Doxygen documentation for: highgui, video, imgcodecs and videoio

This commit is contained in:
Maksim Shabunin
2014-11-19 11:29:31 +03:00
parent 1f43999f2a
commit dcae7698ad
12 changed files with 1386 additions and 54 deletions

View File

@@ -44,6 +44,15 @@
#ifndef __OPENCV_VIDEO_HPP__
#define __OPENCV_VIDEO_HPP__
/**
@defgroup video Video Analysis
@{
@defgroup video_motion Motion Analysis
@defgroup video_track Object Tracking
@defgroup video_c C API
@}
*/
#include "opencv2/video/tracking.hpp"
#include "opencv2/video/background_segm.hpp"

View File

@@ -49,49 +49,102 @@
namespace cv
{
/*!
The Base Class for Background/Foreground Segmentation
//! @addtogroup video_motion
//! @{
The class is only used to define the common interface for
the whole family of background/foreground segmentation algorithms.
*/
/** @brief Base class for background/foreground segmentation. :
The class is only used to define the common interface for the whole family of background/foreground
segmentation algorithms.
*/
class CV_EXPORTS_W BackgroundSubtractor : public Algorithm
{
public:
//! the update operator that takes the next video frame and returns the current foreground mask as 8-bit binary image.
/** @brief Computes a foreground mask.
@param image Next video frame.
@param fgmask The output foreground mask as an 8-bit binary image.
@param learningRate The value between 0 and 1 that indicates how fast the background model is
learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
rate. 0 means that the background model is not updated at all, 1 means that the background model
is completely reinitialized from the last frame.
*/
CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) = 0;
//! computes a background image
/** @brief Computes a background image.
@param backgroundImage The output background image.
@note Sometimes the background image can be very blurry, as it contain the average background
statistics.
*/
CV_WRAP virtual void getBackgroundImage(OutputArray backgroundImage) const = 0;
};
/*!
The class implements the following algorithm:
"Improved adaptive Gausian mixture model for background subtraction"
Z.Zivkovic
International Conference Pattern Recognition, UK, August, 2004.
http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
The class implements the Gaussian mixture model background subtraction described in @cite Zivkovic2004
and @cite Zivkovic2006 .
*/
class CV_EXPORTS_W BackgroundSubtractorMOG2 : public BackgroundSubtractor
{
public:
/** @brief Returns the number of last frames that affect the background model
*/
CV_WRAP virtual int getHistory() const = 0;
/** @brief Sets the number of last frames that affect the background model
*/
CV_WRAP virtual void setHistory(int history) = 0;
/** @brief Returns the number of gaussian components in the background model
*/
CV_WRAP virtual int getNMixtures() const = 0;
/** @brief Sets the number of gaussian components in the background model.
The model needs to be reinitalized to reserve memory.
*/
CV_WRAP virtual void setNMixtures(int nmixtures) = 0;//needs reinitialization!
/** @brief Returns the "background ratio" parameter of the algorithm
If a foreground pixel keeps semi-constant value for about backgroundRatio\*history frames, it's
considered background and added to the model as a center of a new component. It corresponds to TB
parameter in the paper.
*/
CV_WRAP virtual double getBackgroundRatio() const = 0;
/** @brief Sets the "background ratio" parameter of the algorithm
*/
CV_WRAP virtual void setBackgroundRatio(double ratio) = 0;
/** @brief Returns the variance threshold for the pixel-model match
The main threshold on the squared Mahalanobis distance to decide if the sample is well described by
the background model or not. Related to Cthr from the paper.
*/
CV_WRAP virtual double getVarThreshold() const = 0;
/** @brief Sets the variance threshold for the pixel-model match
*/
CV_WRAP virtual void setVarThreshold(double varThreshold) = 0;
/** @brief Returns the variance threshold for the pixel-model match used for new mixture component generation
Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the
existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it
is considered foreground or added as a new component. 3 sigma =\> Tg=3\*3=9 is default. A smaller Tg
value generates more components. A higher Tg value may result in a small number of components but
they can grow too large.
*/
CV_WRAP virtual double getVarThresholdGen() const = 0;
/** @brief Sets the variance threshold for the pixel-model match used for new mixture component generation
*/
CV_WRAP virtual void setVarThresholdGen(double varThresholdGen) = 0;
/** @brief Returns the initial variance of each gaussian component
*/
CV_WRAP virtual double getVarInit() const = 0;
/** @brief Sets the initial variance of each gaussian component
*/
CV_WRAP virtual void setVarInit(double varInit) = 0;
CV_WRAP virtual double getVarMin() const = 0;
@@ -100,62 +153,154 @@ public:
CV_WRAP virtual double getVarMax() const = 0;
CV_WRAP virtual void setVarMax(double varMax) = 0;
/** @brief Returns the complexity reduction threshold
This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05
is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the
standard Stauffer&Grimson algorithm.
*/
CV_WRAP virtual double getComplexityReductionThreshold() const = 0;
/** @brief Sets the complexity reduction threshold
*/
CV_WRAP virtual void setComplexityReductionThreshold(double ct) = 0;
/** @brief Returns the shadow detection flag
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for
details.
*/
CV_WRAP virtual bool getDetectShadows() const = 0;
/** @brief Enables or disables shadow detection
*/
CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
/** @brief Returns the shadow value
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
in the mask always means background, 255 means foreground.
*/
CV_WRAP virtual int getShadowValue() const = 0;
/** @brief Sets the shadow value
*/
CV_WRAP virtual void setShadowValue(int value) = 0;
/** @brief Returns the shadow threshold
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra,
*Detecting Moving Shadows...*, IEEE PAMI,2003.
*/
CV_WRAP virtual double getShadowThreshold() const = 0;
/** @brief Sets the shadow threshold
*/
CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
};
/** @brief Creates MOG2 Background Subtractor
@param history Length of the history.
@param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
to decide whether a pixel is well described by the background model. This parameter does not
affect the background update.
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.
*/
CV_EXPORTS_W Ptr<BackgroundSubtractorMOG2>
createBackgroundSubtractorMOG2(int history=500, double varThreshold=16,
bool detectShadows=true);
/*!
The class implements the K nearest neigbours algorithm from:
"Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction"
Z.Zivkovic, F. van der Heijden
Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006
http://www.zoranz.net/Publications/zivkovicPRL2006.pdf
Fast for small foreground object. Results on the benchmark data is at http://www.changedetection.net.
*/
/** @brief K-nearest neigbours - based Background/Foreground Segmentation Algorithm.
The class implements the K-nearest neigbours background subtraction described in @cite Zivkovic2006 .
Very efficient if number of foreground pixels is low.
*/
class CV_EXPORTS_W BackgroundSubtractorKNN : public BackgroundSubtractor
{
public:
/** @brief Returns the number of last frames that affect the background model
*/
CV_WRAP virtual int getHistory() const = 0;
/** @brief Sets the number of last frames that affect the background model
*/
CV_WRAP virtual void setHistory(int history) = 0;
/** @brief Returns the number of data samples in the background model
*/
CV_WRAP virtual int getNSamples() const = 0;
/** @brief Sets the number of data samples in the background model.
The model needs to be reinitalized to reserve memory.
*/
CV_WRAP virtual void setNSamples(int _nN) = 0;//needs reinitialization!
/** @brief Returns the threshold on the squared distance between the pixel and the sample
The threshold on the squared distance between the pixel and the sample to decide whether a pixel is
close to a data sample.
*/
CV_WRAP virtual double getDist2Threshold() const = 0;
/** @brief Sets the threshold on the squared distance
*/
CV_WRAP virtual void setDist2Threshold(double _dist2Threshold) = 0;
/** @brief Returns the number of neighbours, the k in the kNN.
K is the number of samples that need to be within dist2Threshold in order to decide that that
pixel is matching the kNN background model.
*/
CV_WRAP virtual int getkNNSamples() const = 0;
/** @brief Sets the k in the kNN. How many nearest neigbours need to match.
*/
CV_WRAP virtual void setkNNSamples(int _nkNN) = 0;
/** @brief Returns the shadow detection flag
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for
details.
*/
CV_WRAP virtual bool getDetectShadows() const = 0;
/** @brief Enables or disables shadow detection
*/
CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
/** @brief Returns the shadow value
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
in the mask always means background, 255 means foreground.
*/
CV_WRAP virtual int getShadowValue() const = 0;
/** @brief Sets the shadow value
*/
CV_WRAP virtual void setShadowValue(int value) = 0;
/** @brief Returns the shadow threshold
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra,
*Detecting Moving Shadows...*, IEEE PAMI,2003.
*/
CV_WRAP virtual double getShadowThreshold() const = 0;
/** @brief Sets the shadow threshold
*/
CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
};
/** @brief Creates KNN Background Subtractor
@param history Length of the history.
@param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
whether a pixel is close to that sample. This parameter does not affect the background update.
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.
*/
CV_EXPORTS_W Ptr<BackgroundSubtractorKNN>
createBackgroundSubtractorKNN(int history=500, double dist2Threshold=400.0,
bool detectShadows=true);
//! @} video_motion
} // cv
#endif

View File

@@ -50,26 +50,126 @@
namespace cv
{
//! @addtogroup video_track
//! @{
enum { OPTFLOW_USE_INITIAL_FLOW = 4,
OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
OPTFLOW_FARNEBACK_GAUSSIAN = 256
};
//! updates the object tracking window using CAMSHIFT algorithm
/** @brief Finds an object center, size, and orientation.
@param probImage Back projection of the object histogram. See calcBackProject.
@param window Initial search window.
@param criteria Stop criteria for the underlying meanShift.
returns
(in old interfaces) Number of iterations CAMSHIFT took to converge
The function implements the CAMSHIFT object tracking algorithm @cite Bradski98. First, it finds an
object center using meanShift and then adjusts the window size and finds the optimal rotation. The
function returns the rotated rectangle structure that includes the object position, size, and
orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
See the OpenCV sample camshiftdemo.c that tracks colored objects.
@note
- (Python) A sample explaining the camshift tracking algorithm can be found at
opencv\_source\_code/samples/python2/camshift.py
*/
CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
TermCriteria criteria );
//! updates the object tracking window using meanshift algorithm
/** @brief Finds an object on a back projection image.
@param probImage Back projection of the object histogram. See calcBackProject for details.
@param window Initial search window.
@param criteria Stop criteria for the iterative search algorithm.
returns
: Number of iterations CAMSHIFT took to converge.
The function implements the iterative object search algorithm. It takes the input back projection of
an object and the initial position. The mass center in window of the back projection image is
computed and the search window center shifts to the mass center. The procedure is repeated until the
specified number of iterations criteria.maxCount is done or until the window center shifts by less
than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
window size or orientation do not change during the search. You can simply pass the output of
calcBackProject to this function. But better results can be obtained if you pre-filter the back
projection and remove the noise. For example, you can do this by retrieving connected components
with findContours , throwing away contours with small area ( contourArea ), and rendering the
remaining contours with drawContours.
@note
- A mean-shift tracking sample can be found at opencv\_source\_code/samples/cpp/camshiftdemo.cpp
*/
CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria );
//! constructs a pyramid which can be used as input for calcOpticalFlowPyrLK
/** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
@param img 8-bit input image.
@param pyramid output pyramid.
@param winSize window size of optical flow algorithm. Must be not less than winSize argument of
calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
@param maxLevel 0-based maximal pyramid level number.
@param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
@param pyrBorder the border mode for pyramid layers.
@param derivBorder the border mode for gradients.
@param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
to force data copying.
@return number of levels in constructed pyramid. Can be less than maxLevel.
*/
CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid,
Size winSize, int maxLevel, bool withDerivatives = true,
int pyrBorder = BORDER_REFLECT_101,
int derivBorder = BORDER_CONSTANT,
bool tryReuseInputImage = true );
//! computes sparse optical flow using multi-scale Lucas-Kanade algorithm
/** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
pyramids.
@param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
@param nextImg second input image or pyramid of the same size and the same type as prevImg.
@param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
single-precision floating-point numbers.
@param nextPts output vector of 2D points (with single-precision floating-point coordinates)
containing the calculated new positions of input features in the second image; when
OPTFLOW\_USE\_INITIAL\_FLOW flag is passed, the vector must have the same size as in the input.
@param status output status vector (of unsigned chars); each element of the vector is set to 1 if
the flow for the corresponding features has been found, otherwise, it is set to 0.
@param err output vector of errors; each element of the vector is set to an error for the
corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
found then the error is not defined (use the status parameter to find such cases).
@param winSize size of the search window at each pyramid level.
@param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
algorithm will use as many levels as pyramids have but no more than maxLevel.
@param criteria parameter, specifying the termination criteria of the iterative search algorithm
(after the specified maximum number of iterations criteria.maxCount or when the search window
moves by less than criteria.epsilon.
@param flags operation flags:
- **OPTFLOW\_USE\_INITIAL\_FLOW** uses initial estimations, stored in nextPts; if the flag is
not set, then prevPts is copied to nextPts and is considered the initial estimate.
- **OPTFLOW\_LK\_GET\_MIN\_EIGENVALS** use minimum eigen values as an error measure (see
minEigThreshold description); if the flag is not set, then L1 distance between patches
around the original and a moved point, divided by number of pixels in a window, is used as a
error measure.
@param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
performance boost.
The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
@cite Bouguet00. The function is parallelized with the TBB library.
@note
- An example using the Lucas-Kanade optical flow algorithm can be found at
opencv\_source\_code/samples/cpp/lkdemo.cpp
- (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
opencv\_source\_code/samples/python2/lk\_track.py
- (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
opencv\_source\_code/samples/python2/lk\_homography.py
*/
CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
InputArray prevPts, InputOutputArray nextPts,
OutputArray status, OutputArray err,
@@ -77,14 +177,76 @@ CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
int flags = 0, double minEigThreshold = 1e-4 );
//! computes dense optical flow using Farneback algorithm
/** @brief Computes a dense optical flow using the Gunnar Farneback's algorithm.
@param prev first 8-bit single-channel input image.
@param next second input image of the same size and the same type as prev.
@param flow computed flow image that has the same size as prev and type CV\_32FC2.
@param pyr\_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
pyr\_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
one.
@param levels number of pyramid layers including the initial image; levels=1 means that no extra
layers are created and only the original images are used.
@param winsize averaging window size; larger values increase the algorithm robustness to image
noise and give more chances for fast motion detection, but yield more blurred motion field.
@param iterations number of iterations the algorithm does at each pyramid level.
@param poly\_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
larger values mean that the image will be approximated with smoother surfaces, yielding more
robust algorithm and more blurred motion field, typically poly\_n =5 or 7.
@param poly\_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
basis for the polynomial expansion; for poly\_n=5, you can set poly\_sigma=1.1, for poly\_n=7, a
good value would be poly\_sigma=1.5.
@param flags operation flags that can be a combination of the following:
- **OPTFLOW\_USE\_INITIAL\_FLOW** uses the input flow as an initial flow approximation.
- **OPTFLOW\_FARNEBACK\_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
filter instead of a box filter of the same size for optical flow estimation; usually, this
option gives z more accurate flow than with a box filter, at the cost of lower speed;
normally, winsize for a Gaussian window should be set to a larger value to achieve the same
level of robustness.
The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that
\f[\texttt{prev} (y,x) \sim \texttt{next} ( y + \texttt{flow} (y,x)[1], x + \texttt{flow} (y,x)[0])\f]
@note
- An example using the optical flow algorithm described by Gunnar Farneback can be found at
opencv\_source\_code/samples/cpp/fback.cpp
- (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
found at opencv\_source\_code/samples/python2/opt\_flow.py
*/
CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow,
double pyr_scale, int levels, int winsize,
int iterations, int poly_n, double poly_sigma,
int flags );
//! estimates the best-fit Euqcidean, similarity, affine or perspective transformation
// that maps one 2D point set to another or one image to another.
/** @brief Computes an optimal affine transformation between two 2D point sets.
@param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat.
@param dst Second input 2D point set of the same size and the same type as A, or another image.
@param fullAffine If true, the function finds an optimal affine transformation with no additional
restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
limited to combinations of translation, rotation, and uniform scaling (5 degrees of freedom).
The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that
approximates best the affine transformation between:
* Two point sets
* Two raster images. In this case, the function first finds some features in the src image and
finds the corresponding features in dst image. After that, the problem is reduced to the first
case.
In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and
2x1 vector *b* so that:
\f[[A^*|b^*] = arg \min _{[A|b]} \sum _i \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b \| ^2\f]
where src[i] and dst[i] are the i-th points in src and dst, respectively
\f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of
\f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ -a_{12} & a_{11} & b_2 \end{bmatrix}\f]
when fullAffine=false.
@sa
getAffineTransform, getPerspectiveTransform, findHomography
*/
CV_EXPORTS_W Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine );
@@ -96,37 +258,106 @@ enum
MOTION_HOMOGRAPHY = 3
};
//! estimates the best-fit Translation, Euclidean, Affine or Perspective Transformation
// with respect to Enhanced Correlation Coefficient criterion that maps one image to
// another (area-based alignment)
//
// see reference:
// Evangelidis, G. E., Psarakis, E.Z., Parametric Image Alignment using
// Enhanced Correlation Coefficient Maximization, PAMI, 30(8), 2008
/** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08.
@param templateImage single-channel template image; CV\_8U or CV\_32F array.
@param inputImage single-channel input image which should be warped with the final warpMatrix in
order to provide an image similar to templateImage, same type as temlateImage.
@param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).
@param motionType parameter, specifying the type of motion:
- **MOTION\_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
estimated.
- **MOTION\_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
parameters are estimated; warpMatrix is \f$2\times 3\f$.
- **MOTION\_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
warpMatrix is \f$2\times 3\f$.
- **MOTION\_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
estimated;\`warpMatrix\` is \f$3\times 3\f$.
@param criteria parameter, specifying the termination criteria of the ECC algorithm;
criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
Default values are shown in the declaration above.
The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
(@cite EP08), that is
\f[\texttt{warpMatrix} = \texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f]
where
\f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f]
(the equation holds with homogeneous coordinates for homography). It returns the final enhanced
correlation coefficient, that is the correlation coefficient between the template image and the
final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third
row is ignored.
Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
area-based alignment that builds on intensity similarities. In essence, the function updates the
initial transformation that roughly aligns the images. If this information is missing, the identity
warp (unity matrix) should be given as input. Note that if images undergo strong
displacements/rotations, an initial transformation that roughly aligns the images is necessary
(e.g., a simple euclidean/similarity transform that allows for the images showing the same image
content approximately). Use inverse warping in the second image to take an image close to the first
one, i.e. use the flag WARP\_INVERSE\_MAP with warpAffine or warpPerspective. See also the OpenCV
sample image\_alignment.cpp that demonstrates the use of the function. Note that the function throws
an exception if algorithm does not converges.
@sa
estimateRigidTransform, findHomography
*/
CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage,
InputOutputArray warpMatrix, int motionType = MOTION_AFFINE,
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001));
/*!
Kalman filter.
/** @brief Kalman filter class.
The class implements standard Kalman filter http://en.wikipedia.org/wiki/Kalman_filter.
However, you can modify KalmanFilter::transitionMatrix, KalmanFilter::controlMatrix and
KalmanFilter::measurementMatrix to get the extended Kalman filter functionality.
*/
The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>,
@cite Welch95. However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get
an extended Kalman filter functionality. See the OpenCV sample kalman.cpp.
@note
- An example using the standard Kalman filter can be found at
opencv\_source\_code/samples/cpp/kalman.cpp
*/
class CV_EXPORTS_W KalmanFilter
{
public:
//! the default constructor
/** @brief The constructors.
@note In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released
with cvReleaseKalman(&kalmanFilter)
*/
CV_WRAP KalmanFilter();
//! the full constructor taking the dimensionality of the state, of the measurement and of the control vector
/** @overload
@param dynamParams Dimensionality of the state.
@param measureParams Dimensionality of the measurement.
@param controlParams Dimensionality of the control vector.
@param type Type of the created matrices that should be CV\_32F or CV\_64F.
*/
CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
//! re-initializes Kalman filter. The previous content is destroyed.
/** @brief Re-initializes Kalman filter. The previous content is destroyed.
@param dynamParams Dimensionalityensionality of the state.
@param measureParams Dimensionality of the measurement.
@param controlParams Dimensionality of the control vector.
@param type Type of the created matrices that should be CV\_32F or CV\_64F.
*/
void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
//! computes predicted state
/** @brief Computes a predicted state.
@param control The optional input control
*/
CV_WRAP const Mat& predict( const Mat& control = Mat() );
//! updates the predicted state from the measurement
/** @brief Updates the predicted state from the measurement.
@param measurement The measured system parameters
*/
CV_WRAP const Mat& correct( const Mat& measurement );
CV_PROP_RW Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
@@ -149,21 +380,69 @@ public:
};
/** @brief "Dual TV L1" Optical Flow Algorithm.
The class implements the "Dual TV L1" optical flow algorithm described in @cite Zach2007 and
@cite Javier2012.
Here are important members of the class that control the algorithm, which you can set after
constructing the class instance:
- member double tau
Time step of the numerical scheme.
- member double lambda
Weight parameter for the data term, attachment parameter. This is the most relevant
parameter, which determines the smoothness of the output. The smaller this parameter is,
the smoother the solutions we obtain. It depends on the range of motions of the images, so
its value should be adapted to each image sequence.
- member double theta
Weight parameter for (u - v)\^2, tightness parameter. It serves as a link between the
attachment and the regularization terms. In theory, it should have a small value in order
to maintain both parts in correspondence. The method is stable for a large range of values
of this parameter.
- member int nscales
Number of scales used to create the pyramid of images.
- member int warps
Number of warpings per scale. Represents the number of times that I1(x+u0) and grad(
I1(x+u0) ) are computed per scale. This is a parameter that assures the stability of the
method. It also affects the running time, so it is a compromise between speed and
accuracy.
- member double epsilon
Stopping criterion threshold used in the numerical scheme, which is a trade-off between
precision and running time. A small value will yield more accurate solutions at the
expense of a slower convergence.
- member int iterations
Stopping criterion iterations number used in the numerical scheme.
C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
*/
class CV_EXPORTS_W DenseOpticalFlow : public Algorithm
{
public:
/** @brief Calculates an optical flow.
@param I0 first 8-bit single-channel input image.
@param I1 second input image of the same size and the same type as prev.
@param flow computed flow image that has the same size as prev and type CV\_32FC2.
*/
CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0;
/** @brief Releases all inner buffers.
*/
CV_WRAP virtual void collectGarbage() = 0;
};
// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
//
// see reference:
// [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
/** @brief Creates instance of cv::DenseOpticalFlow
*/
CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_DualTVL1();
//! @} video_track
} // cv
#endif

View File

@@ -50,6 +50,10 @@
extern "C" {
#endif
/** @addtogroup video_c
@{
*/
/****************************************************************************************\
* Motion Analysis *
\****************************************************************************************/
@@ -218,6 +222,7 @@ CVAPI(const CvMat*) cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement
#define cvKalmanUpdateByTime cvKalmanPredict
#define cvKalmanUpdateByMeasurement cvKalmanCorrect
/** @} video_c */
#ifdef __cplusplus
} // extern "C"