gpuimgproc module for image processing
This commit is contained in:
@@ -52,6 +52,8 @@
|
||||
#include "opencv2/core/gpumat.hpp"
|
||||
#include "opencv2/gpuarithm.hpp"
|
||||
#include "opencv2/gpufilters.hpp"
|
||||
#include "opencv2/gpuimgproc.hpp"
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/objdetect.hpp"
|
||||
#include "opencv2/features2d.hpp"
|
||||
@@ -60,280 +62,7 @@ namespace cv { namespace gpu {
|
||||
////////////////////////////// Image processing //////////////////////////////
|
||||
|
||||
|
||||
enum { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL,
|
||||
ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL};
|
||||
|
||||
//! Composite two images using alpha opacity values contained in each image
|
||||
//! Supports CV_8UC4, CV_16UC4, CV_32SC4 and CV_32FC4 types
|
||||
CV_EXPORTS void alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int alpha_op, Stream& stream = Stream::Null());
|
||||
|
||||
//! DST[x,y] = SRC[xmap[x,y],ymap[x,y]]
|
||||
//! supports only CV_32FC1 map type
|
||||
CV_EXPORTS void remap(const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap,
|
||||
int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(),
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
//! Does mean shift filtering on GPU.
|
||||
CV_EXPORTS void meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
//! Does mean shift procedure on GPU.
|
||||
CV_EXPORTS void meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
//! Does mean shift segmentation with elimination of small regions.
|
||||
CV_EXPORTS void meanShiftSegmentation(const GpuMat& src, Mat& dst, int sp, int sr, int minsize,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));
|
||||
|
||||
//! Does coloring of disparity image: [0..ndisp) -> [0..240, 1, 1] in HSV.
|
||||
//! Supported types of input disparity: CV_8U, CV_16S.
|
||||
//! Output disparity has CV_8UC4 type in BGRA format (alpha = 255).
|
||||
CV_EXPORTS void drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, Stream& stream = Stream::Null());
|
||||
|
||||
//! Reprojects disparity image to 3D space.
|
||||
//! Supports CV_8U and CV_16S types of input disparity.
|
||||
//! The output is a 3- or 4-channel floating-point matrix.
|
||||
//! Each element of this matrix will contain the 3D coordinates of the point (x,y,z,1), computed from the disparity map.
|
||||
//! Q is the 4x4 perspective transformation matrix that can be obtained with cvStereoRectify.
|
||||
CV_EXPORTS void reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, int dst_cn = 4, Stream& stream = Stream::Null());
|
||||
|
||||
//! converts image from one color space to another
|
||||
CV_EXPORTS void cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn = 0, Stream& stream = Stream::Null());
|
||||
|
||||
enum
|
||||
{
|
||||
// Bayer Demosaicing (Malvar, He, and Cutler)
|
||||
COLOR_BayerBG2BGR_MHT = 256,
|
||||
COLOR_BayerGB2BGR_MHT = 257,
|
||||
COLOR_BayerRG2BGR_MHT = 258,
|
||||
COLOR_BayerGR2BGR_MHT = 259,
|
||||
|
||||
COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT,
|
||||
COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT,
|
||||
COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT,
|
||||
COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT,
|
||||
|
||||
COLOR_BayerBG2GRAY_MHT = 260,
|
||||
COLOR_BayerGB2GRAY_MHT = 261,
|
||||
COLOR_BayerRG2GRAY_MHT = 262,
|
||||
COLOR_BayerGR2GRAY_MHT = 263
|
||||
};
|
||||
CV_EXPORTS void demosaicing(const GpuMat& src, GpuMat& dst, int code, int dcn = -1, Stream& stream = Stream::Null());
|
||||
|
||||
//! swap channels
|
||||
//! dstOrder - Integer array describing how channel values are permutated. The n-th entry
|
||||
//! of the array contains the number of the channel that is stored in the n-th channel of
|
||||
//! the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR
|
||||
//! channel order.
|
||||
CV_EXPORTS void swapChannels(GpuMat& image, const int dstOrder[4], Stream& stream = Stream::Null());
|
||||
|
||||
//! Routines for correcting image color gamma
|
||||
CV_EXPORTS void gammaCorrection(const GpuMat& src, GpuMat& dst, bool forward = true, Stream& stream = Stream::Null());
|
||||
|
||||
//! resizes the image
|
||||
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA
|
||||
CV_EXPORTS void resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());
|
||||
|
||||
//! warps the image using affine transformation
|
||||
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
|
||||
CV_EXPORTS void warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR,
|
||||
int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());
|
||||
|
||||
CV_EXPORTS void buildWarpAffineMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream = Stream::Null());
|
||||
|
||||
//! warps the image using perspective transformation
|
||||
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
|
||||
CV_EXPORTS void warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR,
|
||||
int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());
|
||||
|
||||
CV_EXPORTS void buildWarpPerspectiveMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream = Stream::Null());
|
||||
|
||||
//! builds plane warping maps
|
||||
CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T, float scale,
|
||||
GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());
|
||||
|
||||
//! builds cylindrical warping maps
|
||||
CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
|
||||
GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());
|
||||
|
||||
//! builds spherical warping maps
|
||||
CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
|
||||
GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());
|
||||
|
||||
//! rotates an image around the origin (0,0) and then shifts it
|
||||
//! supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
|
||||
//! supports 1, 3 or 4 channels images with CV_8U, CV_16U or CV_32F depth
|
||||
CV_EXPORTS void rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift = 0, double yShift = 0,
|
||||
int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());
|
||||
|
||||
//! computes Harris cornerness criteria at each image pixel
|
||||
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
|
||||
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
|
||||
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, double k,
|
||||
int borderType = BORDER_REFLECT101, Stream& stream = Stream::Null());
|
||||
|
||||
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
|
||||
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType=BORDER_REFLECT101);
|
||||
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType=BORDER_REFLECT101);
|
||||
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize,
|
||||
int borderType=BORDER_REFLECT101, Stream& stream = Stream::Null());
|
||||
|
||||
struct CV_EXPORTS MatchTemplateBuf
|
||||
{
|
||||
Size user_block_size;
|
||||
GpuMat imagef, templf;
|
||||
std::vector<GpuMat> images;
|
||||
std::vector<GpuMat> image_sums;
|
||||
std::vector<GpuMat> image_sqsums;
|
||||
};
|
||||
|
||||
//! computes the proximity map for the raster template and the image where the template is searched for
|
||||
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream &stream = Stream::Null());
|
||||
|
||||
//! computes the proximity map for the raster template and the image where the template is searched for
|
||||
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, MatchTemplateBuf &buf, Stream& stream = Stream::Null());
|
||||
|
||||
//! smoothes the source image and downsamples it
|
||||
CV_EXPORTS void pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
|
||||
|
||||
//! upsamples the source image and then smoothes it
|
||||
CV_EXPORTS void pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
|
||||
|
||||
//! performs linear blending of two images
|
||||
//! to avoid accuracy errors sum of weigths shouldn't be very close to zero
|
||||
CV_EXPORTS void blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat& weights1, const GpuMat& weights2,
|
||||
GpuMat& result, Stream& stream = Stream::Null());
|
||||
|
||||
//! Performa bilateral filtering of passsed image
|
||||
CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial,
|
||||
int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());
|
||||
|
||||
//! Brute force non-local means algorith (slow but universal)
|
||||
CV_EXPORTS void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, int borderMode = BORDER_DEFAULT, Stream& s = Stream::Null());
|
||||
|
||||
//! Fast (but approximate)version of non-local means algorith similar to CPU function (running sums technique)
|
||||
class CV_EXPORTS FastNonLocalMeansDenoising
|
||||
{
|
||||
public:
|
||||
//! Simple method, recommended for grayscale images (though it supports multichannel images)
|
||||
void simpleMethod(const GpuMat& src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, Stream& s = Stream::Null());
|
||||
|
||||
//! Processes luminance and color components separatelly
|
||||
void labMethod(const GpuMat& src, GpuMat& dst, float h_luminance, float h_color, int search_window = 21, int block_size = 7, Stream& s = Stream::Null());
|
||||
|
||||
private:
|
||||
|
||||
GpuMat buffer, extended_src_buffer;
|
||||
GpuMat lab, l, ab;
|
||||
};
|
||||
|
||||
struct CV_EXPORTS CannyBuf
|
||||
{
|
||||
void create(const Size& image_size, int apperture_size = 3);
|
||||
void release();
|
||||
|
||||
GpuMat dx, dy;
|
||||
GpuMat mag;
|
||||
GpuMat map;
|
||||
GpuMat st1, st2;
|
||||
Ptr<FilterEngine_GPU> filterDX, filterDY;
|
||||
};
|
||||
|
||||
CV_EXPORTS void Canny(const GpuMat& image, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
|
||||
CV_EXPORTS void Canny(const GpuMat& image, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
|
||||
CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false);
|
||||
CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false);
|
||||
|
||||
class CV_EXPORTS ImagePyramid
|
||||
{
|
||||
public:
|
||||
inline ImagePyramid() : nLayers_(0) {}
|
||||
inline ImagePyramid(const GpuMat& img, int nLayers, Stream& stream = Stream::Null())
|
||||
{
|
||||
build(img, nLayers, stream);
|
||||
}
|
||||
|
||||
void build(const GpuMat& img, int nLayers, Stream& stream = Stream::Null());
|
||||
|
||||
void getLayer(GpuMat& outImg, Size outRoi, Stream& stream = Stream::Null()) const;
|
||||
|
||||
inline void release()
|
||||
{
|
||||
layer0_.release();
|
||||
pyramid_.clear();
|
||||
nLayers_ = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
GpuMat layer0_;
|
||||
std::vector<GpuMat> pyramid_;
|
||||
int nLayers_;
|
||||
};
|
||||
|
||||
//! HoughLines
|
||||
|
||||
struct HoughLinesBuf
|
||||
{
|
||||
GpuMat accum;
|
||||
GpuMat list;
|
||||
};
|
||||
|
||||
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
|
||||
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
|
||||
CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
|
||||
|
||||
//! HoughLinesP
|
||||
|
||||
//! finds line segments in the black-n-white image using probabalistic Hough transform
|
||||
CV_EXPORTS void HoughLinesP(const GpuMat& image, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
|
||||
|
||||
//! HoughCircles
|
||||
|
||||
struct HoughCirclesBuf
|
||||
{
|
||||
GpuMat edges;
|
||||
GpuMat accum;
|
||||
GpuMat list;
|
||||
CannyBuf cannyBuf;
|
||||
};
|
||||
|
||||
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
|
||||
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
|
||||
CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles);
|
||||
|
||||
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
|
||||
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
|
||||
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
|
||||
class CV_EXPORTS GeneralizedHough_GPU : public cv::Algorithm
|
||||
{
|
||||
public:
|
||||
static Ptr<GeneralizedHough_GPU> create(int method);
|
||||
|
||||
virtual ~GeneralizedHough_GPU();
|
||||
|
||||
//! set template to search
|
||||
void setTemplate(const GpuMat& templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
|
||||
void setTemplate(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter = Point(-1, -1));
|
||||
|
||||
//! find template on image
|
||||
void detect(const GpuMat& image, GpuMat& positions, int cannyThreshold = 100);
|
||||
void detect(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions);
|
||||
|
||||
void download(const GpuMat& d_positions, OutputArray h_positions, OutputArray h_votes = noArray());
|
||||
|
||||
void release();
|
||||
|
||||
protected:
|
||||
virtual void setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter) = 0;
|
||||
virtual void detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions) = 0;
|
||||
virtual void releaseImpl() = 0;
|
||||
|
||||
private:
|
||||
GpuMat edges_;
|
||||
CannyBuf cannyBuf_;
|
||||
};
|
||||
|
||||
///////////////////////////// Calibration 3D //////////////////////////////////
|
||||
|
||||
@@ -351,68 +80,11 @@ CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& c
|
||||
|
||||
//////////////////////////////// Image Labeling ////////////////////////////////
|
||||
|
||||
//!performs labeling via graph cuts of a 2D regular 4-connected graph.
|
||||
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels,
|
||||
GpuMat& buf, Stream& stream = Stream::Null());
|
||||
|
||||
//!performs labeling via graph cuts of a 2D regular 8-connected graph.
|
||||
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& topLeft, GpuMat& topRight,
|
||||
GpuMat& bottom, GpuMat& bottomLeft, GpuMat& bottomRight,
|
||||
GpuMat& labels,
|
||||
GpuMat& buf, Stream& stream = Stream::Null());
|
||||
|
||||
//! compute mask for Generalized Flood fill componetns labeling.
|
||||
CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& stream = Stream::Null());
|
||||
|
||||
//! performs connected componnents labeling.
|
||||
CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, int flags = 0, Stream& stream = Stream::Null());
|
||||
|
||||
////////////////////////////////// Histograms //////////////////////////////////
|
||||
|
||||
//! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type.
|
||||
CV_EXPORTS void evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel);
|
||||
//! Calculates histogram with evenly distributed bins for signle channel source.
|
||||
//! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types.
|
||||
//! Output hist will have one row and histSize cols and CV_32SC1 type.
|
||||
CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
|
||||
//! Calculates histogram with evenly distributed bins for four-channel source.
|
||||
//! All channels of source are processed separately.
|
||||
//! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types.
|
||||
//! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type.
|
||||
CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
|
||||
CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
|
||||
//! Calculates histogram with bins determined by levels array.
|
||||
//! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
|
||||
//! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types.
|
||||
//! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type.
|
||||
CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream = Stream::Null());
|
||||
//! Calculates histogram with bins determined by levels array.
|
||||
//! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
|
||||
//! All channels of source are processed separately.
|
||||
//! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types.
|
||||
//! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type.
|
||||
CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null());
|
||||
CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, Stream& stream = Stream::Null());
|
||||
|
||||
//! Calculates histogram for 8u one channel image
|
||||
//! Output hist will have one row, 256 cols and CV32SC1 type.
|
||||
CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null());
|
||||
|
||||
//! normalizes the grayscale image brightness and contrast by normalizing its histogram
|
||||
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null());
|
||||
|
||||
class CV_EXPORTS CLAHE : public cv::CLAHE
|
||||
{
|
||||
public:
|
||||
using cv::CLAHE::apply;
|
||||
virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0;
|
||||
};
|
||||
CV_EXPORTS Ptr<cv::gpu::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
|
||||
|
||||
//////////////////////////////// StereoBM_GPU ////////////////////////////////
|
||||
|
||||
@@ -1097,52 +769,7 @@ public:
|
||||
GpuMat buf;
|
||||
};
|
||||
|
||||
class CV_EXPORTS GoodFeaturesToTrackDetector_GPU
|
||||
{
|
||||
public:
|
||||
explicit GoodFeaturesToTrackDetector_GPU(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
|
||||
int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);
|
||||
|
||||
//! return 1 rows matrix with CV_32FC2 type
|
||||
void operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat());
|
||||
|
||||
int maxCorners;
|
||||
double qualityLevel;
|
||||
double minDistance;
|
||||
|
||||
int blockSize;
|
||||
bool useHarrisDetector;
|
||||
double harrisK;
|
||||
|
||||
void releaseMemory()
|
||||
{
|
||||
Dx_.release();
|
||||
Dy_.release();
|
||||
buf_.release();
|
||||
eig_.release();
|
||||
minMaxbuf_.release();
|
||||
tmpCorners_.release();
|
||||
}
|
||||
|
||||
private:
|
||||
GpuMat Dx_;
|
||||
GpuMat Dy_;
|
||||
GpuMat buf_;
|
||||
GpuMat eig_;
|
||||
GpuMat minMaxbuf_;
|
||||
GpuMat tmpCorners_;
|
||||
};
|
||||
|
||||
inline GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU(int maxCorners_, double qualityLevel_, double minDistance_,
|
||||
int blockSize_, bool useHarrisDetector_, double harrisK_)
|
||||
{
|
||||
maxCorners = maxCorners_;
|
||||
qualityLevel = qualityLevel_;
|
||||
minDistance = minDistance_;
|
||||
blockSize = blockSize_;
|
||||
useHarrisDetector = useHarrisDetector_;
|
||||
harrisK = harrisK_;
|
||||
}
|
||||
|
||||
|
||||
class CV_EXPORTS PyrLKOpticalFlow
|
||||
|
Reference in New Issue
Block a user