFFINE ? "warpAffine" : "warpPerspective";
|
||||
|
||||
ocl::Kernel k;
|
||||
if (interpolation == INTER_NEAREST)
|
||||
{
|
||||
k.create(kernelName, program,
|
||||
format("-D INTER_NEAREST -D T=%s%s", ocl::typeToStr(type),
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
|
||||
}
|
||||
else
|
||||
{
|
||||
char cvt[2][50];
|
||||
wdepth = std::max(CV_32S, depth);
|
||||
k.create(kernelName, program,
|
||||
format("-D INTER_%s -D T=%s -D WT=%s -D depth=%d -D convertToWT=%s -D convertToT=%s%s",
|
||||
interpolationMap[interpolation], ocl::typeToStr(type),
|
||||
ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), depth,
|
||||
ocl::convertTypeStr(depth, wdepth, cn, cvt[0]),
|
||||
ocl::convertTypeStr(wdepth, depth, cn, cvt[1]),
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
|
||||
}
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
UMat src = _src.getUMat(), M0;
|
||||
_dst.create( dsize.area() == 0 ? src.size() : dsize, src.type() );
|
||||
UMat dst = _dst.getUMat();
|
||||
|
||||
double M[9];
|
||||
int matRows = (op_type == OCL_OP_AFFINE ? 2 : 3);
|
||||
Mat matM(matRows, 3, CV_64F, M), M1 = _M0.getMat();
|
||||
CV_Assert( (M1.type() == CV_32F || M1.type() == CV_64F) &&
|
||||
M1.rows == matRows && M1.cols == 3 );
|
||||
M1.convertTo(matM, matM.type());
|
||||
|
||||
if( !(flags & WARP_INVERSE_MAP) )
|
||||
{
|
||||
if (op_type == OCL_OP_PERSPECTIVE)
|
||||
invert(matM, matM);
|
||||
else
|
||||
{
|
||||
double D = M[0]*M[4] - M[1]*M[3];
|
||||
D = D != 0 ? 1./D : 0;
|
||||
double A11 = M[4]*D, A22=M[0]*D;
|
||||
M[0] = A11; M[1] *= -D;
|
||||
M[3] *= -D; M[4] = A22;
|
||||
double b1 = -M[0]*M[2] - M[1]*M[5];
|
||||
double b2 = -M[3]*M[2] - M[4]*M[5];
|
||||
M[2] = b1; M[5] = b2;
|
||||
}
|
||||
}
|
||||
matM.convertTo(M0, doubleSupport ? CV_64F : CV_32F);
|
||||
|
||||
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::PtrReadOnly(M0),
|
||||
ocl::KernelArg::Constant(Mat(1, 1, CV_MAKE_TYPE(wdepth, cn), borderValue)));
|
||||
|
||||
size_t globalThreads[2] = { dst.cols, dst.rows };
|
||||
return k.run(2, globalThreads, NULL, false);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
@ -3796,6 +3957,11 @@ void cv::warpAffine( InputArray _src, OutputArray _dst,
|
||||
InputArray _M0, Size dsize,
|
||||
int flags, int borderType, const Scalar& borderValue )
|
||||
{
|
||||
if (ocl::useOpenCL() && _dst.isUMat() &&
|
||||
ocl_warpTransform(_src, _dst, _M0, dsize, flags, borderType,
|
||||
borderValue, OCL_OP_AFFINE))
|
||||
return;
|
||||
|
||||
Mat src = _src.getMat(), M0 = _M0.getMat();
|
||||
_dst.create( dsize.area() == 0 ? src.size() : dsize, src.type() );
|
||||
Mat dst = _dst.getMat();
|
||||
@ -4035,11 +4201,17 @@ private:
|
||||
void cv::warpPerspective( InputArray _src, OutputArray _dst, InputArray _M0,
|
||||
Size dsize, int flags, int borderType, const Scalar& borderValue )
|
||||
{
|
||||
CV_Assert( _src.total() > 0 );
|
||||
|
||||
if (ocl::useOpenCL() && _dst.isUMat() &&
|
||||
ocl_warpTransform(_src, _dst, _M0, dsize, flags, borderType, borderValue,
|
||||
OCL_OP_PERSPECTIVE))
|
||||
return;
|
||||
|
||||
Mat src = _src.getMat(), M0 = _M0.getMat();
|
||||
_dst.create( dsize.area() == 0 ? src.size() : dsize, src.type() );
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
CV_Assert( src.cols > 0 && src.rows > 0 );
|
||||
if( dst.data == src.data )
|
||||
src = src.clone();
|
||||
|
||||
|
435
modules/imgproc/src/opencl/remap.cl
Normal file
435
modules/imgproc/src/opencl/remap.cl
Normal file
@ -0,0 +1,435 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Wu Zailong, bullet@yeah.net
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifdef DOUBLE_SUPPORT
|
||||
#ifdef cl_amd_fp64
|
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable
|
||||
#elif defined (cl_khr_fp64)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define noconvert
|
||||
|
||||
enum
|
||||
{
|
||||
INTER_BITS = 5,
|
||||
INTER_TAB_SIZE = 1 << INTER_BITS,
|
||||
INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
|
||||
};
|
||||
|
||||
#ifdef INTER_NEAREST
|
||||
#define convertToWT
|
||||
#endif
|
||||
|
||||
#ifdef BORDER_CONSTANT
|
||||
#define EXTRAPOLATE(v2, v) v = scalar;
|
||||
#elif defined BORDER_REPLICATE
|
||||
#define EXTRAPOLATE(v2, v) \
|
||||
{ \
|
||||
v2 = max(min(v2, (int2)(src_cols - 1, src_rows - 1)), (int2)(0)); \
|
||||
v = convertToWT(*((__global const T*)(srcptr + mad24(v2.y, src_step, v2.x * (int)sizeof(T) + src_offset)))); \
|
||||
}
|
||||
#elif defined BORDER_WRAP
|
||||
#define EXTRAPOLATE(v2, v) \
|
||||
{ \
|
||||
if (v2.x < 0) \
|
||||
v2.x -= ((v2.x - src_cols + 1) / src_cols) * src_cols; \
|
||||
if (v2.x >= src_cols) \
|
||||
v2.x %= src_cols; \
|
||||
\
|
||||
if (v2.y < 0) \
|
||||
v2.y -= ((v2.y - src_rows + 1) / src_rows) * src_rows; \
|
||||
if( v2.y >= src_rows ) \
|
||||
v2.y %= src_rows; \
|
||||
v = convertToWT(*((__global const T*)(srcptr + mad24(v2.y, src_step, v2.x * (int)sizeof(T) + src_offset)))); \
|
||||
}
|
||||
#elif defined(BORDER_REFLECT) || defined(BORDER_REFLECT_101)
|
||||
#ifdef BORDER_REFLECT
|
||||
#define DELTA int delta = 0
|
||||
#else
|
||||
#define DELTA int delta = 1
|
||||
#endif
|
||||
#define EXTRAPOLATE(v2, v) \
|
||||
{ \
|
||||
DELTA; \
|
||||
if (src_cols == 1) \
|
||||
v2.x = 0; \
|
||||
else \
|
||||
do \
|
||||
{ \
|
||||
if( v2.x < 0 ) \
|
||||
v2.x = -v2.x - 1 + delta; \
|
||||
else \
|
||||
v2.x = src_cols - 1 - (v2.x - src_cols) - delta; \
|
||||
} \
|
||||
while (v2.x >= src_cols || v2.x < 0); \
|
||||
\
|
||||
if (src_rows == 1) \
|
||||
v2.y = 0; \
|
||||
else \
|
||||
do \
|
||||
{ \
|
||||
if( v2.y < 0 ) \
|
||||
v2.y = -v2.y - 1 + delta; \
|
||||
else \
|
||||
v2.y = src_rows - 1 - (v2.y - src_rows) - delta; \
|
||||
} \
|
||||
while (v2.y >= src_rows || v2.y < 0); \
|
||||
v = convertToWT(*((__global const T*)(srcptr + mad24(v2.y, src_step, v2.x * (int)sizeof(T) + src_offset)))); \
|
||||
}
|
||||
#else
|
||||
#error No extrapolation method
|
||||
#endif
|
||||
|
||||
#define NEED_EXTRAPOLATION(gx, gy) (gx >= src_cols || gy >= src_rows || gx < 0 || gy < 0)
|
||||
|
||||
#ifdef INTER_NEAREST
|
||||
|
||||
__kernel void remap_2_32FC1(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
__global const uchar * map1ptr, int map1_step, int map1_offset,
|
||||
__global const uchar * map2ptr, int map2_step, int map2_offset,
|
||||
T scalar)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
int map1_index = mad24(y, map1_step, x * (int)sizeof(float) + map1_offset);
|
||||
int map2_index = mad24(y, map2_step, x * (int)sizeof(float) + map2_offset);
|
||||
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
|
||||
|
||||
__global const float * map1 = (__global const float *)(map1ptr + map1_index);
|
||||
__global const float * map2 = (__global const float *)(map2ptr + map2_index);
|
||||
__global T * dst = (__global T *)(dstptr + dst_index);
|
||||
|
||||
int gx = convert_int_sat_rte(map1[0]);
|
||||
int gy = convert_int_sat_rte(map2[0]);
|
||||
|
||||
if (NEED_EXTRAPOLATION(gx, gy))
|
||||
{
|
||||
#ifndef BORDER_CONSTANT
|
||||
int2 gxy = (int2)(gx, gy);
|
||||
#endif
|
||||
EXTRAPOLATE(gxy, dst[0])
|
||||
}
|
||||
else
|
||||
{
|
||||
int src_index = mad24(gy, src_step, gx * (int)sizeof(T) + src_offset);
|
||||
dst[0] = *((__global const T*)(srcptr + src_index));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void remap_32FC2(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
__global const uchar * mapptr, int map_step, int map_offset,
|
||||
T scalar)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
|
||||
int map_index = mad24(y, map_step, x * (int)sizeof(float2) + map_offset);
|
||||
|
||||
__global const float2 * map = (__global const float2 *)(mapptr + map_index);
|
||||
__global T * dst = (__global T *)(dstptr + dst_index);
|
||||
|
||||
int2 gxy = convert_int2_sat_rte(map[0]);
|
||||
int gx = gxy.x, gy = gxy.y;
|
||||
|
||||
if (NEED_EXTRAPOLATION(gx, gy))
|
||||
EXTRAPOLATE(gxy, dst[0])
|
||||
else
|
||||
{
|
||||
int src_index = mad24(gy, src_step, gx * (int)sizeof(T) + src_offset);
|
||||
dst[0] = *((__global const T *)(srcptr + src_index));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void remap_16SC2(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
__global const uchar * mapptr, int map_step, int map_offset,
|
||||
T scalar)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
|
||||
int map_index = mad24(y, map_step, x * (int)sizeof(short2) + map_offset);
|
||||
|
||||
__global const short2 * map = (__global const short2 *)(mapptr + map_index);
|
||||
__global T * dst = (__global T *)(dstptr + dst_index);
|
||||
|
||||
int2 gxy = convert_int2(map[0]);
|
||||
int gx = gxy.x, gy = gxy.y;
|
||||
|
||||
if (NEED_EXTRAPOLATION(gx, gy))
|
||||
EXTRAPOLATE(gxy, dst[0])
|
||||
else
|
||||
{
|
||||
int src_index = mad24(gy, src_step, gx * (int)sizeof(T) + src_offset);
|
||||
dst[0] = *((__global const T *)(srcptr + src_index));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void remap_16SC2_16UC1(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
__global const uchar * map1ptr, int map1_step, int map1_offset,
|
||||
__global const uchar * map2ptr, int map2_step, int map2_offset,
|
||||
T scalar)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
|
||||
int map1_index = mad24(y, map1_step, x * (int)sizeof(short2) + map1_offset);
|
||||
int map2_index = mad24(y, map2_step, x * (int)sizeof(ushort) + map2_offset);
|
||||
|
||||
__global const short2 * map1 = (__global const short2 *)(map1ptr + map1_index);
|
||||
__global const ushort * map2 = (__global const ushort *)(map2ptr + map2_index);
|
||||
__global T * dst = (__global T *)(dstptr + dst_index);
|
||||
|
||||
int map2Value = convert_int(map2[0]) & (INTER_TAB_SIZE2 - 1);
|
||||
int dx = (map2Value & (INTER_TAB_SIZE - 1)) < (INTER_TAB_SIZE >> 1) ? 1 : 0;
|
||||
int dy = (map2Value >> INTER_BITS) < (INTER_TAB_SIZE >> 1) ? 1 : 0;
|
||||
int2 gxy = convert_int2(map1[0]) + (int2)(dx, dy);
|
||||
int gx = gxy.x, gy = gxy.y;
|
||||
|
||||
if (NEED_EXTRAPOLATION(gx, gy))
|
||||
EXTRAPOLATE(gxy, dst[0])
|
||||
else
|
||||
{
|
||||
int src_index = mad24(gy, src_step, gx * (int)sizeof(T) + src_offset);
|
||||
dst[0] = *((__global const T *)(srcptr + src_index));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#elif INTER_LINEAR
|
||||
|
||||
__kernel void remap_16SC2_16UC1(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
__global const uchar * map1ptr, int map1_step, int map1_offset,
|
||||
__global const uchar * map2ptr, int map2_step, int map2_offset,
|
||||
T nVal)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
|
||||
int map1_index = mad24(y, map1_step, x * (int)sizeof(short2) + map1_offset);
|
||||
int map2_index = mad24(y, map2_step, x * (int)sizeof(ushort) + map2_offset);
|
||||
|
||||
__global const short2 * map1 = (__global const short2 *)(map1ptr + map1_index);
|
||||
__global const ushort * map2 = (__global const ushort *)(map2ptr + map2_index);
|
||||
__global T * dst = (__global T *)(dstptr + dst_index);
|
||||
|
||||
int2 map_dataA = convert_int2(map1[0]);
|
||||
int2 map_dataB = (int2)(map_dataA.x + 1, map_dataA.y);
|
||||
int2 map_dataC = (int2)(map_dataA.x, map_dataA.y + 1);
|
||||
int2 map_dataD = (int2)(map_dataA.x + 1, map_dataA.y + 1);
|
||||
|
||||
ushort map2Value = (ushort)(map2[0] & (INTER_TAB_SIZE2 - 1));
|
||||
WT2 u = (WT2)(map2Value & (INTER_TAB_SIZE - 1), map2Value >> INTER_BITS) / (WT2)(INTER_TAB_SIZE);
|
||||
|
||||
WT scalar = convertToWT(nVal);
|
||||
WT a = scalar, b = scalar, c = scalar, d = scalar;
|
||||
|
||||
if (!NEED_EXTRAPOLATION(map_dataA.x, map_dataA.y))
|
||||
a = convertToWT(*((__global const T *)(srcptr + mad24(map_dataA.y, src_step, map_dataA.x * (int)sizeof(T) + src_offset))));
|
||||
else
|
||||
EXTRAPOLATE(map_dataA, a);
|
||||
|
||||
if (!NEED_EXTRAPOLATION(map_dataB.x, map_dataB.y))
|
||||
b = convertToWT(*((__global const T *)(srcptr + mad24(map_dataB.y, src_step, map_dataB.x * (int)sizeof(T) + src_offset))));
|
||||
else
|
||||
EXTRAPOLATE(map_dataB, b);
|
||||
|
||||
if (!NEED_EXTRAPOLATION(map_dataC.x, map_dataC.y))
|
||||
c = convertToWT(*((__global const T *)(srcptr + mad24(map_dataC.y, src_step, map_dataC.x * (int)sizeof(T) + src_offset))));
|
||||
else
|
||||
EXTRAPOLATE(map_dataC, c);
|
||||
|
||||
if (!NEED_EXTRAPOLATION(map_dataD.x, map_dataD.y))
|
||||
d = convertToWT(*((__global const T *)(srcptr + mad24(map_dataD.y, src_step, map_dataD.x * (int)sizeof(T) + src_offset))));
|
||||
else
|
||||
EXTRAPOLATE(map_dataD, d);
|
||||
|
||||
WT dst_data = a * (1 - u.x) * (1 - u.y) +
|
||||
b * (u.x) * (1 - u.y) +
|
||||
c * (1 - u.x) * (u.y) +
|
||||
d * (u.x) * (u.y);
|
||||
dst[0] = convertToT(dst_data);
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void remap_2_32FC1(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
__global const uchar * map1ptr, int map1_step, int map1_offset,
|
||||
__global const uchar * map2ptr, int map2_step, int map2_offset,
|
||||
T nVal)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
|
||||
int map1_index = mad24(y, map1_step, x * (int)sizeof(float) + map1_offset);
|
||||
int map2_index = mad24(y, map2_step, x * (int)sizeof(float) + map2_offset);
|
||||
|
||||
__global const float * map1 = (__global const float *)(map1ptr + map1_index);
|
||||
__global const float * map2 = (__global const float *)(map2ptr + map2_index);
|
||||
__global T * dst = (__global T *)(dstptr + dst_index);
|
||||
|
||||
float2 map_data = (float2)(map1[0], map2[0]);
|
||||
|
||||
int2 map_dataA = convert_int2_sat_rtn(map_data);
|
||||
int2 map_dataB = (int2)(map_dataA.x + 1, map_dataA.y);
|
||||
int2 map_dataC = (int2)(map_dataA.x, map_dataA.y + 1);
|
||||
int2 map_dataD = (int2)(map_dataA.x + 1, map_dataA.y + 1);
|
||||
|
||||
float2 _u = map_data - convert_float2(map_dataA);
|
||||
WT2 u = convertToWT2(convert_int2_rte(convertToWT2(_u) * (WT2)INTER_TAB_SIZE)) / (WT2)INTER_TAB_SIZE;
|
||||
WT scalar = convertToWT(nVal);
|
||||
WT a = scalar, b = scalar, c = scalar, d = scalar;
|
||||
|
||||
if (!NEED_EXTRAPOLATION(map_dataA.x, map_dataA.y))
|
||||
a = convertToWT(*((__global const T *)(srcptr + mad24(map_dataA.y, src_step, map_dataA.x * (int)sizeof(T) + src_offset))));
|
||||
else
|
||||
EXTRAPOLATE(map_dataA, a);
|
||||
|
||||
if (!NEED_EXTRAPOLATION(map_dataB.x, map_dataB.y))
|
||||
b = convertToWT(*((__global const T *)(srcptr + mad24(map_dataB.y, src_step, map_dataB.x * (int)sizeof(T) + src_offset))));
|
||||
else
|
||||
EXTRAPOLATE(map_dataB, b);
|
||||
|
||||
if (!NEED_EXTRAPOLATION(map_dataC.x, map_dataC.y))
|
||||
c = convertToWT(*((__global const T *)(srcptr + mad24(map_dataC.y, src_step, map_dataC.x * (int)sizeof(T) + src_offset))));
|
||||
else
|
||||
EXTRAPOLATE(map_dataC, c);
|
||||
|
||||
if (!NEED_EXTRAPOLATION(map_dataD.x, map_dataD.y))
|
||||
d = convertToWT(*((__global const T *)(srcptr + mad24(map_dataD.y, src_step, map_dataD.x * (int)sizeof(T) + src_offset))));
|
||||
else
|
||||
EXTRAPOLATE(map_dataD, d);
|
||||
|
||||
WT dst_data = a * (1 - u.x) * (1 - u.y) +
|
||||
b * (u.x) * (1 - u.y) +
|
||||
c * (1 - u.x) * (u.y) +
|
||||
d * (u.x) * (u.y);
|
||||
dst[0] = convertToT(dst_data);
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void remap_32FC2(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
__global const uchar * mapptr, int map_step, int map_offset,
|
||||
T nVal)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
|
||||
int map_index = mad24(y, map_step, x * (int)sizeof(float2) + map_offset);
|
||||
|
||||
__global const float2 * map = (__global const float2 *)(mapptr + map_index);
|
||||
__global T * dst = (__global T *)(dstptr + dst_index);
|
||||
|
||||
float2 map_data = map[0];
|
||||
int2 map_dataA = convert_int2_sat_rtn(map_data);
|
||||
int2 map_dataB = (int2)(map_dataA.x + 1, map_dataA.y);
|
||||
int2 map_dataC = (int2)(map_dataA.x, map_dataA.y + 1);
|
||||
int2 map_dataD = (int2)(map_dataA.x + 1, map_dataA.y + 1);
|
||||
|
||||
float2 _u = map_data - convert_float2(map_dataA);
|
||||
WT2 u = convertToWT2(convert_int2_rte(convertToWT2(_u) * (WT2)INTER_TAB_SIZE)) / (WT2)INTER_TAB_SIZE;
|
||||
WT scalar = convertToWT(nVal);
|
||||
WT a = scalar, b = scalar, c = scalar, d = scalar;
|
||||
|
||||
if (!NEED_EXTRAPOLATION(map_dataA.x, map_dataA.y))
|
||||
a = convertToWT(*((__global const T *)(srcptr + mad24(map_dataA.y, src_step, map_dataA.x * (int)sizeof(T) + src_offset))));
|
||||
else
|
||||
EXTRAPOLATE(map_dataA, a);
|
||||
|
||||
if (!NEED_EXTRAPOLATION(map_dataB.x, map_dataB.y))
|
||||
b = convertToWT(*((__global const T *)(srcptr + mad24(map_dataB.y, src_step, map_dataB.x * (int)sizeof(T) + src_offset))));
|
||||
else
|
||||
EXTRAPOLATE(map_dataB, b);
|
||||
|
||||
if (!NEED_EXTRAPOLATION(map_dataC.x, map_dataC.y))
|
||||
c = convertToWT(*((__global const T *)(srcptr + mad24(map_dataC.y, src_step, map_dataC.x * (int)sizeof(T) + src_offset))));
|
||||
else
|
||||
EXTRAPOLATE(map_dataC, c);
|
||||
|
||||
if (!NEED_EXTRAPOLATION(map_dataD.x, map_dataD.y))
|
||||
d = convertToWT(*((__global const T *)(srcptr + mad24(map_dataD.y, src_step, map_dataD.x * (int)sizeof(T) + src_offset))));
|
||||
else
|
||||
EXTRAPOLATE(map_dataD, d);
|
||||
|
||||
WT dst_data = a * (1 - u.x) * (1 - u.y) +
|
||||
b * (u.x) * (1 - u.y) +
|
||||
c * (1 - u.x) * (u.y) +
|
||||
d * (u.x) * (u.y);
|
||||
dst[0] = convertToT(dst_data);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
234
modules/imgproc/src/opencl/warp_affine.cl
Normal file
234
modules/imgproc/src/opencl/warp_affine.cl
Normal file
@ -0,0 +1,234 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Zhang Ying, zhangying913@gmail.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifdef DOUBLE_SUPPORT
|
||||
#ifdef cl_amd_fp64
|
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable
|
||||
#elif defined (cl_khr_fp64)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#endif
|
||||
#define CT double
|
||||
#else
|
||||
#define CT float
|
||||
#endif
|
||||
|
||||
#define INTER_BITS 5
|
||||
#define INTER_TAB_SIZE (1 << INTER_BITS)
|
||||
#define INTER_SCALE 1.f/INTER_TAB_SIZE
|
||||
#define AB_BITS max(10, (int)INTER_BITS)
|
||||
#define AB_SCALE (1 << AB_BITS)
|
||||
#define INTER_REMAP_COEF_BITS 15
|
||||
#define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS)
|
||||
|
||||
#define noconvert
|
||||
|
||||
#ifdef INTER_NEAREST
|
||||
|
||||
__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
__constant CT * M, T scalar)
|
||||
{
|
||||
int dx = get_global_id(0);
|
||||
int dy = get_global_id(1);
|
||||
|
||||
if (dx < dst_cols && dy < dst_rows)
|
||||
{
|
||||
int round_delta = (AB_SCALE >> 1);
|
||||
|
||||
int X0 = rint(M[0] * dx * AB_SCALE);
|
||||
int Y0 = rint(M[3] * dx * AB_SCALE);
|
||||
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta;
|
||||
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta;
|
||||
|
||||
short sx = convert_short_sat(X0 >> AB_BITS);
|
||||
short sy = convert_short_sat(Y0 >> AB_BITS);
|
||||
|
||||
int dst_index = mad24(dy, dst_step, dst_offset + dx * (int)sizeof(T));
|
||||
__global T * dst = (__global T *)(dstptr + dst_index);
|
||||
|
||||
if (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows)
|
||||
{
|
||||
int src_index = mad24(sy, src_step, src_offset + sx * (int)sizeof(T));
|
||||
__global const T * src = (__global const T *)(srcptr + src_index);
|
||||
dst[0] = src[0];
|
||||
}
|
||||
else
|
||||
dst[0] = scalar;
|
||||
}
|
||||
}
|
||||
|
||||
#elif defined INTER_LINEAR
|
||||
|
||||
__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
__constant CT * M, WT scalar)
|
||||
{
|
||||
int dx = get_global_id(0);
|
||||
int dy = get_global_id(1);
|
||||
|
||||
if (dx < dst_cols && dy < dst_rows)
|
||||
{
|
||||
int round_delta = AB_SCALE/INTER_TAB_SIZE/2;
|
||||
|
||||
int tmp = (dx << AB_BITS);
|
||||
int X0 = rint(M[0] * tmp);
|
||||
int Y0 = rint(M[3] * tmp);
|
||||
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta;
|
||||
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta;
|
||||
X0 = X0 >> (AB_BITS - INTER_BITS);
|
||||
Y0 = Y0 >> (AB_BITS - INTER_BITS);
|
||||
|
||||
short sx = convert_short_sat(X0 >> INTER_BITS);
|
||||
short sy = convert_short_sat(Y0 >> INTER_BITS);
|
||||
short ax = convert_short(X0 & (INTER_TAB_SIZE-1));
|
||||
short ay = convert_short(Y0 & (INTER_TAB_SIZE-1));
|
||||
|
||||
WT v0 = (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows) ?
|
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy, src_step, src_offset + sx * (int)sizeof(T)))) : scalar;
|
||||
WT v1 = (sx+1 >= 0 && sx+1 < src_cols && sy >= 0 && sy < src_rows) ?
|
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy, src_step, src_offset + (sx+1) * (int)sizeof(T)))) : scalar;
|
||||
WT v2 = (sx >= 0 && sx < src_cols && sy+1 >= 0 && sy+1 < src_rows) ?
|
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy+1, src_step, src_offset + sx * (int)sizeof(T)))) : scalar;
|
||||
WT v3 = (sx+1 >= 0 && sx+1 < src_cols && sy+1 >= 0 && sy+1 < src_rows) ?
|
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy+1, src_step, src_offset + (sx+1) * (int)sizeof(T)))) : scalar;
|
||||
|
||||
float taby = 1.f/INTER_TAB_SIZE*ay;
|
||||
float tabx = 1.f/INTER_TAB_SIZE*ax;
|
||||
|
||||
int dst_index = mad24(dy, dst_step, dst_offset + dx * (int)sizeof(T));
|
||||
__global T * dst = (__global T *)(dstptr + dst_index);
|
||||
|
||||
#if depth <= 4
|
||||
int itab0 = convert_short_sat_rte( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
|
||||
int itab1 = convert_short_sat_rte( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE );
|
||||
int itab2 = convert_short_sat_rte( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
|
||||
int itab3 = convert_short_sat_rte( taby*tabx * INTER_REMAP_COEF_SCALE );
|
||||
|
||||
WT val = v0 * itab0 + v1 * itab1 + v2 * itab2 + v3 * itab3;
|
||||
dst[0] = convertToT((val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS);
|
||||
#else
|
||||
float tabx2 = 1.0f - tabx, taby2 = 1.0f - taby;
|
||||
WT val = v0 * tabx2 * taby2 + v1 * tabx * taby2 + v2 * tabx2 * taby + v3 * tabx * taby;
|
||||
dst[0] = convertToT(val);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#elif defined INTER_CUBIC
|
||||
|
||||
inline void interpolateCubic( float x, float* coeffs )
|
||||
{
|
||||
const float A = -0.75f;
|
||||
|
||||
coeffs[0] = ((A*(x + 1.f) - 5.0f*A)*(x + 1.f) + 8.0f*A)*(x + 1.f) - 4.0f*A;
|
||||
coeffs[1] = ((A + 2.f)*x - (A + 3.f))*x*x + 1.f;
|
||||
coeffs[2] = ((A + 2.f)*(1.f - x) - (A + 3.f))*(1.f - x)*(1.f - x) + 1.f;
|
||||
coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2];
|
||||
}
|
||||
|
||||
__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
__constant CT * M, WT scalar)
|
||||
{
|
||||
int dx = get_global_id(0);
|
||||
int dy = get_global_id(1);
|
||||
|
||||
if (dx < dst_cols && dy < dst_rows)
|
||||
{
|
||||
int round_delta = ((AB_SCALE>>INTER_BITS)>>1);
|
||||
|
||||
int tmp = (dx << AB_BITS);
|
||||
int X0 = rint(M[0] * tmp);
|
||||
int Y0 = rint(M[3] * tmp);
|
||||
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta;
|
||||
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta;
|
||||
X0 = X0 >> (AB_BITS - INTER_BITS);
|
||||
Y0 = Y0 >> (AB_BITS - INTER_BITS);
|
||||
|
||||
int sx = (short)(X0 >> INTER_BITS) - 1;
|
||||
int sy = (short)(Y0 >> INTER_BITS) - 1;
|
||||
int ay = (short)(Y0 & (INTER_TAB_SIZE-1));
|
||||
int ax = (short)(X0 & (INTER_TAB_SIZE-1));
|
||||
|
||||
WT v[16];
|
||||
#pragma unroll
|
||||
for (int y = 0; y < 4; y++)
|
||||
#pragma unroll
|
||||
for (int x = 0; x < 4; x++)
|
||||
v[mad24(y, 4, x)] = (sx+x >= 0 && sx+x < src_cols && sy+y >= 0 && sy+y < src_rows) ?
|
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy+y, src_step, src_offset + (sx+x) * (int)sizeof(T)))) : scalar;
|
||||
|
||||
float tab1y[4], tab1x[4];
|
||||
|
||||
float ayy = INTER_SCALE * ay;
|
||||
float axx = INTER_SCALE * ax;
|
||||
interpolateCubic(ayy, tab1y);
|
||||
interpolateCubic(axx, tab1x);
|
||||
|
||||
int dst_index = mad24(dy, dst_step, dst_offset + dx * (int)sizeof(T));
|
||||
__global T * dst = (__global T *)(dstptr + dst_index);
|
||||
|
||||
WT sum = (WT)(0);
|
||||
#if depth <= 4
|
||||
int itab[16];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 16; i++)
|
||||
itab[i] = rint(tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE);
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 16; i++)
|
||||
sum += v[i] * itab[i];
|
||||
dst[0] = convertToT( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS );
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 16; i++)
|
||||
sum += v[i] * tab1y[(i>>2)] * tab1x[(i&3)];
|
||||
dst[0] = convertToT( sum );
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
223
modules/imgproc/src/opencl/warp_perspective.cl
Normal file
223
modules/imgproc/src/opencl/warp_perspective.cl
Normal file
@ -0,0 +1,223 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Zhang Ying, zhangying913@gmail.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifdef DOUBLE_SUPPORT
|
||||
#ifdef cl_amd_fp64
|
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable
|
||||
#elif defined (cl_khr_fp64)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#endif
|
||||
#define CT double
|
||||
#else
|
||||
#define CT float
|
||||
#endif
|
||||
|
||||
#define INTER_BITS 5
|
||||
#define INTER_TAB_SIZE (1 << INTER_BITS)
|
||||
#define INTER_SCALE 1.f / INTER_TAB_SIZE
|
||||
#define AB_BITS max(10, (int)INTER_BITS)
|
||||
#define AB_SCALE (1 << AB_BITS)
|
||||
#define INTER_REMAP_COEF_BITS 15
|
||||
#define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS)
|
||||
|
||||
#define noconvert
|
||||
|
||||
#ifdef INTER_NEAREST
|
||||
|
||||
__kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
__constant CT * M, T scalar)
|
||||
{
|
||||
int dx = get_global_id(0);
|
||||
int dy = get_global_id(1);
|
||||
|
||||
if (dx < dst_cols && dy < dst_rows)
|
||||
{
|
||||
CT X0 = M[0] * dx + M[1] * dy + M[2];
|
||||
CT Y0 = M[3] * dx + M[4] * dy + M[5];
|
||||
CT W = M[6] * dx + M[7] * dy + M[8];
|
||||
W = W != 0.0f ? 1.f / W : 0.0f;
|
||||
short sx = convert_short_sat_rte(X0*W);
|
||||
short sy = convert_short_sat_rte(Y0*W);
|
||||
|
||||
int dst_index = mad24(dy, dst_step, dx * (int)sizeof(T) + dst_offset);
|
||||
__global T * dst = (__global T *)(dstptr + dst_index);
|
||||
|
||||
if (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows)
|
||||
{
|
||||
int src_index = mad24(sy, src_step, sx * (int)sizeof(T) + src_offset);
|
||||
__global const T * src = (__global const T *)(srcptr + src_index);
|
||||
dst[0] = src[0];
|
||||
}
|
||||
else
|
||||
dst[0] = scalar;
|
||||
}
|
||||
}
|
||||
|
||||
#elif defined INTER_LINEAR
|
||||
|
||||
__kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
__constant CT * M, WT scalar)
|
||||
{
|
||||
int dx = get_global_id(0);
|
||||
int dy = get_global_id(1);
|
||||
|
||||
if (dx < dst_cols && dy < dst_rows)
|
||||
{
|
||||
CT X0 = M[0] * dx + M[1] * dy + M[2];
|
||||
CT Y0 = M[3] * dx + M[4] * dy + M[5];
|
||||
CT W = M[6] * dx + M[7] * dy + M[8];
|
||||
W = W != 0.0f ? INTER_TAB_SIZE / W : 0.0f;
|
||||
int X = rint(X0 * W), Y = rint(Y0 * W);
|
||||
|
||||
short sx = convert_short_sat(X >> INTER_BITS);
|
||||
short sy = convert_short_sat(Y >> INTER_BITS);
|
||||
short ay = (short)(Y & (INTER_TAB_SIZE - 1));
|
||||
short ax = (short)(X & (INTER_TAB_SIZE - 1));
|
||||
|
||||
WT v0 = (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows) ?
|
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy, src_step, src_offset + sx * (int)sizeof(T)))) : scalar;
|
||||
WT v1 = (sx+1 >= 0 && sx+1 < src_cols && sy >= 0 && sy < src_rows) ?
|
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy, src_step, src_offset + (sx+1) * (int)sizeof(T)))) : scalar;
|
||||
WT v2 = (sx >= 0 && sx < src_cols && sy+1 >= 0 && sy+1 < src_rows) ?
|
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy+1, src_step, src_offset + sx * (int)sizeof(T)))) : scalar;
|
||||
WT v3 = (sx+1 >= 0 && sx+1 < src_cols && sy+1 >= 0 && sy+1 < src_rows) ?
|
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy+1, src_step, src_offset + (sx+1) * (int)sizeof(T)))) : scalar;
|
||||
|
||||
float taby = 1.f/INTER_TAB_SIZE*ay;
|
||||
float tabx = 1.f/INTER_TAB_SIZE*ax;
|
||||
|
||||
int dst_index = mad24(dy, dst_step, dst_offset + dx * (int)sizeof(T));
|
||||
__global T * dst = (__global T *)(dstptr + dst_index);
|
||||
|
||||
#if depth <= 4
|
||||
int itab0 = convert_short_sat_rte( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
|
||||
int itab1 = convert_short_sat_rte( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE );
|
||||
int itab2 = convert_short_sat_rte( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
|
||||
int itab3 = convert_short_sat_rte( taby*tabx * INTER_REMAP_COEF_SCALE );
|
||||
|
||||
WT val = v0 * itab0 + v1 * itab1 + v2 * itab2 + v3 * itab3;
|
||||
dst[0] = convertToT((val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS);
|
||||
#else
|
||||
float tabx2 = 1.0f - tabx, taby2 = 1.0f - taby;
|
||||
WT val = v0 * tabx2 * taby2 + v1 * tabx * taby2 + v2 * tabx2 * taby + v3 * tabx * taby;
|
||||
dst[0] = convertToT(val);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#elif defined INTER_CUBIC
|
||||
|
||||
inline void interpolateCubic( float x, float* coeffs )
|
||||
{
|
||||
const float A = -0.75f;
|
||||
|
||||
coeffs[0] = ((A*(x + 1.f) - 5.0f*A)*(x + 1.f) + 8.0f*A)*(x + 1.f) - 4.0f*A;
|
||||
coeffs[1] = ((A + 2.f)*x - (A + 3.f))*x*x + 1.f;
|
||||
coeffs[2] = ((A + 2.f)*(1.f - x) - (A + 3.f))*(1.f - x)*(1.f - x) + 1.f;
|
||||
coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2];
|
||||
}
|
||||
|
||||
__kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
||||
__constant CT * M, WT scalar)
|
||||
{
|
||||
int dx = get_global_id(0);
|
||||
int dy = get_global_id(1);
|
||||
|
||||
if (dx < dst_cols && dy < dst_rows)
|
||||
{
|
||||
CT X0 = M[0] * dx + M[1] * dy + M[2];
|
||||
CT Y0 = M[3] * dx + M[4] * dy + M[5];
|
||||
CT W = M[6] * dx + M[7] * dy + M[8];
|
||||
W = W != 0.0f ? INTER_TAB_SIZE / W : 0.0f;
|
||||
int X = rint(X0 * W), Y = rint(Y0 * W);
|
||||
|
||||
short sx = convert_short_sat(X >> INTER_BITS) - 1;
|
||||
short sy = convert_short_sat(Y >> INTER_BITS) - 1;
|
||||
short ay = (short)(Y & (INTER_TAB_SIZE-1));
|
||||
short ax = (short)(X & (INTER_TAB_SIZE-1));
|
||||
|
||||
WT v[16];
|
||||
#pragma unroll
|
||||
for (int y = 0; y < 4; y++)
|
||||
#pragma unroll
|
||||
for (int x = 0; x < 4; x++)
|
||||
v[mad24(y, 4, x)] = (sx+x >= 0 && sx+x < src_cols && sy+y >= 0 && sy+y < src_rows) ?
|
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy+y, src_step, src_offset + (sx+x) * (int)sizeof(T)))) : scalar;
|
||||
|
||||
float tab1y[4], tab1x[4];
|
||||
|
||||
float ayy = INTER_SCALE * ay;
|
||||
float axx = INTER_SCALE * ax;
|
||||
interpolateCubic(ayy, tab1y);
|
||||
interpolateCubic(axx, tab1x);
|
||||
|
||||
int dst_index = mad24(dy, dst_step, dst_offset + dx * (int)sizeof(T));
|
||||
__global T * dst = (__global T *)(dstptr + dst_index);
|
||||
|
||||
WT sum = (WT)(0);
|
||||
#if depth <= 4
|
||||
int itab[16];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 16; i++)
|
||||
itab[i] = rint(tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE);
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 16; i++)
|
||||
sum += v[i] * itab[i];
|
||||
dst[0] = convertToT( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS );
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 16; i++)
|
||||
sum += v[i] * tab1y[(i>>2)] * tab1x[(i&3)];
|
||||
dst[0] = convertToT( sum );
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
@ -60,8 +60,105 @@
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
enum
|
||||
{
|
||||
noType = -1
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// resize
|
||||
// warpAffine & warpPerspective
|
||||
|
||||
PARAM_TEST_CASE(WarpTestBase, MatType, Interpolation, bool, bool)
|
||||
{
|
||||
int type, interpolation;
|
||||
Size dsize;
|
||||
bool useRoi, mapInverse;
|
||||
|
||||
TEST_DECLARE_INPUT_PARAMETER(src)
|
||||
TEST_DECLARE_OUTPUT_PARAMETER(dst)
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
type = GET_PARAM(0);
|
||||
interpolation = GET_PARAM(1);
|
||||
mapInverse = GET_PARAM(2);
|
||||
useRoi = GET_PARAM(3);
|
||||
|
||||
if (mapInverse)
|
||||
interpolation |= WARP_INVERSE_MAP;
|
||||
}
|
||||
|
||||
void random_roi()
|
||||
{
|
||||
dsize = randomSize(1, MAX_VALUE);
|
||||
|
||||
Size roiSize = randomSize(1, MAX_VALUE);
|
||||
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(src, src_roi, roiSize, srcBorder, type, -MAX_VALUE, MAX_VALUE);
|
||||
|
||||
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(dst, dst_roi, dsize, dstBorder, type, -MAX_VALUE, MAX_VALUE);
|
||||
|
||||
UMAT_UPLOAD_INPUT_PARAMETER(src)
|
||||
UMAT_UPLOAD_OUTPUT_PARAMETER(dst)
|
||||
}
|
||||
|
||||
void Near(double threshold = 0.0)
|
||||
{
|
||||
EXPECT_MAT_NEAR(dst, udst, threshold);
|
||||
EXPECT_MAT_NEAR(dst_roi, udst_roi, threshold);
|
||||
}
|
||||
};
|
||||
|
||||
/////warpAffine
|
||||
|
||||
typedef WarpTestBase WarpAffine;
|
||||
|
||||
OCL_TEST_P(WarpAffine, Mat)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times; j++)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
Mat M = getRotationMatrix2D(Point2f(src_roi.cols / 2.0f, src_roi.rows / 2.0f),
|
||||
rng.uniform(-180.f, 180.f), rng.uniform(0.4f, 2.0f));
|
||||
|
||||
OCL_OFF(cv::warpAffine(src_roi, dst_roi, M, dsize, interpolation));
|
||||
OCL_ON(cv::warpAffine(usrc_roi, udst_roi, M, dsize, interpolation));
|
||||
|
||||
Near(1.0);
|
||||
}
|
||||
}
|
||||
|
||||
//// warpPerspective
|
||||
|
||||
typedef WarpTestBase WarpPerspective;
|
||||
|
||||
OCL_TEST_P(WarpPerspective, Mat)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times; j++)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
float cols = static_cast<float>(src_roi.cols), rows = static_cast<float>(src_roi.rows);
|
||||
float cols2 = cols / 2.0f, rows2 = rows / 2.0f;
|
||||
Point2f sp[] = { Point2f(0.0f, 0.0f), Point2f(cols, 0.0f), Point2f(0.0f, rows), Point2f(cols, rows) };
|
||||
Point2f dp[] = { Point2f(rng.uniform(0.0f, cols2), rng.uniform(0.0f, rows2)),
|
||||
Point2f(rng.uniform(cols2, cols), rng.uniform(0.0f, rows2)),
|
||||
Point2f(rng.uniform(0.0f, cols2), rng.uniform(rows2, rows)),
|
||||
Point2f(rng.uniform(cols2, cols), rng.uniform(rows2, rows)) };
|
||||
Mat M = getPerspectiveTransform(sp, dp);
|
||||
|
||||
OCL_OFF(cv::warpPerspective(src_roi, dst_roi, M, dsize, interpolation));
|
||||
OCL_ON(cv::warpPerspective(usrc_roi, udst_roi, M, dsize, interpolation));
|
||||
|
||||
Near(1.0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//// resize
|
||||
|
||||
PARAM_TEST_CASE(Resize, MatType, double, double, Interpolation, bool)
|
||||
{
|
||||
@ -125,12 +222,118 @@ OCL_TEST_P(Resize, Mat)
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// remap
|
||||
|
||||
PARAM_TEST_CASE(Remap, MatDepth, Channels, std::pair<MatType, MatType>, Border, bool)
|
||||
{
|
||||
int srcType, map1Type, map2Type;
|
||||
int borderType;
|
||||
bool useRoi;
|
||||
|
||||
Scalar val;
|
||||
|
||||
TEST_DECLARE_INPUT_PARAMETER(src)
|
||||
TEST_DECLARE_INPUT_PARAMETER(map1)
|
||||
TEST_DECLARE_INPUT_PARAMETER(map2)
|
||||
TEST_DECLARE_OUTPUT_PARAMETER(dst)
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
srcType = CV_MAKE_TYPE(GET_PARAM(0), GET_PARAM(1));
|
||||
map1Type = GET_PARAM(2).first;
|
||||
map2Type = GET_PARAM(2).second;
|
||||
borderType = GET_PARAM(3);
|
||||
useRoi = GET_PARAM(4);
|
||||
}
|
||||
|
||||
void random_roi()
|
||||
{
|
||||
val = randomScalar(-MAX_VALUE, MAX_VALUE);
|
||||
Size srcROISize = randomSize(1, MAX_VALUE);
|
||||
Size dstROISize = randomSize(1, MAX_VALUE);
|
||||
|
||||
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(src, src_roi, srcROISize, srcBorder, srcType, 5, 256);
|
||||
|
||||
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(dst, dst_roi, dstROISize, dstBorder, srcType, -MAX_VALUE, MAX_VALUE);
|
||||
|
||||
int mapMaxValue = MAX_VALUE << 2;
|
||||
Border map1Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(map1, map1_roi, dstROISize, map1Border, map1Type, -mapMaxValue, mapMaxValue);
|
||||
|
||||
Border map2Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
if (map2Type != noType)
|
||||
{
|
||||
int mapMinValue = -mapMaxValue;
|
||||
if (map2Type == CV_16UC1 || map2Type == CV_16SC1)
|
||||
mapMinValue = 0, mapMaxValue = INTER_TAB_SIZE2;
|
||||
randomSubMat(map2, map2_roi, dstROISize, map2Border, map2Type, mapMinValue, mapMaxValue);
|
||||
}
|
||||
|
||||
UMAT_UPLOAD_INPUT_PARAMETER(src)
|
||||
UMAT_UPLOAD_INPUT_PARAMETER(map1)
|
||||
UMAT_UPLOAD_OUTPUT_PARAMETER(dst)
|
||||
if (noType != map2Type)
|
||||
UMAT_UPLOAD_INPUT_PARAMETER(map2)
|
||||
}
|
||||
|
||||
void Near(double threshold = 0.0)
|
||||
{
|
||||
EXPECT_MAT_NEAR(dst, udst, threshold);
|
||||
EXPECT_MAT_NEAR(dst_roi, udst_roi, threshold);
|
||||
}
|
||||
};
|
||||
|
||||
typedef Remap Remap_INTER_NEAREST;
|
||||
|
||||
OCL_TEST_P(Remap_INTER_NEAREST, Mat)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times; j++)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
OCL_OFF(cv::remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_NEAREST, borderType, val));
|
||||
OCL_ON(cv::remap(usrc_roi, udst_roi, umap1_roi, umap2_roi, INTER_NEAREST, borderType, val));
|
||||
|
||||
Near(1.0);
|
||||
}
|
||||
}
|
||||
|
||||
typedef Remap Remap_INTER_LINEAR;
|
||||
|
||||
OCL_TEST_P(Remap_INTER_LINEAR, Mat)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times; j++)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
OCL_OFF(cv::remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_LINEAR, borderType, val));
|
||||
OCL_ON(cv::remap(usrc_roi, udst_roi, umap1_roi, umap2_roi, INTER_LINEAR, borderType, val));
|
||||
|
||||
Near(2.0);
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarpResize, Resize, Combine(
|
||||
Values((MatType)CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4),
|
||||
Values(0.7, 0.4, 2.0),
|
||||
Values(0.3, 0.6, 2.0),
|
||||
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, WarpAffine, Combine(
|
||||
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
|
||||
Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR, (Interpolation)INTER_CUBIC),
|
||||
Bool(),
|
||||
Bool()));
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, WarpPerspective, Combine(
|
||||
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
|
||||
Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR, (Interpolation)INTER_CUBIC),
|
||||
Bool(),
|
||||
Bool()));
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, Resize, Combine(
|
||||
Values(CV_8UC1, CV_8UC4, CV_16UC2, CV_32FC1, CV_32FC4),
|
||||
Values(0.5, 1.5, 2.0),
|
||||
Values(0.5, 1.5, 2.0),
|
||||
Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR),
|
||||
Bool()));
|
||||
|
||||
@ -141,6 +344,33 @@ OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarpResizeArea, Resize, Combine(
|
||||
Values((Interpolation)INTER_AREA),
|
||||
Bool()));
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_LINEAR, Combine(
|
||||
Values(CV_8U, CV_16U, CV_32F),
|
||||
Values(1, 4),
|
||||
Values(std::pair<MatType, MatType>((MatType)CV_32FC1, (MatType)CV_32FC1),
|
||||
std::pair<MatType, MatType>((MatType)CV_16SC2, (MatType)CV_16UC1),
|
||||
std::pair<MatType, MatType>((MatType)CV_32FC2, noType)),
|
||||
Values((Border)BORDER_CONSTANT,
|
||||
(Border)BORDER_REPLICATE,
|
||||
(Border)BORDER_WRAP,
|
||||
(Border)BORDER_REFLECT,
|
||||
(Border)BORDER_REFLECT_101),
|
||||
Bool()));
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_NEAREST, Combine(
|
||||
Values(CV_8U, CV_16U, CV_32F),
|
||||
Values(1, 4),
|
||||
Values(std::pair<MatType, MatType>((MatType)CV_32FC1, (MatType)CV_32FC1),
|
||||
std::pair<MatType, MatType>((MatType)CV_32FC2, noType),
|
||||
std::pair<MatType, MatType>((MatType)CV_16SC2, (MatType)CV_16UC1),
|
||||
std::pair<MatType, MatType>((MatType)CV_16SC2, noType)),
|
||||
Values((Border)BORDER_CONSTANT,
|
||||
(Border)BORDER_REPLICATE,
|
||||
(Border)BORDER_WRAP,
|
||||
(Border)BORDER_REFLECT,
|
||||
(Border)BORDER_REFLECT_101),
|
||||
Bool()));
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
||||
|
@ -306,6 +306,7 @@ IMPLEMENT_PARAM_CLASS(Channels, int)
|
||||
#define OCL_ALL_CHANNELS Values(1, 2, 3, 4)
|
||||
|
||||
CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA)
|
||||
CV_ENUM(Border, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_WRAP, BORDER_REFLECT, BORDER_REFLECT_101)
|
||||
|
||||
#define OCL_INSTANTIATE_TEST_CASE_P(prefix, test_case_name, generator) \
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ ## prefix, test_case_name, generator)
|
||||
|
Loading…
Reference in New Issue
Block a user