Doxygen documentation for: highgui, video, imgcodecs and videoio
This commit is contained in:
@@ -44,6 +44,15 @@
|
||||
#ifndef __OPENCV_VIDEO_HPP__
|
||||
#define __OPENCV_VIDEO_HPP__
|
||||
|
||||
/**
|
||||
@defgroup video Video Analysis
|
||||
@{
|
||||
@defgroup video_motion Motion Analysis
|
||||
@defgroup video_track Object Tracking
|
||||
@defgroup video_c C API
|
||||
@}
|
||||
*/
|
||||
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include "opencv2/video/background_segm.hpp"
|
||||
|
||||
|
@@ -49,49 +49,102 @@
|
||||
namespace cv
|
||||
{
|
||||
|
||||
/*!
|
||||
The Base Class for Background/Foreground Segmentation
|
||||
//! @addtogroup video_motion
|
||||
//! @{
|
||||
|
||||
The class is only used to define the common interface for
|
||||
the whole family of background/foreground segmentation algorithms.
|
||||
*/
|
||||
/** @brief Base class for background/foreground segmentation. :
|
||||
|
||||
The class is only used to define the common interface for the whole family of background/foreground
|
||||
segmentation algorithms.
|
||||
*/
|
||||
class CV_EXPORTS_W BackgroundSubtractor : public Algorithm
|
||||
{
|
||||
public:
|
||||
//! the update operator that takes the next video frame and returns the current foreground mask as 8-bit binary image.
|
||||
/** @brief Computes a foreground mask.
|
||||
|
||||
@param image Next video frame.
|
||||
@param fgmask The output foreground mask as an 8-bit binary image.
|
||||
@param learningRate The value between 0 and 1 that indicates how fast the background model is
|
||||
learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
|
||||
rate. 0 means that the background model is not updated at all, 1 means that the background model
|
||||
is completely reinitialized from the last frame.
|
||||
*/
|
||||
CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) = 0;
|
||||
|
||||
//! computes a background image
|
||||
/** @brief Computes a background image.
|
||||
|
||||
@param backgroundImage The output background image.
|
||||
|
||||
@note Sometimes the background image can be very blurry, as it contain the average background
|
||||
statistics.
|
||||
*/
|
||||
CV_WRAP virtual void getBackgroundImage(OutputArray backgroundImage) const = 0;
|
||||
};
|
||||
|
||||
|
||||
/*!
|
||||
The class implements the following algorithm:
|
||||
"Improved adaptive Gausian mixture model for background subtraction"
|
||||
Z.Zivkovic
|
||||
International Conference Pattern Recognition, UK, August, 2004.
|
||||
http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
|
||||
/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
|
||||
|
||||
The class implements the Gaussian mixture model background subtraction described in @cite Zivkovic2004
|
||||
and @cite Zivkovic2006 .
|
||||
*/
|
||||
class CV_EXPORTS_W BackgroundSubtractorMOG2 : public BackgroundSubtractor
|
||||
{
|
||||
public:
|
||||
/** @brief Returns the number of last frames that affect the background model
|
||||
*/
|
||||
CV_WRAP virtual int getHistory() const = 0;
|
||||
/** @brief Sets the number of last frames that affect the background model
|
||||
*/
|
||||
CV_WRAP virtual void setHistory(int history) = 0;
|
||||
|
||||
/** @brief Returns the number of gaussian components in the background model
|
||||
*/
|
||||
CV_WRAP virtual int getNMixtures() const = 0;
|
||||
/** @brief Sets the number of gaussian components in the background model.
|
||||
|
||||
The model needs to be reinitalized to reserve memory.
|
||||
*/
|
||||
CV_WRAP virtual void setNMixtures(int nmixtures) = 0;//needs reinitialization!
|
||||
|
||||
/** @brief Returns the "background ratio" parameter of the algorithm
|
||||
|
||||
If a foreground pixel keeps semi-constant value for about backgroundRatio\*history frames, it's
|
||||
considered background and added to the model as a center of a new component. It corresponds to TB
|
||||
parameter in the paper.
|
||||
*/
|
||||
CV_WRAP virtual double getBackgroundRatio() const = 0;
|
||||
/** @brief Sets the "background ratio" parameter of the algorithm
|
||||
*/
|
||||
CV_WRAP virtual void setBackgroundRatio(double ratio) = 0;
|
||||
|
||||
/** @brief Returns the variance threshold for the pixel-model match
|
||||
|
||||
The main threshold on the squared Mahalanobis distance to decide if the sample is well described by
|
||||
the background model or not. Related to Cthr from the paper.
|
||||
*/
|
||||
CV_WRAP virtual double getVarThreshold() const = 0;
|
||||
/** @brief Sets the variance threshold for the pixel-model match
|
||||
*/
|
||||
CV_WRAP virtual void setVarThreshold(double varThreshold) = 0;
|
||||
|
||||
/** @brief Returns the variance threshold for the pixel-model match used for new mixture component generation
|
||||
|
||||
Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the
|
||||
existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it
|
||||
is considered foreground or added as a new component. 3 sigma =\> Tg=3\*3=9 is default. A smaller Tg
|
||||
value generates more components. A higher Tg value may result in a small number of components but
|
||||
they can grow too large.
|
||||
*/
|
||||
CV_WRAP virtual double getVarThresholdGen() const = 0;
|
||||
/** @brief Sets the variance threshold for the pixel-model match used for new mixture component generation
|
||||
*/
|
||||
CV_WRAP virtual void setVarThresholdGen(double varThresholdGen) = 0;
|
||||
|
||||
/** @brief Returns the initial variance of each gaussian component
|
||||
*/
|
||||
CV_WRAP virtual double getVarInit() const = 0;
|
||||
/** @brief Sets the initial variance of each gaussian component
|
||||
*/
|
||||
CV_WRAP virtual void setVarInit(double varInit) = 0;
|
||||
|
||||
CV_WRAP virtual double getVarMin() const = 0;
|
||||
@@ -100,62 +153,154 @@ public:
|
||||
CV_WRAP virtual double getVarMax() const = 0;
|
||||
CV_WRAP virtual void setVarMax(double varMax) = 0;
|
||||
|
||||
/** @brief Returns the complexity reduction threshold
|
||||
|
||||
This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05
|
||||
is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the
|
||||
standard Stauffer&Grimson algorithm.
|
||||
*/
|
||||
CV_WRAP virtual double getComplexityReductionThreshold() const = 0;
|
||||
/** @brief Sets the complexity reduction threshold
|
||||
*/
|
||||
CV_WRAP virtual void setComplexityReductionThreshold(double ct) = 0;
|
||||
|
||||
/** @brief Returns the shadow detection flag
|
||||
|
||||
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for
|
||||
details.
|
||||
*/
|
||||
CV_WRAP virtual bool getDetectShadows() const = 0;
|
||||
/** @brief Enables or disables shadow detection
|
||||
*/
|
||||
CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
|
||||
|
||||
/** @brief Returns the shadow value
|
||||
|
||||
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
|
||||
in the mask always means background, 255 means foreground.
|
||||
*/
|
||||
CV_WRAP virtual int getShadowValue() const = 0;
|
||||
/** @brief Sets the shadow value
|
||||
*/
|
||||
CV_WRAP virtual void setShadowValue(int value) = 0;
|
||||
|
||||
/** @brief Returns the shadow threshold
|
||||
|
||||
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
|
||||
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
|
||||
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra,
|
||||
*Detecting Moving Shadows...*, IEEE PAMI,2003.
|
||||
*/
|
||||
CV_WRAP virtual double getShadowThreshold() const = 0;
|
||||
/** @brief Sets the shadow threshold
|
||||
*/
|
||||
CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates MOG2 Background Subtractor
|
||||
|
||||
@param history Length of the history.
|
||||
@param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
|
||||
to decide whether a pixel is well described by the background model. This parameter does not
|
||||
affect the background update.
|
||||
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
|
||||
speed a bit, so if you do not need this feature, set the parameter to false.
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<BackgroundSubtractorMOG2>
|
||||
createBackgroundSubtractorMOG2(int history=500, double varThreshold=16,
|
||||
bool detectShadows=true);
|
||||
|
||||
/*!
|
||||
The class implements the K nearest neigbours algorithm from:
|
||||
"Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction"
|
||||
Z.Zivkovic, F. van der Heijden
|
||||
Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006
|
||||
http://www.zoranz.net/Publications/zivkovicPRL2006.pdf
|
||||
|
||||
Fast for small foreground object. Results on the benchmark data is at http://www.changedetection.net.
|
||||
*/
|
||||
/** @brief K-nearest neigbours - based Background/Foreground Segmentation Algorithm.
|
||||
|
||||
The class implements the K-nearest neigbours background subtraction described in @cite Zivkovic2006 .
|
||||
Very efficient if number of foreground pixels is low.
|
||||
*/
|
||||
class CV_EXPORTS_W BackgroundSubtractorKNN : public BackgroundSubtractor
|
||||
{
|
||||
public:
|
||||
/** @brief Returns the number of last frames that affect the background model
|
||||
*/
|
||||
CV_WRAP virtual int getHistory() const = 0;
|
||||
/** @brief Sets the number of last frames that affect the background model
|
||||
*/
|
||||
CV_WRAP virtual void setHistory(int history) = 0;
|
||||
|
||||
/** @brief Returns the number of data samples in the background model
|
||||
*/
|
||||
CV_WRAP virtual int getNSamples() const = 0;
|
||||
/** @brief Sets the number of data samples in the background model.
|
||||
|
||||
The model needs to be reinitalized to reserve memory.
|
||||
*/
|
||||
CV_WRAP virtual void setNSamples(int _nN) = 0;//needs reinitialization!
|
||||
|
||||
/** @brief Returns the threshold on the squared distance between the pixel and the sample
|
||||
|
||||
The threshold on the squared distance between the pixel and the sample to decide whether a pixel is
|
||||
close to a data sample.
|
||||
*/
|
||||
CV_WRAP virtual double getDist2Threshold() const = 0;
|
||||
/** @brief Sets the threshold on the squared distance
|
||||
*/
|
||||
CV_WRAP virtual void setDist2Threshold(double _dist2Threshold) = 0;
|
||||
|
||||
/** @brief Returns the number of neighbours, the k in the kNN.
|
||||
|
||||
K is the number of samples that need to be within dist2Threshold in order to decide that that
|
||||
pixel is matching the kNN background model.
|
||||
*/
|
||||
CV_WRAP virtual int getkNNSamples() const = 0;
|
||||
/** @brief Sets the k in the kNN. How many nearest neigbours need to match.
|
||||
*/
|
||||
CV_WRAP virtual void setkNNSamples(int _nkNN) = 0;
|
||||
|
||||
/** @brief Returns the shadow detection flag
|
||||
|
||||
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for
|
||||
details.
|
||||
*/
|
||||
CV_WRAP virtual bool getDetectShadows() const = 0;
|
||||
/** @brief Enables or disables shadow detection
|
||||
*/
|
||||
CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
|
||||
|
||||
/** @brief Returns the shadow value
|
||||
|
||||
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
|
||||
in the mask always means background, 255 means foreground.
|
||||
*/
|
||||
CV_WRAP virtual int getShadowValue() const = 0;
|
||||
/** @brief Sets the shadow value
|
||||
*/
|
||||
CV_WRAP virtual void setShadowValue(int value) = 0;
|
||||
|
||||
/** @brief Returns the shadow threshold
|
||||
|
||||
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
|
||||
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
|
||||
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra,
|
||||
*Detecting Moving Shadows...*, IEEE PAMI,2003.
|
||||
*/
|
||||
CV_WRAP virtual double getShadowThreshold() const = 0;
|
||||
/** @brief Sets the shadow threshold
|
||||
*/
|
||||
CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates KNN Background Subtractor
|
||||
|
||||
@param history Length of the history.
|
||||
@param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
|
||||
whether a pixel is close to that sample. This parameter does not affect the background update.
|
||||
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
|
||||
speed a bit, so if you do not need this feature, set the parameter to false.
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<BackgroundSubtractorKNN>
|
||||
createBackgroundSubtractorKNN(int history=500, double dist2Threshold=400.0,
|
||||
bool detectShadows=true);
|
||||
|
||||
//! @} video_motion
|
||||
|
||||
} // cv
|
||||
|
||||
#endif
|
||||
|
@@ -50,26 +50,126 @@
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup video_track
|
||||
//! @{
|
||||
|
||||
enum { OPTFLOW_USE_INITIAL_FLOW = 4,
|
||||
OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
|
||||
OPTFLOW_FARNEBACK_GAUSSIAN = 256
|
||||
};
|
||||
|
||||
//! updates the object tracking window using CAMSHIFT algorithm
|
||||
/** @brief Finds an object center, size, and orientation.
|
||||
|
||||
@param probImage Back projection of the object histogram. See calcBackProject.
|
||||
@param window Initial search window.
|
||||
@param criteria Stop criteria for the underlying meanShift.
|
||||
returns
|
||||
(in old interfaces) Number of iterations CAMSHIFT took to converge
|
||||
The function implements the CAMSHIFT object tracking algorithm @cite Bradski98. First, it finds an
|
||||
object center using meanShift and then adjusts the window size and finds the optimal rotation. The
|
||||
function returns the rotated rectangle structure that includes the object position, size, and
|
||||
orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
|
||||
|
||||
See the OpenCV sample camshiftdemo.c that tracks colored objects.
|
||||
|
||||
@note
|
||||
- (Python) A sample explaining the camshift tracking algorithm can be found at
|
||||
opencv\_source\_code/samples/python2/camshift.py
|
||||
*/
|
||||
CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
|
||||
TermCriteria criteria );
|
||||
|
||||
//! updates the object tracking window using meanshift algorithm
|
||||
/** @brief Finds an object on a back projection image.
|
||||
|
||||
@param probImage Back projection of the object histogram. See calcBackProject for details.
|
||||
@param window Initial search window.
|
||||
@param criteria Stop criteria for the iterative search algorithm.
|
||||
returns
|
||||
: Number of iterations CAMSHIFT took to converge.
|
||||
The function implements the iterative object search algorithm. It takes the input back projection of
|
||||
an object and the initial position. The mass center in window of the back projection image is
|
||||
computed and the search window center shifts to the mass center. The procedure is repeated until the
|
||||
specified number of iterations criteria.maxCount is done or until the window center shifts by less
|
||||
than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
|
||||
window size or orientation do not change during the search. You can simply pass the output of
|
||||
calcBackProject to this function. But better results can be obtained if you pre-filter the back
|
||||
projection and remove the noise. For example, you can do this by retrieving connected components
|
||||
with findContours , throwing away contours with small area ( contourArea ), and rendering the
|
||||
remaining contours with drawContours.
|
||||
|
||||
@note
|
||||
- A mean-shift tracking sample can be found at opencv\_source\_code/samples/cpp/camshiftdemo.cpp
|
||||
*/
|
||||
CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria );
|
||||
|
||||
//! constructs a pyramid which can be used as input for calcOpticalFlowPyrLK
|
||||
/** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
|
||||
|
||||
@param img 8-bit input image.
|
||||
@param pyramid output pyramid.
|
||||
@param winSize window size of optical flow algorithm. Must be not less than winSize argument of
|
||||
calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
|
||||
@param maxLevel 0-based maximal pyramid level number.
|
||||
@param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
|
||||
constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
|
||||
@param pyrBorder the border mode for pyramid layers.
|
||||
@param derivBorder the border mode for gradients.
|
||||
@param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
|
||||
to force data copying.
|
||||
@return number of levels in constructed pyramid. Can be less than maxLevel.
|
||||
*/
|
||||
CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid,
|
||||
Size winSize, int maxLevel, bool withDerivatives = true,
|
||||
int pyrBorder = BORDER_REFLECT_101,
|
||||
int derivBorder = BORDER_CONSTANT,
|
||||
bool tryReuseInputImage = true );
|
||||
|
||||
//! computes sparse optical flow using multi-scale Lucas-Kanade algorithm
|
||||
/** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
|
||||
pyramids.
|
||||
|
||||
@param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
|
||||
@param nextImg second input image or pyramid of the same size and the same type as prevImg.
|
||||
@param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
|
||||
single-precision floating-point numbers.
|
||||
@param nextPts output vector of 2D points (with single-precision floating-point coordinates)
|
||||
containing the calculated new positions of input features in the second image; when
|
||||
OPTFLOW\_USE\_INITIAL\_FLOW flag is passed, the vector must have the same size as in the input.
|
||||
@param status output status vector (of unsigned chars); each element of the vector is set to 1 if
|
||||
the flow for the corresponding features has been found, otherwise, it is set to 0.
|
||||
@param err output vector of errors; each element of the vector is set to an error for the
|
||||
corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
|
||||
found then the error is not defined (use the status parameter to find such cases).
|
||||
@param winSize size of the search window at each pyramid level.
|
||||
@param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
|
||||
level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
|
||||
algorithm will use as many levels as pyramids have but no more than maxLevel.
|
||||
@param criteria parameter, specifying the termination criteria of the iterative search algorithm
|
||||
(after the specified maximum number of iterations criteria.maxCount or when the search window
|
||||
moves by less than criteria.epsilon.
|
||||
@param flags operation flags:
|
||||
- **OPTFLOW\_USE\_INITIAL\_FLOW** uses initial estimations, stored in nextPts; if the flag is
|
||||
not set, then prevPts is copied to nextPts and is considered the initial estimate.
|
||||
- **OPTFLOW\_LK\_GET\_MIN\_EIGENVALS** use minimum eigen values as an error measure (see
|
||||
minEigThreshold description); if the flag is not set, then L1 distance between patches
|
||||
around the original and a moved point, divided by number of pixels in a window, is used as a
|
||||
error measure.
|
||||
@param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
|
||||
optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
|
||||
by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
|
||||
feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
|
||||
performance boost.
|
||||
|
||||
The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
|
||||
@cite Bouguet00. The function is parallelized with the TBB library.
|
||||
|
||||
@note
|
||||
|
||||
- An example using the Lucas-Kanade optical flow algorithm can be found at
|
||||
opencv\_source\_code/samples/cpp/lkdemo.cpp
|
||||
- (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
|
||||
opencv\_source\_code/samples/python2/lk\_track.py
|
||||
- (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
|
||||
opencv\_source\_code/samples/python2/lk\_homography.py
|
||||
*/
|
||||
CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
|
||||
InputArray prevPts, InputOutputArray nextPts,
|
||||
OutputArray status, OutputArray err,
|
||||
@@ -77,14 +177,76 @@ CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
|
||||
int flags = 0, double minEigThreshold = 1e-4 );
|
||||
|
||||
//! computes dense optical flow using Farneback algorithm
|
||||
/** @brief Computes a dense optical flow using the Gunnar Farneback's algorithm.
|
||||
|
||||
@param prev first 8-bit single-channel input image.
|
||||
@param next second input image of the same size and the same type as prev.
|
||||
@param flow computed flow image that has the same size as prev and type CV\_32FC2.
|
||||
@param pyr\_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
|
||||
pyr\_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
|
||||
one.
|
||||
@param levels number of pyramid layers including the initial image; levels=1 means that no extra
|
||||
layers are created and only the original images are used.
|
||||
@param winsize averaging window size; larger values increase the algorithm robustness to image
|
||||
noise and give more chances for fast motion detection, but yield more blurred motion field.
|
||||
@param iterations number of iterations the algorithm does at each pyramid level.
|
||||
@param poly\_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
|
||||
larger values mean that the image will be approximated with smoother surfaces, yielding more
|
||||
robust algorithm and more blurred motion field, typically poly\_n =5 or 7.
|
||||
@param poly\_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
|
||||
basis for the polynomial expansion; for poly\_n=5, you can set poly\_sigma=1.1, for poly\_n=7, a
|
||||
good value would be poly\_sigma=1.5.
|
||||
@param flags operation flags that can be a combination of the following:
|
||||
- **OPTFLOW\_USE\_INITIAL\_FLOW** uses the input flow as an initial flow approximation.
|
||||
- **OPTFLOW\_FARNEBACK\_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
|
||||
filter instead of a box filter of the same size for optical flow estimation; usually, this
|
||||
option gives z more accurate flow than with a box filter, at the cost of lower speed;
|
||||
normally, winsize for a Gaussian window should be set to a larger value to achieve the same
|
||||
level of robustness.
|
||||
|
||||
The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that
|
||||
|
||||
\f[\texttt{prev} (y,x) \sim \texttt{next} ( y + \texttt{flow} (y,x)[1], x + \texttt{flow} (y,x)[0])\f]
|
||||
|
||||
@note
|
||||
|
||||
- An example using the optical flow algorithm described by Gunnar Farneback can be found at
|
||||
opencv\_source\_code/samples/cpp/fback.cpp
|
||||
- (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
|
||||
found at opencv\_source\_code/samples/python2/opt\_flow.py
|
||||
*/
|
||||
CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow,
|
||||
double pyr_scale, int levels, int winsize,
|
||||
int iterations, int poly_n, double poly_sigma,
|
||||
int flags );
|
||||
|
||||
//! estimates the best-fit Euqcidean, similarity, affine or perspective transformation
|
||||
// that maps one 2D point set to another or one image to another.
|
||||
/** @brief Computes an optimal affine transformation between two 2D point sets.
|
||||
|
||||
@param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat.
|
||||
@param dst Second input 2D point set of the same size and the same type as A, or another image.
|
||||
@param fullAffine If true, the function finds an optimal affine transformation with no additional
|
||||
restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
|
||||
limited to combinations of translation, rotation, and uniform scaling (5 degrees of freedom).
|
||||
|
||||
The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that
|
||||
approximates best the affine transformation between:
|
||||
|
||||
* Two point sets
|
||||
* Two raster images. In this case, the function first finds some features in the src image and
|
||||
finds the corresponding features in dst image. After that, the problem is reduced to the first
|
||||
case.
|
||||
In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and
|
||||
2x1 vector *b* so that:
|
||||
|
||||
\f[[A^*|b^*] = arg \min _{[A|b]} \sum _i \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b \| ^2\f]
|
||||
where src[i] and dst[i] are the i-th points in src and dst, respectively
|
||||
\f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of
|
||||
\f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ -a_{12} & a_{11} & b_2 \end{bmatrix}\f]
|
||||
when fullAffine=false.
|
||||
|
||||
@sa
|
||||
getAffineTransform, getPerspectiveTransform, findHomography
|
||||
*/
|
||||
CV_EXPORTS_W Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine );
|
||||
|
||||
|
||||
@@ -96,37 +258,106 @@ enum
|
||||
MOTION_HOMOGRAPHY = 3
|
||||
};
|
||||
|
||||
//! estimates the best-fit Translation, Euclidean, Affine or Perspective Transformation
|
||||
// with respect to Enhanced Correlation Coefficient criterion that maps one image to
|
||||
// another (area-based alignment)
|
||||
//
|
||||
// see reference:
|
||||
// Evangelidis, G. E., Psarakis, E.Z., Parametric Image Alignment using
|
||||
// Enhanced Correlation Coefficient Maximization, PAMI, 30(8), 2008
|
||||
/** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08.
|
||||
|
||||
@param templateImage single-channel template image; CV\_8U or CV\_32F array.
|
||||
@param inputImage single-channel input image which should be warped with the final warpMatrix in
|
||||
order to provide an image similar to templateImage, same type as temlateImage.
|
||||
@param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).
|
||||
@param motionType parameter, specifying the type of motion:
|
||||
- **MOTION\_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
|
||||
the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
|
||||
estimated.
|
||||
- **MOTION\_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
|
||||
parameters are estimated; warpMatrix is \f$2\times 3\f$.
|
||||
- **MOTION\_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
|
||||
warpMatrix is \f$2\times 3\f$.
|
||||
- **MOTION\_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
|
||||
estimated;\`warpMatrix\` is \f$3\times 3\f$.
|
||||
@param criteria parameter, specifying the termination criteria of the ECC algorithm;
|
||||
criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
|
||||
iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
|
||||
Default values are shown in the declaration above.
|
||||
|
||||
The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
|
||||
(@cite EP08), that is
|
||||
|
||||
\f[\texttt{warpMatrix} = \texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f]
|
||||
|
||||
where
|
||||
|
||||
\f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f]
|
||||
|
||||
(the equation holds with homogeneous coordinates for homography). It returns the final enhanced
|
||||
correlation coefficient, that is the correlation coefficient between the template image and the
|
||||
final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third
|
||||
row is ignored.
|
||||
|
||||
Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
|
||||
area-based alignment that builds on intensity similarities. In essence, the function updates the
|
||||
initial transformation that roughly aligns the images. If this information is missing, the identity
|
||||
warp (unity matrix) should be given as input. Note that if images undergo strong
|
||||
displacements/rotations, an initial transformation that roughly aligns the images is necessary
|
||||
(e.g., a simple euclidean/similarity transform that allows for the images showing the same image
|
||||
content approximately). Use inverse warping in the second image to take an image close to the first
|
||||
one, i.e. use the flag WARP\_INVERSE\_MAP with warpAffine or warpPerspective. See also the OpenCV
|
||||
sample image\_alignment.cpp that demonstrates the use of the function. Note that the function throws
|
||||
an exception if algorithm does not converges.
|
||||
|
||||
@sa
|
||||
estimateRigidTransform, findHomography
|
||||
*/
|
||||
CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage,
|
||||
InputOutputArray warpMatrix, int motionType = MOTION_AFFINE,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001));
|
||||
|
||||
/*!
|
||||
Kalman filter.
|
||||
/** @brief Kalman filter class.
|
||||
|
||||
The class implements standard Kalman filter http://en.wikipedia.org/wiki/Kalman_filter.
|
||||
However, you can modify KalmanFilter::transitionMatrix, KalmanFilter::controlMatrix and
|
||||
KalmanFilter::measurementMatrix to get the extended Kalman filter functionality.
|
||||
*/
|
||||
The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>,
|
||||
@cite Welch95. However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get
|
||||
an extended Kalman filter functionality. See the OpenCV sample kalman.cpp.
|
||||
|
||||
@note
|
||||
|
||||
- An example using the standard Kalman filter can be found at
|
||||
opencv\_source\_code/samples/cpp/kalman.cpp
|
||||
*/
|
||||
class CV_EXPORTS_W KalmanFilter
|
||||
{
|
||||
public:
|
||||
//! the default constructor
|
||||
/** @brief The constructors.
|
||||
|
||||
@note In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released
|
||||
with cvReleaseKalman(&kalmanFilter)
|
||||
*/
|
||||
CV_WRAP KalmanFilter();
|
||||
//! the full constructor taking the dimensionality of the state, of the measurement and of the control vector
|
||||
/** @overload
|
||||
@param dynamParams Dimensionality of the state.
|
||||
@param measureParams Dimensionality of the measurement.
|
||||
@param controlParams Dimensionality of the control vector.
|
||||
@param type Type of the created matrices that should be CV\_32F or CV\_64F.
|
||||
*/
|
||||
CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
|
||||
//! re-initializes Kalman filter. The previous content is destroyed.
|
||||
|
||||
/** @brief Re-initializes Kalman filter. The previous content is destroyed.
|
||||
|
||||
@param dynamParams Dimensionalityensionality of the state.
|
||||
@param measureParams Dimensionality of the measurement.
|
||||
@param controlParams Dimensionality of the control vector.
|
||||
@param type Type of the created matrices that should be CV\_32F or CV\_64F.
|
||||
*/
|
||||
void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
|
||||
|
||||
//! computes predicted state
|
||||
/** @brief Computes a predicted state.
|
||||
|
||||
@param control The optional input control
|
||||
*/
|
||||
CV_WRAP const Mat& predict( const Mat& control = Mat() );
|
||||
//! updates the predicted state from the measurement
|
||||
|
||||
/** @brief Updates the predicted state from the measurement.
|
||||
|
||||
@param measurement The measured system parameters
|
||||
*/
|
||||
CV_WRAP const Mat& correct( const Mat& measurement );
|
||||
|
||||
CV_PROP_RW Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
|
||||
@@ -149,21 +380,69 @@ public:
|
||||
};
|
||||
|
||||
|
||||
/** @brief "Dual TV L1" Optical Flow Algorithm.
|
||||
|
||||
The class implements the "Dual TV L1" optical flow algorithm described in @cite Zach2007 and
|
||||
@cite Javier2012.
|
||||
Here are important members of the class that control the algorithm, which you can set after
|
||||
constructing the class instance:
|
||||
|
||||
- member double tau
|
||||
Time step of the numerical scheme.
|
||||
|
||||
- member double lambda
|
||||
Weight parameter for the data term, attachment parameter. This is the most relevant
|
||||
parameter, which determines the smoothness of the output. The smaller this parameter is,
|
||||
the smoother the solutions we obtain. It depends on the range of motions of the images, so
|
||||
its value should be adapted to each image sequence.
|
||||
|
||||
- member double theta
|
||||
Weight parameter for (u - v)\^2, tightness parameter. It serves as a link between the
|
||||
attachment and the regularization terms. In theory, it should have a small value in order
|
||||
to maintain both parts in correspondence. The method is stable for a large range of values
|
||||
of this parameter.
|
||||
|
||||
- member int nscales
|
||||
Number of scales used to create the pyramid of images.
|
||||
|
||||
- member int warps
|
||||
Number of warpings per scale. Represents the number of times that I1(x+u0) and grad(
|
||||
I1(x+u0) ) are computed per scale. This is a parameter that assures the stability of the
|
||||
method. It also affects the running time, so it is a compromise between speed and
|
||||
accuracy.
|
||||
|
||||
- member double epsilon
|
||||
Stopping criterion threshold used in the numerical scheme, which is a trade-off between
|
||||
precision and running time. A small value will yield more accurate solutions at the
|
||||
expense of a slower convergence.
|
||||
|
||||
- member int iterations
|
||||
Stopping criterion iterations number used in the numerical scheme.
|
||||
|
||||
C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
|
||||
Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
|
||||
*/
|
||||
class CV_EXPORTS_W DenseOpticalFlow : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Calculates an optical flow.
|
||||
|
||||
@param I0 first 8-bit single-channel input image.
|
||||
@param I1 second input image of the same size and the same type as prev.
|
||||
@param flow computed flow image that has the same size as prev and type CV\_32FC2.
|
||||
*/
|
||||
CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0;
|
||||
/** @brief Releases all inner buffers.
|
||||
*/
|
||||
CV_WRAP virtual void collectGarbage() = 0;
|
||||
};
|
||||
|
||||
// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
|
||||
//
|
||||
// see reference:
|
||||
// [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
|
||||
// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
|
||||
/** @brief Creates instance of cv::DenseOpticalFlow
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_DualTVL1();
|
||||
|
||||
//! @} video_track
|
||||
|
||||
} // cv
|
||||
|
||||
#endif
|
||||
|
@@ -50,6 +50,10 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/** @addtogroup video_c
|
||||
@{
|
||||
*/
|
||||
|
||||
/****************************************************************************************\
|
||||
* Motion Analysis *
|
||||
\****************************************************************************************/
|
||||
@@ -218,6 +222,7 @@ CVAPI(const CvMat*) cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement
|
||||
#define cvKalmanUpdateByTime cvKalmanPredict
|
||||
#define cvKalmanUpdateByMeasurement cvKalmanCorrect
|
||||
|
||||
/** @} video_c */
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
|
Reference in New Issue
Block a user