Backport of new python tests from master branch(PR https://github.com/Itseez/opencv/pull/6025).
At the moment tests requre samples/data copied to source location from master branch.
This commit is contained in:
66
modules/python/test/test_fitline.py
Normal file
66
modules/python/test/test_fitline.py
Normal file
@@ -0,0 +1,66 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Robust line fitting.
|
||||
==================
|
||||
|
||||
Example of using cv2.fitLine function for fitting line
|
||||
to points in presence of outliers.
|
||||
|
||||
Switch through different M-estimator functions and see,
|
||||
how well the robust functions fit the line even
|
||||
in case of ~50% of outliers.
|
||||
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
w, h = 512, 256
|
||||
|
||||
def toint(p):
|
||||
return tuple(map(int, p))
|
||||
|
||||
def sample_line(p1, p2, n, noise=0.0):
|
||||
np.random.seed(10)
|
||||
p1 = np.float32(p1)
|
||||
t = np.random.rand(n,1)
|
||||
return p1 + (p2-p1)*t + np.random.normal(size=(n, 2))*noise
|
||||
|
||||
dist_func_names = ['CV_DIST_L2', 'CV_DIST_L1', 'CV_DIST_L12', 'CV_DIST_FAIR', 'CV_DIST_WELSCH', 'CV_DIST_HUBER']
|
||||
|
||||
class fitline_test(NewOpenCVTests):
|
||||
|
||||
def test_fitline(self):
|
||||
|
||||
noise = 5
|
||||
n = 200
|
||||
r = 5 / 100.0
|
||||
outn = int(n*r)
|
||||
|
||||
p0, p1 = (90, 80), (w-90, h-80)
|
||||
line_points = sample_line(p0, p1, n-outn, noise)
|
||||
outliers = np.random.rand(outn, 2) * (w, h)
|
||||
points = np.vstack([line_points, outliers])
|
||||
|
||||
lines = []
|
||||
|
||||
for name in dist_func_names:
|
||||
func = getattr(cv2.cv, name)
|
||||
vx, vy, cx, cy = cv2.fitLine(np.float32(points), func, 0, 0.01, 0.01)
|
||||
line = [float(vx), float(vy), float(cx), float(cy)]
|
||||
lines.append(line)
|
||||
|
||||
eps = 0.05
|
||||
|
||||
refVec = (np.float32(p1) - p0) / cv2.norm(np.float32(p1) - p0)
|
||||
|
||||
for i in range(len(lines)):
|
||||
self.assertLessEqual(cv2.norm(refVec - lines[i][0:2], cv2.NORM_L2), eps)
|
Reference in New Issue
Block a user