Merge pull request #1881 from pentschev:defaultNorm_master
This commit is contained in:
commit
e49b8dee40
@ -35,6 +35,7 @@ Abstract base class for computing descriptors for image keypoints. ::
|
||||
|
||||
virtual int descriptorSize() const = 0;
|
||||
virtual int descriptorType() const = 0;
|
||||
virtual int defaultNorm() const = 0;
|
||||
|
||||
static Ptr<DescriptorExtractor> create( const String& descriptorExtractorType );
|
||||
|
||||
@ -114,6 +115,7 @@ them into a single color descriptor. ::
|
||||
virtual void write( FileStorage& ) const;
|
||||
virtual int descriptorSize() const;
|
||||
virtual int descriptorType() const;
|
||||
virtual int defaultNorm() const;
|
||||
protected:
|
||||
...
|
||||
};
|
||||
@ -141,6 +143,7 @@ Strecha C., Fua P. *BRIEF: Binary Robust Independent Elementary Features* ,
|
||||
virtual void write( FileStorage& ) const;
|
||||
virtual int descriptorSize() const;
|
||||
virtual int descriptorType() const;
|
||||
virtual int defaultNorm() const;
|
||||
protected:
|
||||
...
|
||||
};
|
||||
|
@ -169,6 +169,7 @@ public:
|
||||
|
||||
CV_WRAP virtual int descriptorSize() const = 0;
|
||||
CV_WRAP virtual int descriptorType() const = 0;
|
||||
CV_WRAP virtual int defaultNorm() const = 0;
|
||||
|
||||
CV_WRAP virtual bool empty() const;
|
||||
|
||||
@ -226,6 +227,8 @@ public:
|
||||
int descriptorSize() const;
|
||||
// returns the descriptor type
|
||||
int descriptorType() const;
|
||||
// returns the default norm type
|
||||
int defaultNorm() const;
|
||||
|
||||
// Compute the BRISK features on an image
|
||||
void operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const;
|
||||
@ -320,6 +323,8 @@ public:
|
||||
int descriptorSize() const;
|
||||
// returns the descriptor type
|
||||
int descriptorType() const;
|
||||
// returns the default norm type
|
||||
int defaultNorm() const;
|
||||
|
||||
// Compute the ORB features and descriptors on an image
|
||||
void operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const;
|
||||
@ -377,6 +382,9 @@ public:
|
||||
/** returns the descriptor type */
|
||||
virtual int descriptorType() const;
|
||||
|
||||
/** returns the default norm type */
|
||||
virtual int defaultNorm() const;
|
||||
|
||||
/** select the 512 "best description pairs"
|
||||
* @param images grayscale images set
|
||||
* @param keypoints set of detected keypoints
|
||||
@ -837,6 +845,7 @@ public:
|
||||
|
||||
virtual int descriptorSize() const;
|
||||
virtual int descriptorType() const;
|
||||
virtual int defaultNorm() const;
|
||||
|
||||
virtual bool empty() const;
|
||||
|
||||
@ -863,6 +872,7 @@ public:
|
||||
|
||||
virtual int descriptorSize() const;
|
||||
virtual int descriptorType() const;
|
||||
virtual int defaultNorm() const;
|
||||
|
||||
/// @todo read and write for brief
|
||||
|
||||
|
@ -125,6 +125,11 @@ int BriefDescriptorExtractor::descriptorType() const
|
||||
return CV_8UC1;
|
||||
}
|
||||
|
||||
int BriefDescriptorExtractor::defaultNorm() const
|
||||
{
|
||||
return NORM_HAMMING;
|
||||
}
|
||||
|
||||
void BriefDescriptorExtractor::read( const FileNode& fn)
|
||||
{
|
||||
int dSize = fn["descriptorSize"];
|
||||
|
@ -712,6 +712,12 @@ BRISK::descriptorType() const
|
||||
return CV_8U;
|
||||
}
|
||||
|
||||
int
|
||||
BRISK::defaultNorm() const
|
||||
{
|
||||
return NORM_HAMMING;
|
||||
}
|
||||
|
||||
BRISK::~BRISK()
|
||||
{
|
||||
delete[] patternPoints_;
|
||||
|
@ -247,6 +247,11 @@ int OpponentColorDescriptorExtractor::descriptorType() const
|
||||
return descriptorExtractor->descriptorType();
|
||||
}
|
||||
|
||||
int OpponentColorDescriptorExtractor::defaultNorm() const
|
||||
{
|
||||
return descriptorExtractor->defaultNorm();
|
||||
}
|
||||
|
||||
bool OpponentColorDescriptorExtractor::empty() const
|
||||
{
|
||||
return !descriptorExtractor || descriptorExtractor->empty();
|
||||
|
@ -676,4 +676,9 @@ int FREAK::descriptorType() const
|
||||
return CV_8U;
|
||||
}
|
||||
|
||||
int FREAK::defaultNorm() const
|
||||
{
|
||||
return NORM_HAMMING;
|
||||
}
|
||||
|
||||
} // END NAMESPACE CV
|
||||
|
@ -575,6 +575,11 @@ int ORB::descriptorType() const
|
||||
return CV_8U;
|
||||
}
|
||||
|
||||
int ORB::defaultNorm() const
|
||||
{
|
||||
return NORM_HAMMING;
|
||||
}
|
||||
|
||||
/** Compute the ORB features and descriptors on an image
|
||||
* @param img the image to compute the features and descriptors on
|
||||
* @param mask the mask to apply
|
||||
|
@ -616,8 +616,8 @@ TEST(Features2d_RotationInvariance_Detector_ORB, regression)
|
||||
TEST(Features2d_RotationInvariance_Descriptor_BRISK, regression)
|
||||
{
|
||||
DescriptorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.BRISK"),
|
||||
Algorithm::create<DescriptorExtractor>("Feature2D.BRISK"),
|
||||
NORM_HAMMING,
|
||||
Algorithm::create<DescriptorExtractor>("Feature2D.BRISK"),
|
||||
Algorithm::create<DescriptorExtractor>("Feature2D.BRISK")->defaultNorm(),
|
||||
0.99f);
|
||||
test.safe_run();
|
||||
}
|
||||
@ -626,7 +626,7 @@ TEST(Features2d_RotationInvariance_Descriptor_ORB, regression)
|
||||
{
|
||||
DescriptorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
|
||||
Algorithm::create<DescriptorExtractor>("Feature2D.ORB"),
|
||||
NORM_HAMMING,
|
||||
Algorithm::create<DescriptorExtractor>("Feature2D.ORB")->defaultNorm(),
|
||||
0.99f);
|
||||
test.safe_run();
|
||||
}
|
||||
@ -635,7 +635,7 @@ TEST(Features2d_RotationInvariance_Descriptor_ORB, regression)
|
||||
//{
|
||||
// DescriptorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
|
||||
// Algorithm::create<DescriptorExtractor>("Feature2D.FREAK"),
|
||||
// NORM_HAMMING,
|
||||
// Algorithm::create<DescriptorExtractor>("Feature2D.FREAK")->defaultNorm(),
|
||||
// 0.f);
|
||||
// test.safe_run();
|
||||
//}
|
||||
@ -667,26 +667,26 @@ TEST(Features2d_ScaleInvariance_Detector_BRISK, regression)
|
||||
//TEST(Features2d_ScaleInvariance_Descriptor_BRISK, regression)
|
||||
//{
|
||||
// DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.BRISK"),
|
||||
// Algorithm::create<DescriptorExtractor>("Feature2D.BRISK"),
|
||||
// NORM_HAMMING,
|
||||
// 0.99f);
|
||||
// Algorithm::create<DescriptorExtractor>("Feature2D.BRISK"),
|
||||
// Algorithm::create<DescriptorExtractor>("Feature2D.BRISK")->defaultNorm(),
|
||||
// 0.99f);
|
||||
// test.safe_run();
|
||||
//}
|
||||
|
||||
//TEST(Features2d_ScaleInvariance_Descriptor_ORB, regression)
|
||||
//{
|
||||
// DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
|
||||
// Algorithm::create<DescriptorExtractor>("Feature2D.ORB"),
|
||||
// NORM_HAMMING,
|
||||
// 0.01f);
|
||||
// Algorithm::create<DescriptorExtractor>("Feature2D.ORB"),
|
||||
// Algorithm::create<DescriptorExtractor>("Feature2D.ORB")->defaultNorm(),
|
||||
// 0.01f);
|
||||
// test.safe_run();
|
||||
//}
|
||||
|
||||
//TEST(Features2d_ScaleInvariance_Descriptor_FREAK, regression)
|
||||
//{
|
||||
// DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
|
||||
// Algorithm::create<DescriptorExtractor>("Feature2D.FREAK"),
|
||||
// NORM_HAMMING,
|
||||
// 0.01f);
|
||||
// Algorithm::create<DescriptorExtractor>("Feature2D.FREAK"),
|
||||
// Algorithm::create<DescriptorExtractor>("Feature2D.FREAK")->defaultNorm(),
|
||||
// 0.01f);
|
||||
// test.safe_run();
|
||||
//}
|
||||
|
@ -28,6 +28,7 @@ Wrapping class for computing descriptors by using the
|
||||
virtual void write( FileStorage &fs ) const;
|
||||
virtual int descriptorSize() const;
|
||||
virtual int descriptorType() const;
|
||||
virtual int defaultNorm() const;
|
||||
protected:
|
||||
...
|
||||
}
|
||||
|
@ -2765,6 +2765,7 @@ public:
|
||||
|
||||
virtual int descriptorSize() const { return classifier_.classes(); }
|
||||
virtual int descriptorType() const { return DataType<T>::type; }
|
||||
virtual int defaultNorm() const { return NORM_L1; }
|
||||
|
||||
virtual bool empty() const;
|
||||
|
||||
|
@ -70,6 +70,8 @@ public:
|
||||
|
||||
//! returns the descriptor size in float's (64 or 128)
|
||||
int descriptorSize() const;
|
||||
//! returns the default norm type
|
||||
int defaultNorm() const;
|
||||
|
||||
//! upload host keypoints to device memory
|
||||
void uploadKeypoints(const std::vector<KeyPoint>& keypoints, GpuMat& keypointsGPU);
|
||||
|
@ -66,6 +66,9 @@ public:
|
||||
//! returns the descriptor type
|
||||
CV_WRAP int descriptorType() const;
|
||||
|
||||
//! returns the default norm type
|
||||
CV_WRAP int defaultNorm() const;
|
||||
|
||||
//! finds the keypoints using SIFT algorithm
|
||||
void operator()(InputArray img, InputArray mask,
|
||||
std::vector<KeyPoint>& keypoints) const;
|
||||
@ -118,6 +121,9 @@ public:
|
||||
//! returns the descriptor type
|
||||
CV_WRAP int descriptorType() const;
|
||||
|
||||
//! returns the descriptor type
|
||||
CV_WRAP int defaultNorm() const;
|
||||
|
||||
//! finds the keypoints using fast hessian detector used in SURF
|
||||
void operator()(InputArray img, InputArray mask,
|
||||
CV_OUT std::vector<KeyPoint>& keypoints) const;
|
||||
|
@ -76,6 +76,8 @@ namespace cv
|
||||
|
||||
//! returns the descriptor size in float's (64 or 128)
|
||||
int descriptorSize() const;
|
||||
//! returns the default norm type
|
||||
int defaultNorm() const;
|
||||
//! upload host keypoints to device memory
|
||||
void uploadKeypoints(const std::vector<cv::KeyPoint> &keypoints, oclMat &keypointsocl);
|
||||
//! download keypoints from device to host memory
|
||||
|
@ -717,6 +717,11 @@ int SIFT::descriptorType() const
|
||||
return CV_32F;
|
||||
}
|
||||
|
||||
int SIFT::defaultNorm() const
|
||||
{
|
||||
return NORM_L2;
|
||||
}
|
||||
|
||||
|
||||
void SIFT::operator()(InputArray _image, InputArray _mask,
|
||||
std::vector<KeyPoint>& keypoints) const
|
||||
|
@ -884,6 +884,7 @@ SURF::SURF(double _threshold, int _nOctaves, int _nOctaveLayers, bool _extended,
|
||||
|
||||
int SURF::descriptorSize() const { return extended ? 128 : 64; }
|
||||
int SURF::descriptorType() const { return CV_32F; }
|
||||
int SURF::defaultNorm() const { return NORM_L2; }
|
||||
|
||||
void SURF::operator()(InputArray imgarg, InputArray maskarg,
|
||||
CV_OUT std::vector<KeyPoint>& keypoints) const
|
||||
|
@ -265,6 +265,11 @@ int cv::cuda::SURF_CUDA::descriptorSize() const
|
||||
return extended ? 128 : 64;
|
||||
}
|
||||
|
||||
int cv::cuda::SURF_CUDA::defaultNorm() const
|
||||
{
|
||||
return NORM_L2;
|
||||
}
|
||||
|
||||
void cv::cuda::SURF_CUDA::uploadKeypoints(const std::vector<KeyPoint>& keypoints, GpuMat& keypointsGPU)
|
||||
{
|
||||
if (keypoints.empty())
|
||||
|
@ -299,6 +299,11 @@ int cv::ocl::SURF_OCL::descriptorSize() const
|
||||
return extended ? 128 : 64;
|
||||
}
|
||||
|
||||
int cv::ocl::SURF_OCL::defaultNorm() const
|
||||
{
|
||||
return NORM_L2;
|
||||
}
|
||||
|
||||
void cv::ocl::SURF_OCL::uploadKeypoints(const std::vector<KeyPoint> &keypoints, oclMat &keypointsGPU)
|
||||
{
|
||||
if (keypoints.empty())
|
||||
|
@ -1124,7 +1124,7 @@ protected:
|
||||
CV_Assert(kpt2[i].response > 0 );
|
||||
|
||||
vector<DMatch> matches;
|
||||
BFMatcher(NORM_L2, true).match(d1, d2, matches);
|
||||
BFMatcher(f->defaultNorm(), true).match(d1, d2, matches);
|
||||
|
||||
vector<Point2f> pt1, pt2;
|
||||
for( size_t i = 0; i < matches.size(); i++ ) {
|
||||
|
@ -176,7 +176,7 @@ CUDA_TEST_P(SURF, Descriptor)
|
||||
cv::Mat descriptors_gold;
|
||||
surf_gold(image, cv::noArray(), keypoints, descriptors_gold, true);
|
||||
|
||||
cv::BFMatcher matcher(cv::NORM_L2);
|
||||
cv::BFMatcher matcher(surf.defaultNorm());
|
||||
std::vector<cv::DMatch> matches;
|
||||
matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
|
||||
|
||||
|
@ -195,7 +195,7 @@ TEST_P(SURF, DISABLED_Descriptor)
|
||||
cv::Mat descriptors_gold;
|
||||
surf_gold(image, cv::noArray(), keypoints, descriptors_gold, true);
|
||||
|
||||
cv::BFMatcher matcher(cv::NORM_L2);
|
||||
cv::BFMatcher matcher(surf.defaultNorm());
|
||||
std::vector<cv::DMatch> matches;
|
||||
matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
|
||||
|
||||
|
@ -125,7 +125,7 @@ static void testCalonderClassifier( const string& classifierFilename, const stri
|
||||
Mat descriptors2; de.compute( img2, keypoints2, descriptors2 );
|
||||
|
||||
// Match descriptors
|
||||
BFMatcher matcher(NORM_L1);
|
||||
BFMatcher matcher(de.defaultNorm());
|
||||
vector<DMatch> matches;
|
||||
matcher.match( descriptors1, descriptors2, matches );
|
||||
|
||||
|
@ -106,7 +106,7 @@ int main(int argc, const char ** argv)
|
||||
|
||||
//Do matching using features2d
|
||||
cout << "matching with BruteForceMatcher<Hamming>" << endl;
|
||||
BFMatcher matcher_popcount(NORM_HAMMING);
|
||||
BFMatcher matcher_popcount(extractor.defaultNorm());
|
||||
vector<DMatch> matches_popcount;
|
||||
double pop_time = match(kpts_1, kpts_2, matcher_popcount, desc_1, desc_2, matches_popcount);
|
||||
cout << "done BruteForceMatcher<Hamming> matching. took " << pop_time << " seconds" << endl;
|
||||
|
@ -881,9 +881,10 @@ public:
|
||||
virtual void readAlgorithm( )
|
||||
{
|
||||
string classifierFile = data_path + "/features2d/calonder_classifier.rtc";
|
||||
Ptr<DescriptorExtractor> extractor = makePtr<CalonderDescriptorExtractor<float> >( classifierFile );
|
||||
defaultDescMatcher = makePtr<VectorDescriptorMatch>(
|
||||
makePtr<CalonderDescriptorExtractor<float> >( classifierFile ),
|
||||
makePtr<BFMatcher>(int(NORM_L2)));
|
||||
extractor,
|
||||
makePtr<BFMatcher>(extractor->defaultNorm()));
|
||||
specificDescMatcher = defaultDescMatcher;
|
||||
}
|
||||
};
|
||||
|
@ -96,7 +96,7 @@ int main( int argc, char** argv ) {
|
||||
// The standard Hamming distance can be used such as
|
||||
// BFMatcher matcher(NORM_HAMMING);
|
||||
// or the proposed cascade of hamming distance using SSSE3
|
||||
BFMatcher matcher(NORM_HAMMING);
|
||||
BFMatcher matcher(extractor.defaultNorm());
|
||||
|
||||
// detect
|
||||
double t = (double)getTickCount();
|
||||
|
@ -44,7 +44,7 @@ int main(int argc, char** argv)
|
||||
extractor.compute(img2, keypoints2, descriptors2);
|
||||
|
||||
// matching descriptors
|
||||
BFMatcher matcher(NORM_L2);
|
||||
BFMatcher matcher(extractor.defaultNorm());
|
||||
vector<DMatch> matches;
|
||||
matcher.match(descriptors1, descriptors2, matches);
|
||||
|
||||
|
@ -45,7 +45,7 @@ int main(int argc, char** argv)
|
||||
extractor.compute(img2, keypoints2, descriptors2);
|
||||
|
||||
// matching descriptors
|
||||
BFMatcher matcher(NORM_L2);
|
||||
BFMatcher matcher(extractor.defaultNorm());
|
||||
vector<DMatch> matches;
|
||||
matcher.match(descriptors1, descriptors2, matches);
|
||||
|
||||
|
@ -49,7 +49,7 @@ int main( int argc, char** argv )
|
||||
extractor.compute( img_2, keypoints_2, descriptors_2 );
|
||||
|
||||
//-- Step 3: Matching descriptor vectors with a brute force matcher
|
||||
BFMatcher matcher(NORM_L2);
|
||||
BFMatcher matcher(extractor.defaultNorm());
|
||||
std::vector< DMatch > matches;
|
||||
matcher.match( descriptors_1, descriptors_2, matches );
|
||||
|
||||
|
@ -140,7 +140,7 @@ int main(int ac, char ** av)
|
||||
|
||||
vector<DMatch> matches;
|
||||
|
||||
BFMatcher desc_matcher(NORM_HAMMING);
|
||||
BFMatcher desc_matcher(brief.defaultNorm());
|
||||
|
||||
vector<Point2f> train_pts, query_pts;
|
||||
vector<KeyPoint> train_kpts, query_kpts;
|
||||
|
@ -62,7 +62,7 @@ int main(int argc, char* argv[])
|
||||
cout << "FOUND " << keypoints2GPU.cols << " keypoints on second image" << endl;
|
||||
|
||||
// matching descriptors
|
||||
BFMatcher_CUDA matcher(NORM_L2);
|
||||
BFMatcher_CUDA matcher(surf.defaultNorm());
|
||||
GpuMat trainIdx, distance;
|
||||
matcher.matchSingle(descriptors1GPU, descriptors2GPU, trainIdx, distance);
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user