Merge remote-tracking branch 'origin/master'
This commit is contained in:
@@ -112,6 +112,8 @@ namespace cv { namespace gpu
|
|||||||
|
|
||||||
int multiProcessorCount() const { return multi_processor_count_; }
|
int multiProcessorCount() const { return multi_processor_count_; }
|
||||||
|
|
||||||
|
size_t sharedMemPerBlock() const { return sharedMemPerBlock_; }
|
||||||
|
|
||||||
size_t freeMemory() const;
|
size_t freeMemory() const;
|
||||||
size_t totalMemory() const;
|
size_t totalMemory() const;
|
||||||
|
|
||||||
@@ -133,6 +135,7 @@ namespace cv { namespace gpu
|
|||||||
int multi_processor_count_;
|
int multi_processor_count_;
|
||||||
int majorVersion_;
|
int majorVersion_;
|
||||||
int minorVersion_;
|
int minorVersion_;
|
||||||
|
size_t sharedMemPerBlock_;
|
||||||
};
|
};
|
||||||
|
|
||||||
CV_EXPORTS void printCudaDeviceInfo(int device);
|
CV_EXPORTS void printCudaDeviceInfo(int device);
|
||||||
|
@@ -42,7 +42,6 @@
|
|||||||
|
|
||||||
#include "precomp.hpp"
|
#include "precomp.hpp"
|
||||||
#include "opencv2/core/gpumat.hpp"
|
#include "opencv2/core/gpumat.hpp"
|
||||||
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
|
|
||||||
#ifdef HAVE_CUDA
|
#ifdef HAVE_CUDA
|
||||||
@@ -301,6 +300,7 @@ void cv::gpu::DeviceInfo::query()
|
|||||||
multi_processor_count_ = prop.multiProcessorCount;
|
multi_processor_count_ = prop.multiProcessorCount;
|
||||||
majorVersion_ = prop.major;
|
majorVersion_ = prop.major;
|
||||||
minorVersion_ = prop.minor;
|
minorVersion_ = prop.minor;
|
||||||
|
sharedMemPerBlock_ = prop.sharedMemPerBlock;
|
||||||
}
|
}
|
||||||
|
|
||||||
void cv::gpu::DeviceInfo::queryMemory(size_t& free_memory, size_t& total_memory) const
|
void cv::gpu::DeviceInfo::queryMemory(size_t& free_memory, size_t& total_memory) const
|
||||||
|
@@ -426,10 +426,10 @@ void BFMatcher::radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMat
|
|||||||
|
|
||||||
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ )
|
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ )
|
||||||
{
|
{
|
||||||
const float* distptr = dist.ptr<float>(qIdx);
|
const float* distptr = distf.ptr<float>(qIdx);
|
||||||
|
|
||||||
vector<DMatch>& mq = matches[qIdx];
|
vector<DMatch>& mq = matches[qIdx];
|
||||||
for( int k = 0; k < dist.cols; k++ )
|
for( int k = 0; k < distf.cols; k++ )
|
||||||
{
|
{
|
||||||
if( distptr[k] <= maxDistance )
|
if( distptr[k] <= maxDistance )
|
||||||
mq.push_back( DMatch(qIdx, k, iIdx, distptr[k]) );
|
mq.push_back( DMatch(qIdx, k, iIdx, distptr[k]) );
|
||||||
|
@@ -885,3 +885,94 @@ Finds edges in an image using the [Canny86]_ algorithm.
|
|||||||
|
|
||||||
.. seealso:: :ocv:func:`Canny`
|
.. seealso:: :ocv:func:`Canny`
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
gpu::HoughLines
|
||||||
|
---------------
|
||||||
|
Finds lines in a binary image using the classical Hough transform.
|
||||||
|
|
||||||
|
.. ocv:function:: void gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096)
|
||||||
|
|
||||||
|
.. ocv:function:: void gpu::HoughLines(const GpuMat& src, GpuMat& lines, GpuMat& accum, GpuMat& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096)
|
||||||
|
|
||||||
|
:param src: 8-bit, single-channel binary source image.
|
||||||
|
|
||||||
|
:param lines: Output vector of lines. Each line is represented by a two-element vector :math:`(\rho, \theta)` . :math:`\rho` is the distance from the coordinate origin :math:`(0,0)` (top-left corner of the image). :math:`\theta` is the line rotation angle in radians ( :math:`0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}` ).
|
||||||
|
|
||||||
|
:param rho: Distance resolution of the accumulator in pixels.
|
||||||
|
|
||||||
|
:param theta: Angle resolution of the accumulator in radians.
|
||||||
|
|
||||||
|
:param threshold: Accumulator threshold parameter. Only those lines are returned that get enough votes ( :math:`>\texttt{threshold}` ).
|
||||||
|
|
||||||
|
:param doSort: Performs lines sort by votes.
|
||||||
|
|
||||||
|
:param maxLines: Maximum number of output lines.
|
||||||
|
|
||||||
|
:param accum: Optional buffer for accumulator to avoid extra memory allocations (for many calls with the same sizes).
|
||||||
|
|
||||||
|
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes).
|
||||||
|
|
||||||
|
.. seealso:: :ocv:func:`HoughLines`
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
gpu::HoughLinesTransform
|
||||||
|
------------------------
|
||||||
|
Performs classical Hough transform for line detection.
|
||||||
|
|
||||||
|
.. ocv:function:: void gpu::HoughLinesTransform(const GpuMat& src, GpuMat& accum, GpuMat& buf, float rho, float theta)
|
||||||
|
|
||||||
|
:param src: 8-bit, single-channel binary source image.
|
||||||
|
|
||||||
|
:param accum: Output accumulator array.
|
||||||
|
|
||||||
|
:param buf: Buffer to avoid extra memory allocations (for many calls with the same sizes).
|
||||||
|
|
||||||
|
:param rho: Distance resolution of the accumulator in pixels.
|
||||||
|
|
||||||
|
:param theta: Angle resolution of the accumulator in radians.
|
||||||
|
|
||||||
|
:param threshold: Accumulator threshold parameter. Only those lines are returned that get enough votes ( :math:`>\texttt{threshold}` ).
|
||||||
|
|
||||||
|
.. seealso:: :ocv:func:`gpu::HoughLines`
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
gpu::HoughLinesGet
|
||||||
|
------------------
|
||||||
|
Finds lines in Hough space.
|
||||||
|
|
||||||
|
.. ocv:function:: void gpu::HoughLinesGet(const GpuMat& accum, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096)
|
||||||
|
|
||||||
|
:param accum: Accumulator array.
|
||||||
|
|
||||||
|
:param lines: Output vector of lines. Each line is represented by a two-element vector :math:`(\rho, \theta)` . :math:`\rho` is the distance from the coordinate origin :math:`(0,0)` (top-left corner of the image). :math:`\theta` is the line rotation angle in radians ( :math:`0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}` ).
|
||||||
|
|
||||||
|
:param rho: Distance resolution of the accumulator in pixels.
|
||||||
|
|
||||||
|
:param theta: Angle resolution of the accumulator in radians.
|
||||||
|
|
||||||
|
:param threshold: Accumulator threshold parameter. Only those lines are returned that get enough votes ( :math:`>\texttt{threshold}` ).
|
||||||
|
|
||||||
|
:param doSort: Performs lines sort by votes.
|
||||||
|
|
||||||
|
:param maxLines: Maximum number of output lines.
|
||||||
|
|
||||||
|
.. seealso:: :ocv:func:`gpu::HoughLines`
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
gpu::HoughLinesDownload
|
||||||
|
-----------------------
|
||||||
|
Downloads results from :ocv:func:`gpu::HoughLines` to host memory.
|
||||||
|
|
||||||
|
.. ocv:function:: void gpu::HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray())
|
||||||
|
|
||||||
|
:param d_lines: Result of :ocv:func:`gpu::HoughLines` .
|
||||||
|
|
||||||
|
:param h_lines: Output host array.
|
||||||
|
|
||||||
|
:param h_votes: Optional output array for line's votes.
|
||||||
|
|
||||||
|
.. seealso:: :ocv:func:`gpu::HoughLines`
|
||||||
|
@@ -820,6 +820,12 @@ private:
|
|||||||
int nLayers_;
|
int nLayers_;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
|
||||||
|
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, GpuMat& accum, GpuMat& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
|
||||||
|
CV_EXPORTS void HoughLinesTransform(const GpuMat& src, GpuMat& accum, GpuMat& buf, float rho, float theta);
|
||||||
|
CV_EXPORTS void HoughLinesGet(const GpuMat& accum, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
|
||||||
|
CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
|
||||||
|
|
||||||
////////////////////////////// Matrix reductions //////////////////////////////
|
////////////////////////////// Matrix reductions //////////////////////////////
|
||||||
|
|
||||||
//! computes mean value and standard deviation of all or selected array elements
|
//! computes mean value and standard deviation of all or selected array elements
|
||||||
|
@@ -1331,4 +1331,51 @@ INSTANTIATE_TEST_CASE_P(ImgProc, ImagePyramid_getLayer, testing::Combine(
|
|||||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
|
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
|
||||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4))));
|
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4))));
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////
|
||||||
|
// HoughLines
|
||||||
|
|
||||||
|
IMPLEMENT_PARAM_CLASS(DoSort, bool)
|
||||||
|
|
||||||
|
GPU_PERF_TEST(HoughLines, cv::gpu::DeviceInfo, cv::Size, DoSort)
|
||||||
|
{
|
||||||
|
declare.time(30.0);
|
||||||
|
|
||||||
|
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
|
||||||
|
cv::gpu::setDevice(devInfo.deviceID());
|
||||||
|
const cv::Size size = GET_PARAM(1);
|
||||||
|
const bool doSort = GET_PARAM(2);
|
||||||
|
|
||||||
|
const float rho = 1.0f;
|
||||||
|
const float theta = CV_PI / 180.0f;
|
||||||
|
const int threshold = 300;
|
||||||
|
|
||||||
|
cv::RNG rng(123456789);
|
||||||
|
|
||||||
|
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0));
|
||||||
|
|
||||||
|
const int numLines = rng.uniform(500, 2000);
|
||||||
|
for (int i = 0; i < numLines; ++i)
|
||||||
|
{
|
||||||
|
cv::Point p1(rng.uniform(0, src.cols), rng.uniform(0, src.rows));
|
||||||
|
cv::Point p2(rng.uniform(0, src.cols), rng.uniform(0, src.rows));
|
||||||
|
cv::line(src, p1, p2, cv::Scalar::all(255), 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::gpu::GpuMat d_src(src);
|
||||||
|
cv::gpu::GpuMat d_lines;
|
||||||
|
cv::gpu::GpuMat d_accum;
|
||||||
|
cv::gpu::GpuMat d_buf;
|
||||||
|
cv::gpu::HoughLines(d_src, d_lines, d_accum, d_buf, rho, theta, threshold, doSort);
|
||||||
|
|
||||||
|
TEST_CYCLE()
|
||||||
|
{
|
||||||
|
cv::gpu::HoughLines(d_src, d_lines, d_accum, d_buf, rho, theta, threshold, doSort);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
INSTANTIATE_TEST_CASE_P(ImgProc, HoughLines, testing::Combine(
|
||||||
|
ALL_DEVICES,
|
||||||
|
GPU_TYPICAL_MAT_SIZES,
|
||||||
|
testing::Values(DoSort(false), DoSort(true))));
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@@ -727,4 +727,45 @@ INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor, testing::Combine(
|
|||||||
CvtColorInfo(1, 3, cv::COLOR_BayerGR2BGR),
|
CvtColorInfo(1, 3, cv::COLOR_BayerGR2BGR),
|
||||||
CvtColorInfo(4, 4, cv::COLOR_RGBA2mRGBA))));
|
CvtColorInfo(4, 4, cv::COLOR_RGBA2mRGBA))));
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////
|
||||||
|
// HoughLines
|
||||||
|
|
||||||
|
IMPLEMENT_PARAM_CLASS(DoSort, bool)
|
||||||
|
|
||||||
|
GPU_PERF_TEST(HoughLines, cv::gpu::DeviceInfo, cv::Size, DoSort)
|
||||||
|
{
|
||||||
|
declare.time(30.0);
|
||||||
|
|
||||||
|
const cv::Size size = GET_PARAM(1);
|
||||||
|
|
||||||
|
const float rho = 1.0f;
|
||||||
|
const float theta = CV_PI / 180.0f;
|
||||||
|
const int threshold = 300;
|
||||||
|
|
||||||
|
cv::RNG rng(123456789);
|
||||||
|
|
||||||
|
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0));
|
||||||
|
|
||||||
|
const int numLines = rng.uniform(500, 2000);
|
||||||
|
for (int i = 0; i < numLines; ++i)
|
||||||
|
{
|
||||||
|
cv::Point p1(rng.uniform(0, src.cols), rng.uniform(0, src.rows));
|
||||||
|
cv::Point p2(rng.uniform(0, src.cols), rng.uniform(0, src.rows));
|
||||||
|
cv::line(src, p1, p2, cv::Scalar::all(255), 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<cv::Vec2f> lines;
|
||||||
|
cv::HoughLines(src, lines, rho, theta, threshold);
|
||||||
|
|
||||||
|
TEST_CYCLE()
|
||||||
|
{
|
||||||
|
cv::HoughLines(src, lines, rho, theta, threshold);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
INSTANTIATE_TEST_CASE_P(ImgProc, HoughLines, testing::Combine(
|
||||||
|
ALL_DEVICES,
|
||||||
|
GPU_TYPICAL_MAT_SIZES,
|
||||||
|
testing::Values(DoSort(false), DoSort(true))));
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
295
modules/gpu/src/cuda/hough.cu
Normal file
295
modules/gpu/src/cuda/hough.cu
Normal file
@@ -0,0 +1,295 @@
|
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or bpied warranties, including, but not limited to, the bpied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include <thrust/sort.h>
|
||||||
|
#include "opencv2/gpu/device/common.hpp"
|
||||||
|
#include "opencv2/gpu/device/emulation.hpp"
|
||||||
|
|
||||||
|
namespace cv { namespace gpu { namespace device
|
||||||
|
{
|
||||||
|
namespace hough
|
||||||
|
{
|
||||||
|
__device__ int g_counter;
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
// buildPointList
|
||||||
|
|
||||||
|
const int PIXELS_PER_THREAD = 16;
|
||||||
|
|
||||||
|
__global__ void buildPointList(const DevMem2Db src, unsigned int* list)
|
||||||
|
{
|
||||||
|
__shared__ int s_queues[4][32 * PIXELS_PER_THREAD];
|
||||||
|
__shared__ int s_qsize[4];
|
||||||
|
__shared__ int s_start[4];
|
||||||
|
|
||||||
|
const int x = blockIdx.x * blockDim.x * PIXELS_PER_THREAD + threadIdx.x;
|
||||||
|
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||||
|
|
||||||
|
if (y >= src.rows)
|
||||||
|
return;
|
||||||
|
|
||||||
|
if (threadIdx.x == 0)
|
||||||
|
s_qsize[threadIdx.y] = 0;
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// fill the queue
|
||||||
|
for (int i = 0, xx = x; i < PIXELS_PER_THREAD && xx < src.cols; ++i, xx += blockDim.x)
|
||||||
|
{
|
||||||
|
if (src(y, xx))
|
||||||
|
{
|
||||||
|
const unsigned int val = (y << 16) | xx;
|
||||||
|
const int qidx = Emulation::smem::atomicAdd(&s_qsize[threadIdx.y], 1);
|
||||||
|
s_queues[threadIdx.y][qidx] = val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// let one thread reserve the space required in the global list
|
||||||
|
if (threadIdx.x == 0 && threadIdx.y == 0)
|
||||||
|
{
|
||||||
|
// find how many items are stored in each list
|
||||||
|
int total_size = 0;
|
||||||
|
for (int i = 0; i < blockDim.y; ++i)
|
||||||
|
{
|
||||||
|
s_start[i] = total_size;
|
||||||
|
total_size += s_qsize[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
// calculate the offset in the global list
|
||||||
|
const int global_offset = atomicAdd(&g_counter, total_size);
|
||||||
|
for (int i = 0; i < blockDim.y; ++i)
|
||||||
|
s_start[i] += global_offset;
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// copy local queues to global queue
|
||||||
|
const int qsize = s_qsize[threadIdx.y];
|
||||||
|
for(int i = threadIdx.x; i < qsize; i += blockDim.x)
|
||||||
|
{
|
||||||
|
const unsigned int val = s_queues[threadIdx.y][i];
|
||||||
|
list[s_start[threadIdx.y] + i] = val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int buildPointList_gpu(DevMem2Db src, unsigned int* list)
|
||||||
|
{
|
||||||
|
void* counter_ptr;
|
||||||
|
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, g_counter) );
|
||||||
|
|
||||||
|
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(int)) );
|
||||||
|
|
||||||
|
const dim3 block(32, 4);
|
||||||
|
const dim3 grid(divUp(src.cols, block.x * PIXELS_PER_THREAD), divUp(src.rows, block.y));
|
||||||
|
|
||||||
|
cudaSafeCall( cudaFuncSetCacheConfig(buildPointList, cudaFuncCachePreferShared) );
|
||||||
|
|
||||||
|
buildPointList<<<grid, block>>>(src, list);
|
||||||
|
cudaSafeCall( cudaGetLastError() );
|
||||||
|
|
||||||
|
cudaSafeCall( cudaDeviceSynchronize() );
|
||||||
|
|
||||||
|
int total_count;
|
||||||
|
cudaSafeCall( cudaMemcpy(&total_count, counter_ptr, sizeof(int), cudaMemcpyDeviceToHost) );
|
||||||
|
|
||||||
|
return total_count;
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
// linesAccum
|
||||||
|
|
||||||
|
__global__ void linesAccumGlobal(const unsigned int* list, const int count, PtrStepi accum, const float irho, const float theta, const int numrho)
|
||||||
|
{
|
||||||
|
const int n = blockIdx.x;
|
||||||
|
const float ang = n * theta;
|
||||||
|
|
||||||
|
float sin_ang;
|
||||||
|
float cos_ang;
|
||||||
|
sincosf(ang, &sin_ang, &cos_ang);
|
||||||
|
|
||||||
|
const float tabSin = sin_ang * irho;
|
||||||
|
const float tabCos = cos_ang * irho;
|
||||||
|
|
||||||
|
for (int i = threadIdx.x; i < count; i += blockDim.x)
|
||||||
|
{
|
||||||
|
const unsigned int qvalue = list[i];
|
||||||
|
|
||||||
|
const int x = (qvalue & 0x0000FFFF);
|
||||||
|
const int y = (qvalue >> 16) & 0x0000FFFF;
|
||||||
|
|
||||||
|
int r = __float2int_rn(x * tabCos + y * tabSin);
|
||||||
|
r += (numrho - 1) / 2;
|
||||||
|
|
||||||
|
::atomicAdd(accum.ptr(n + 1) + r + 1, 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__ void linesAccumShared(const unsigned int* list, const int count, PtrStepi accum, const float irho, const float theta, const int numrho)
|
||||||
|
{
|
||||||
|
extern __shared__ int smem[];
|
||||||
|
|
||||||
|
for (int i = threadIdx.x; i < numrho + 1; i += blockDim.x)
|
||||||
|
smem[i] = 0;
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
const int n = blockIdx.x;
|
||||||
|
const float ang = n * theta;
|
||||||
|
|
||||||
|
float sin_ang;
|
||||||
|
float cos_ang;
|
||||||
|
sincosf(ang, &sin_ang, &cos_ang);
|
||||||
|
|
||||||
|
const float tabSin = sin_ang * irho;
|
||||||
|
const float tabCos = cos_ang * irho;
|
||||||
|
|
||||||
|
for (int i = threadIdx.x; i < count; i += blockDim.x)
|
||||||
|
{
|
||||||
|
const unsigned int qvalue = list[i];
|
||||||
|
|
||||||
|
const int x = (qvalue & 0x0000FFFF);
|
||||||
|
const int y = (qvalue >> 16) & 0x0000FFFF;
|
||||||
|
|
||||||
|
int r = __float2int_rn(x * tabCos + y * tabSin);
|
||||||
|
r += (numrho - 1) / 2;
|
||||||
|
|
||||||
|
Emulation::smem::atomicAdd(&smem[r + 1], 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
for (int i = threadIdx.x; i < numrho; i += blockDim.x)
|
||||||
|
accum(n + 1, i) = smem[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
void linesAccum_gpu(const unsigned int* list, int count, DevMem2Di accum, float rho, float theta, size_t sharedMemPerBlock)
|
||||||
|
{
|
||||||
|
const dim3 block(1024);
|
||||||
|
const dim3 grid(accum.rows - 2);
|
||||||
|
|
||||||
|
cudaSafeCall( cudaFuncSetCacheConfig(linesAccumShared, cudaFuncCachePreferShared) );
|
||||||
|
|
||||||
|
size_t smemSize = (accum.cols - 1) * sizeof(int);
|
||||||
|
|
||||||
|
if (smemSize < sharedMemPerBlock - 1000)
|
||||||
|
linesAccumShared<<<grid, block, smemSize>>>(list, count, accum, 1.0f / rho, theta, accum.cols - 2);
|
||||||
|
else
|
||||||
|
linesAccumGlobal<<<grid, block>>>(list, count, accum, 1.0f / rho, theta, accum.cols - 2);
|
||||||
|
|
||||||
|
cudaSafeCall( cudaGetLastError() );
|
||||||
|
|
||||||
|
cudaSafeCall( cudaDeviceSynchronize() );
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
// linesGetResult
|
||||||
|
|
||||||
|
__global__ void linesGetResult(const DevMem2Di accum, float2* out, int* votes, const int maxSize, const float threshold, const float theta, const float rho, const int numrho)
|
||||||
|
{
|
||||||
|
__shared__ int smem[8][32];
|
||||||
|
|
||||||
|
int r = blockIdx.x * (blockDim.x - 2) + threadIdx.x;
|
||||||
|
int n = blockIdx.y * (blockDim.y - 2) + threadIdx.y;
|
||||||
|
|
||||||
|
if (r >= accum.cols || n >= accum.rows)
|
||||||
|
return;
|
||||||
|
|
||||||
|
smem[threadIdx.y][threadIdx.x] = accum(n, r);
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
r -= 1;
|
||||||
|
n -= 1;
|
||||||
|
|
||||||
|
if (threadIdx.x == 0 || threadIdx.x == blockDim.x - 1 || threadIdx.y == 0 || threadIdx.y == blockDim.y - 1 || r >= accum.cols - 2 || n >= accum.rows - 2)
|
||||||
|
return;
|
||||||
|
|
||||||
|
if (smem[threadIdx.y][threadIdx.x] > threshold &&
|
||||||
|
smem[threadIdx.y][threadIdx.x] > smem[threadIdx.y - 1][threadIdx.x] &&
|
||||||
|
smem[threadIdx.y][threadIdx.x] >= smem[threadIdx.y + 1][threadIdx.x] &&
|
||||||
|
smem[threadIdx.y][threadIdx.x] > smem[threadIdx.y][threadIdx.x - 1] &&
|
||||||
|
smem[threadIdx.y][threadIdx.x] >= smem[threadIdx.y][threadIdx.x + 1])
|
||||||
|
{
|
||||||
|
const float radius = (r - (numrho - 1) * 0.5f) * rho;
|
||||||
|
const float angle = n * theta;
|
||||||
|
|
||||||
|
const int ind = ::atomicAdd(&g_counter, 1);
|
||||||
|
if (ind < maxSize)
|
||||||
|
{
|
||||||
|
out[ind] = make_float2(radius, angle);
|
||||||
|
votes[ind] = smem[threadIdx.y][threadIdx.x];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int linesGetResult_gpu(DevMem2Di accum, float2* out, int* votes, int maxSize, float rho, float theta, float threshold, bool doSort)
|
||||||
|
{
|
||||||
|
void* counter_ptr;
|
||||||
|
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, g_counter) );
|
||||||
|
|
||||||
|
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(int)) );
|
||||||
|
|
||||||
|
const dim3 block(32, 8);
|
||||||
|
const dim3 grid(divUp(accum.cols, block.x - 2), divUp(accum.rows, block.y - 2));
|
||||||
|
|
||||||
|
linesGetResult<<<grid, block>>>(accum, out, votes, maxSize, threshold, theta, rho, accum.cols - 2);
|
||||||
|
cudaSafeCall( cudaGetLastError() );
|
||||||
|
|
||||||
|
cudaSafeCall( cudaDeviceSynchronize() );
|
||||||
|
|
||||||
|
int total_count;
|
||||||
|
cudaSafeCall( cudaMemcpy(&total_count, counter_ptr, sizeof(int), cudaMemcpyDeviceToHost) );
|
||||||
|
|
||||||
|
total_count = ::min(total_count, maxSize);
|
||||||
|
|
||||||
|
if (doSort && total_count > 0)
|
||||||
|
{
|
||||||
|
thrust::device_ptr<float2> out_ptr(out);
|
||||||
|
thrust::device_ptr<int> votes_ptr(votes);
|
||||||
|
thrust::sort_by_key(votes_ptr, votes_ptr + total_count, out_ptr, thrust::greater<int>());
|
||||||
|
}
|
||||||
|
|
||||||
|
return total_count;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}}}
|
144
modules/gpu/src/hough.cpp
Normal file
144
modules/gpu/src/hough.cpp
Normal file
@@ -0,0 +1,144 @@
|
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "precomp.hpp"
|
||||||
|
|
||||||
|
#if !defined (HAVE_CUDA)
|
||||||
|
|
||||||
|
void cv::gpu::HoughLinesTransform(const GpuMat&, GpuMat&, GpuMat&, float, float) { throw_nogpu(); }
|
||||||
|
void cv::gpu::HoughLinesGet(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); }
|
||||||
|
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); }
|
||||||
|
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); }
|
||||||
|
void cv::gpu::HoughLinesDownload(const GpuMat&, OutputArray, OutputArray) { throw_nogpu(); }
|
||||||
|
|
||||||
|
#else /* !defined (HAVE_CUDA) */
|
||||||
|
|
||||||
|
namespace cv { namespace gpu { namespace device
|
||||||
|
{
|
||||||
|
namespace hough
|
||||||
|
{
|
||||||
|
int buildPointList_gpu(DevMem2Db src, unsigned int* list);
|
||||||
|
void linesAccum_gpu(const unsigned int* list, int count, DevMem2Di accum, float rho, float theta, size_t sharedMemPerBlock);
|
||||||
|
int linesGetResult_gpu(DevMem2Di accum, float2* out, int* votes, int maxSize, float rho, float theta, float threshold, bool doSort);
|
||||||
|
}
|
||||||
|
}}}
|
||||||
|
|
||||||
|
void cv::gpu::HoughLinesTransform(const GpuMat& src, GpuMat& accum, GpuMat& buf, float rho, float theta)
|
||||||
|
{
|
||||||
|
using namespace cv::gpu::device::hough;
|
||||||
|
|
||||||
|
CV_Assert(src.type() == CV_8UC1);
|
||||||
|
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max());
|
||||||
|
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max());
|
||||||
|
|
||||||
|
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf);
|
||||||
|
|
||||||
|
const int count = buildPointList_gpu(src, buf.ptr<unsigned int>());
|
||||||
|
|
||||||
|
const int numangle = cvRound(CV_PI / theta);
|
||||||
|
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
|
||||||
|
|
||||||
|
CV_Assert(numangle > 0 && numrho > 0);
|
||||||
|
|
||||||
|
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum);
|
||||||
|
accum.setTo(cv::Scalar::all(0));
|
||||||
|
|
||||||
|
cv::gpu::DeviceInfo devInfo;
|
||||||
|
|
||||||
|
if (count > 0)
|
||||||
|
linesAccum_gpu(buf.ptr<unsigned int>(), count, accum, rho, theta, devInfo.sharedMemPerBlock());
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::HoughLinesGet(const GpuMat& accum, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines)
|
||||||
|
{
|
||||||
|
using namespace cv::gpu::device;
|
||||||
|
|
||||||
|
CV_Assert(accum.type() == CV_32SC1);
|
||||||
|
|
||||||
|
ensureSizeIsEnough(2, maxLines, CV_32FC2, lines);
|
||||||
|
|
||||||
|
int count = hough::linesGetResult_gpu(accum, lines.ptr<float2>(0), lines.ptr<int>(1), maxLines, rho, theta, threshold, doSort);
|
||||||
|
|
||||||
|
if (count > 0)
|
||||||
|
lines.cols = count;
|
||||||
|
else
|
||||||
|
lines.release();
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines)
|
||||||
|
{
|
||||||
|
cv::gpu::GpuMat accum, buf;
|
||||||
|
HoughLines(src, lines, accum, buf, rho, theta, threshold, doSort, maxLines);
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, GpuMat& accum, GpuMat& buf, float rho, float theta, int threshold, bool doSort, int maxLines)
|
||||||
|
{
|
||||||
|
HoughLinesTransform(src, accum, buf, rho, theta);
|
||||||
|
HoughLinesGet(accum, lines, rho, theta, threshold, doSort, maxLines);
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines_, OutputArray h_votes_)
|
||||||
|
{
|
||||||
|
if (d_lines.empty())
|
||||||
|
{
|
||||||
|
h_lines_.release();
|
||||||
|
if (h_votes_.needed())
|
||||||
|
h_votes_.release();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
CV_Assert(d_lines.rows == 2 && d_lines.type() == CV_32FC2);
|
||||||
|
|
||||||
|
h_lines_.create(1, d_lines.cols, CV_32FC2);
|
||||||
|
cv::Mat h_lines = h_lines_.getMat();
|
||||||
|
d_lines.row(0).download(h_lines);
|
||||||
|
|
||||||
|
if (h_votes_.needed())
|
||||||
|
{
|
||||||
|
h_votes_.create(1, d_lines.cols, CV_32SC1);
|
||||||
|
cv::Mat h_votes = h_votes_.getMat();
|
||||||
|
cv::gpu::GpuMat d_votes(1, d_lines.cols, CV_32SC1, const_cast<int*>(d_lines.ptr<int>(1)));
|
||||||
|
d_votes.download(h_votes);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* !defined (HAVE_CUDA) */
|
@@ -99,7 +99,7 @@ namespace cv { namespace gpu { namespace device
|
|||||||
}
|
}
|
||||||
|
|
||||||
template<typename T>
|
template<typename T>
|
||||||
static __device__ __forceinline__ void atomicAdd(T* address, T val)
|
static __device__ __forceinline__ T atomicAdd(T* address, T val)
|
||||||
{
|
{
|
||||||
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120)
|
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120)
|
||||||
T count;
|
T count;
|
||||||
@@ -110,8 +110,10 @@ namespace cv { namespace gpu { namespace device
|
|||||||
count = tag | (count + val);
|
count = tag | (count + val);
|
||||||
*address = count;
|
*address = count;
|
||||||
} while (*address != count);
|
} while (*address != count);
|
||||||
|
|
||||||
|
return (count & TAG_MASK) - val;
|
||||||
#else
|
#else
|
||||||
::atomicAdd(address, val);
|
return ::atomicAdd(address, val);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@@ -1124,4 +1124,65 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerMinEigen, testing::Combine(
|
|||||||
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)),
|
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)),
|
||||||
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7))));
|
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7))));
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// HoughLines
|
||||||
|
|
||||||
|
PARAM_TEST_CASE(HoughLines, cv::gpu::DeviceInfo, std::string)
|
||||||
|
{
|
||||||
|
};
|
||||||
|
|
||||||
|
void drawLines(cv::Mat& dst, const std::vector<cv::Vec2f>& lines)
|
||||||
|
{
|
||||||
|
for (size_t i = 0; i < lines.size(); ++i)
|
||||||
|
{
|
||||||
|
float rho = lines[i][0], theta = lines[i][1];
|
||||||
|
cv::Point pt1, pt2;
|
||||||
|
double a = std::cos(theta), b = std::sin(theta);
|
||||||
|
double x0 = a*rho, y0 = b*rho;
|
||||||
|
pt1.x = cvRound(x0 + 1000*(-b));
|
||||||
|
pt1.y = cvRound(y0 + 1000*(a));
|
||||||
|
pt2.x = cvRound(x0 - 1000*(-b));
|
||||||
|
pt2.y = cvRound(y0 - 1000*(a));
|
||||||
|
cv::line(dst, pt1, pt2, cv::Scalar::all(255));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_P(HoughLines, Accuracy)
|
||||||
|
{
|
||||||
|
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
|
||||||
|
cv::gpu::setDevice(devInfo.deviceID());
|
||||||
|
const std::string fileName = GET_PARAM(1);
|
||||||
|
|
||||||
|
const float rho = 1.0f;
|
||||||
|
const float theta = CV_PI / 180.0f;
|
||||||
|
const int threshold = 50;
|
||||||
|
|
||||||
|
cv::Mat img = readImage(fileName, cv::IMREAD_GRAYSCALE);
|
||||||
|
ASSERT_FALSE(img.empty());
|
||||||
|
|
||||||
|
cv::Mat edges;
|
||||||
|
cv::Canny(img, edges, 50, 200);
|
||||||
|
|
||||||
|
cv::gpu::GpuMat d_lines;
|
||||||
|
cv::gpu::HoughLines(loadMat(edges), d_lines, rho, theta, threshold);
|
||||||
|
std::vector<cv::Vec2f> lines;
|
||||||
|
cv::gpu::HoughLinesDownload(d_lines, lines);
|
||||||
|
cv::Mat dst(img.size(), CV_8UC1, cv::Scalar::all(0));
|
||||||
|
drawLines(dst, lines);
|
||||||
|
|
||||||
|
std::vector<cv::Vec2f> lines_gold;
|
||||||
|
cv::HoughLines(edges, lines_gold, rho, theta, threshold);
|
||||||
|
cv::Mat dst_gold(img.size(), CV_8UC1, cv::Scalar::all(0));
|
||||||
|
drawLines(dst_gold, lines_gold);
|
||||||
|
|
||||||
|
ASSERT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughLines, testing::Combine(
|
||||||
|
ALL_DEVICES,
|
||||||
|
testing::Values(std::string("../cv/shared/pic1.png"),
|
||||||
|
std::string("../cv/shared/pic3.png"),
|
||||||
|
std::string("../cv/shared/pic5.png"),
|
||||||
|
std::string("../cv/shared/pic6.png"))));
|
||||||
|
|
||||||
} // namespace
|
} // namespace
|
||||||
|
@@ -197,7 +197,7 @@ namespace
|
|||||||
void operator() (const cv::Range& range) const;
|
void operator() (const cv::Range& range) const;
|
||||||
|
|
||||||
private:
|
private:
|
||||||
const cv::Mat frame_;
|
cv::Mat frame_;
|
||||||
|
|
||||||
mutable cv::Mat_<uchar> fgmask_;
|
mutable cv::Mat_<uchar> fgmask_;
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user