OpenCV friendly xml format for soft cascade
This commit is contained in:
parent
c04725b681
commit
dc74ce20ab
@ -493,32 +493,36 @@ protected:
|
||||
class CV_EXPORTS SoftCascade
|
||||
{
|
||||
public:
|
||||
//! empty cascade will be created.
|
||||
//! An empty cascade will be created.
|
||||
SoftCascade();
|
||||
|
||||
//! cascade will be loaded from file "filename"
|
||||
//! Cascade will be created from file for scales from minScale to maxScale.
|
||||
//! Param filename is a path to xml-serialized cascade.
|
||||
//! Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
|
||||
//! Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
|
||||
SoftCascade( const string& filename, const float minScale = 0.4f, const float maxScale = 5.f);
|
||||
|
||||
//! cascade will be loaded from file "filename". The previous cascade will be destroyed.
|
||||
//! Param filename is a path to xml-serialized cascade.
|
||||
//! Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
|
||||
//! Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
|
||||
bool load( const string& filename, const float minScale = 0.4f, const float maxScale = 5.f);
|
||||
|
||||
virtual ~SoftCascade();
|
||||
|
||||
//! return vector of bounding boxes. Each box contains detected object
|
||||
//! return vector of bounding boxes. Each box contains one detected object
|
||||
virtual void detectMultiScale(const Mat& image, const std::vector<cv::Rect>& rois, std::vector<cv::Rect>& objects,
|
||||
int step = 4, int rejectfactor = 1);
|
||||
|
||||
protected:
|
||||
virtual void detectForOctave(int octave);
|
||||
// virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
|
||||
// int stripSize, int yStep, double factor, vector<Rect>& candidates,
|
||||
// vector<int>& rejectLevels, vector<double>& levelWeights, bool outputRejectLevels=false);
|
||||
enum { BOOST = 0 };
|
||||
enum
|
||||
{
|
||||
FRAME_WIDTH = 640,
|
||||
FRAME_HEIGHT = 480,
|
||||
TOTAL_SCALES = 55,
|
||||
CLASSIFIERS = 5,
|
||||
ORIG_OBJECT_WIDTH = 64,
|
||||
FRAME_WIDTH = 640,
|
||||
FRAME_HEIGHT = 480,
|
||||
TOTAL_SCALES = 55,
|
||||
CLASSIFIERS = 5,
|
||||
ORIG_OBJECT_WIDTH = 64,
|
||||
ORIG_OBJECT_HEIGHT = 128
|
||||
};
|
||||
|
||||
|
@ -45,134 +45,160 @@
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
|
||||
namespace {
|
||||
|
||||
static const char* SC_OCT_SCALE = "scale";
|
||||
static const char* SC_OCT_STAGES = "stageNum";
|
||||
|
||||
struct Octave
|
||||
{
|
||||
float scale;
|
||||
int stages;
|
||||
cv::Size size;
|
||||
int shrinkage;
|
||||
static const char *const SC_OCT_SCALE;
|
||||
static const char *const SC_OCT_STAGES;
|
||||
static const char *const SC_OCT_SHRINKAGE;
|
||||
|
||||
Octave(){}
|
||||
Octave(const cv::FileNode& fn) : scale((float)fn[SC_OCT_SCALE]), stages((int)fn[SC_OCT_STAGES])
|
||||
{/*printf("octave: %f %d\n", scale, stages);*/}
|
||||
Octave(cv::Size origObjSize, const cv::FileNode& fn)
|
||||
: scale((float)fn[SC_OCT_SCALE]), stages((int)fn[SC_OCT_STAGES]),
|
||||
size(cvRound(origObjSize.width * scale), cvRound(origObjSize.height * scale)),
|
||||
shrinkage((int)fn[SC_OCT_SHRINKAGE])
|
||||
{}
|
||||
};
|
||||
|
||||
static const char *SC_STAGE_THRESHOLD = "stageThreshold";
|
||||
static const char *SC_STAGE_WEIGHT = "weight";
|
||||
const char *const Octave::SC_OCT_SCALE = "scale";
|
||||
const char *const Octave::SC_OCT_STAGES = "stageNum";
|
||||
const char *const Octave::SC_OCT_SHRINKAGE = "shrinkingFactor";
|
||||
|
||||
|
||||
struct Stage
|
||||
{
|
||||
float threshold;
|
||||
float weight;
|
||||
|
||||
static const char *const SC_STAGE_THRESHOLD;
|
||||
|
||||
Stage(){}
|
||||
Stage(const cv::FileNode& fn) : threshold((float)fn[SC_STAGE_THRESHOLD]), weight((float)fn[SC_STAGE_WEIGHT])
|
||||
{/*printf(" stage: %f %f\n",threshold, weight);*/}
|
||||
Stage(const cv::FileNode& fn) : threshold((float)fn[SC_STAGE_THRESHOLD])
|
||||
{ std::cout << " stage: " << threshold << std::endl; }
|
||||
};
|
||||
|
||||
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
|
||||
struct CascadeIntrinsics
|
||||
const char *const Stage::SC_STAGE_THRESHOLD = "stageThreshold";
|
||||
|
||||
struct Node
|
||||
{
|
||||
static const float lambda = 1.099f, a = 0.89f;
|
||||
static const float intrinsics[10][4];
|
||||
|
||||
static float getFor(int channel, float scaling)
|
||||
{
|
||||
CV_Assert(channel < 10);
|
||||
|
||||
if ((scaling - 1.f) < FLT_EPSILON)
|
||||
return 1.f;
|
||||
|
||||
int ud = (int)(scaling < 1.f);
|
||||
return intrinsics[channel][(ud << 1)] * pow(scaling, intrinsics[channel][(ud << 1) + 1]);
|
||||
}
|
||||
int feature;
|
||||
float threshold;
|
||||
|
||||
Node(){}
|
||||
Node(cv::FileNodeIterator& fIt) : feature((int)(*(fIt +=2)++)), threshold((float)(*(fIt++)))
|
||||
{ std::cout << " Node: " << feature << " " << threshold << std::endl; }
|
||||
};
|
||||
|
||||
const float CascadeIntrinsics::intrinsics[10][4] =
|
||||
{ //da, db, ua, ub
|
||||
// hog-like orientation bins
|
||||
{a, lambda / log(2), 1, 2},
|
||||
{a, lambda / log(2), 1, 2},
|
||||
{a, lambda / log(2), 1, 2},
|
||||
{a, lambda / log(2), 1, 2},
|
||||
{a, lambda / log(2), 1, 2},
|
||||
{a, lambda / log(2), 1, 2},
|
||||
// gradient magnitude
|
||||
{a, lambda / log(2), 1, 2},
|
||||
// luv color channels
|
||||
{1, 2, 1, 2},
|
||||
{1, 2, 1, 2},
|
||||
{1, 2, 1, 2}
|
||||
};
|
||||
|
||||
static const char *SC_F_THRESHOLD = "threshold";
|
||||
static const char *SC_F_DIRECTION = "direction";
|
||||
static const char *SC_F_CHANNEL = "channel";
|
||||
static const char *SC_F_RECT = "rect";
|
||||
|
||||
struct Feature
|
||||
{
|
||||
float threshold;
|
||||
int direction;
|
||||
int channel;
|
||||
cv::Rect rect;
|
||||
|
||||
static const char * const SC_F_CHANNEL;
|
||||
static const char * const SC_F_RECT;
|
||||
|
||||
Feature() {}
|
||||
Feature(const cv::FileNode& fn)
|
||||
: threshold((float)fn[SC_F_THRESHOLD]), direction((int)fn[SC_F_DIRECTION]),
|
||||
channel((int)fn[SC_F_CHANNEL])
|
||||
Feature(const cv::FileNode& fn) : channel((int)fn[SC_F_CHANNEL])
|
||||
{
|
||||
cv::FileNode rn = fn[SC_F_RECT];
|
||||
cv::FileNodeIterator r_it = rn.begin();
|
||||
rect = cv::Rect(*(r_it++), *(r_it++), *(r_it++), *(r_it++));
|
||||
// printf(" feature: %f %d %d [%d %d %d %d]\n",threshold, direction, channel, rect.x, rect.y, rect.width, rect.height);
|
||||
cv::FileNodeIterator r_it = rn.end();
|
||||
rect = cv::Rect(*(--r_it), *(--r_it), *(--r_it), *(--r_it));
|
||||
std::cout << "feature: " << rect.x << " " << rect.y << " " << rect.width << " " << rect.height << " " << channel << std::endl;
|
||||
}
|
||||
|
||||
Feature rescale(float relScale)
|
||||
{
|
||||
Feature res(*this);
|
||||
res.rect = cv::Rect (cvRound(rect.x * relScale), cvRound(rect.y * relScale),
|
||||
cvRound(rect.width * relScale), cvRound(rect.height * relScale));
|
||||
res.threshold = threshold * CascadeIntrinsics::getFor(channel, relScale);
|
||||
return res;
|
||||
}
|
||||
// Feature rescale(float relScale)
|
||||
// {
|
||||
// Feature res(*this);
|
||||
// res.rect = cv::Rect (cvRound(rect.x * relScale), cvRound(rect.y * relScale),
|
||||
// cvRound(rect.width * relScale), cvRound(rect.height * relScale));
|
||||
// res.threshold = threshold * CascadeIntrinsics::getFor(channel, relScale);
|
||||
// return res;
|
||||
// }
|
||||
};
|
||||
|
||||
struct Level
|
||||
{
|
||||
int index;
|
||||
float factor;
|
||||
float logFactor;
|
||||
int width;
|
||||
int height;
|
||||
float octave;
|
||||
cv::Size objSize;
|
||||
const char * const Feature::SC_F_CHANNEL = "channel";
|
||||
const char * const Feature::SC_F_RECT = "rect";
|
||||
// // according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
|
||||
// struct CascadeIntrinsics
|
||||
// {
|
||||
// static const float lambda = 1.099f, a = 0.89f;
|
||||
// static const float intrinsics[10][4];
|
||||
|
||||
Level(int i,float f, float lf, int w, int h): index(i), factor(f), logFactor(lf), width(w), height(h), octave(0.f) {}
|
||||
// static float getFor(int channel, float scaling)
|
||||
// {
|
||||
// CV_Assert(channel < 10);
|
||||
|
||||
void assign(float o, int detW, int detH)
|
||||
{
|
||||
octave = o;
|
||||
objSize = cv::Size(cv::saturate_cast<int>(detW * o), cv::saturate_cast<int>(detH * o));
|
||||
}
|
||||
// if ((scaling - 1.f) < FLT_EPSILON)
|
||||
// return 1.f;
|
||||
|
||||
float relScale() {return (factor / octave); }
|
||||
};
|
||||
// int ud = (int)(scaling < 1.f);
|
||||
// return intrinsics[channel][(ud << 1)] * pow(scaling, intrinsics[channel][(ud << 1) + 1]);
|
||||
// }
|
||||
|
||||
struct Integral
|
||||
{
|
||||
cv::Mat magnitude;
|
||||
std::vector<cv::Mat> hist;
|
||||
cv::Mat luv;
|
||||
// };
|
||||
|
||||
Integral(cv::Mat m, std::vector<cv::Mat> h, cv::Mat l) : magnitude(m), hist(h), luv(l) {}
|
||||
};
|
||||
// const float CascadeIntrinsics::intrinsics[10][4] =
|
||||
// { //da, db, ua, ub
|
||||
// // hog-like orientation bins
|
||||
// {a, lambda / log(2), 1, 2},
|
||||
// {a, lambda / log(2), 1, 2},
|
||||
// {a, lambda / log(2), 1, 2},
|
||||
// {a, lambda / log(2), 1, 2},
|
||||
// {a, lambda / log(2), 1, 2},
|
||||
// {a, lambda / log(2), 1, 2},
|
||||
// // gradient magnitude
|
||||
// {a, lambda / log(2), 1, 2},
|
||||
// // luv color channels
|
||||
// {1, 2, 1, 2},
|
||||
// {1, 2, 1, 2},
|
||||
// {1, 2, 1, 2}
|
||||
// };
|
||||
|
||||
// struct Level
|
||||
// {
|
||||
// int index;
|
||||
|
||||
// float factor;
|
||||
// float logFactor;
|
||||
|
||||
// int width;
|
||||
// int height;
|
||||
|
||||
// Octave octave;
|
||||
|
||||
// cv::Size objSize;
|
||||
// cv::Size dWinSize;
|
||||
|
||||
// static const float shrinkage = 0.25;
|
||||
|
||||
// Level(int i,float f, float lf, int w, int h): index(i), factor(f), logFactor(lf), width(w), height(h), octave(Octave())
|
||||
// {}
|
||||
|
||||
// void assign(const Octave& o, int detW, int detH)
|
||||
// {
|
||||
// octave = o;
|
||||
// objSize = cv::Size(cv::saturate_cast<int>(detW * o.scale), cv::saturate_cast<int>(detH * o.scale));
|
||||
// }
|
||||
|
||||
// float relScale() {return (factor / octave.scale); }
|
||||
// float srScale() {return (factor / octave.scale * shrinkage); }
|
||||
// };
|
||||
|
||||
// struct Integral
|
||||
// {
|
||||
// cv::Mat magnitude;
|
||||
// std::vector<cv::Mat> hist;
|
||||
// cv::Mat luv;
|
||||
|
||||
// Integral(cv::Mat m, std::vector<cv::Mat> h, cv::Mat l) : magnitude(m), hist(h), luv(l) {}
|
||||
// };
|
||||
}
|
||||
|
||||
struct cv::SoftCascade::Filds
|
||||
@ -183,68 +209,72 @@ struct cv::SoftCascade::Filds
|
||||
int origObjWidth;
|
||||
int origObjHeight;
|
||||
|
||||
int noctaves;
|
||||
|
||||
std::vector<Octave> octaves;
|
||||
std::vector<Stage> stages;
|
||||
std::vector<Node> nodes;
|
||||
std::vector<float> leaves;
|
||||
|
||||
std::vector<Feature> features;
|
||||
std::vector<Level> levels;
|
||||
|
||||
typedef std::vector<Stage>::iterator stIter_t;
|
||||
// typedef std::vector<Stage>::iterator stIter_t;
|
||||
|
||||
// carrently roi must be save for out of ranges.
|
||||
void detectInRoi(const cv::Rect& roi, const Integral& ints, std::vector<cv::Rect>& objects, const int step)
|
||||
{
|
||||
for (int dy = roi.y; dy < roi.height; dy+=step)
|
||||
for (int dx = roi.x; dx < roi.width; dx += step)
|
||||
{
|
||||
applyCascade(ints, dx, dy);
|
||||
}
|
||||
}
|
||||
// // carrently roi must be save for out of ranges.
|
||||
// void detectInRoi(const cv::Rect& roi, const Integral& ints, std::vector<cv::Rect>& objects, const int step)
|
||||
// {
|
||||
// for (int dy = roi.y; dy < roi.height; dy+=step)
|
||||
// for (int dx = roi.x; dx < roi.width; dx += step)
|
||||
// {
|
||||
// applyCascade(ints, dx, dy);
|
||||
// }
|
||||
// }
|
||||
|
||||
void applyCascade(const Integral& ints, const int x, const int y)
|
||||
{
|
||||
for (stIter_t sIt = sIt.begin(); sIt != stages.end(); ++sIt)
|
||||
{
|
||||
Stage stage& = *sIt;
|
||||
}
|
||||
}
|
||||
// void applyCascade(const Integral& ints, const int x, const int y)
|
||||
// {
|
||||
// for (stIter_t sIt = stages.begin(); sIt != stages.end(); ++sIt)
|
||||
// {
|
||||
// Stage& stage = *sIt;
|
||||
// }
|
||||
// }
|
||||
|
||||
// compute levels of full pyramid
|
||||
void calcLevels(int frameW, int frameH, int scales)
|
||||
{
|
||||
CV_Assert(scales > 1);
|
||||
levels.clear();
|
||||
float logFactor = (log(maxScale) - log(minScale)) / (scales -1);
|
||||
// // compute levels of full pyramid
|
||||
// void calcLevels(int frameW, int frameH, int scales)
|
||||
// {
|
||||
// CV_Assert(scales > 1);
|
||||
// levels.clear();
|
||||
// float logFactor = (log(maxScale) - log(minScale)) / (scales -1);
|
||||
|
||||
float scale = minScale;
|
||||
for (int sc = 0; sc < scales; ++sc)
|
||||
{
|
||||
Level level(sc, scale, log(scale) + logFactor,
|
||||
std::max(0.0f, frameW - (origObjWidth * scale)), std::max(0.0f, frameH - (origObjHeight * scale)));
|
||||
if (!level.width || !level.height)
|
||||
break;
|
||||
else
|
||||
levels.push_back(level);
|
||||
// float scale = minScale;
|
||||
// for (int sc = 0; sc < scales; ++sc)
|
||||
// {
|
||||
// Level level(sc, scale, log(scale), std::max(0.0f, frameW - (origObjWidth * scale)), std::max(0.0f, frameH - (origObjHeight * scale)));
|
||||
// if (!level.width || !level.height)
|
||||
// break;
|
||||
// else
|
||||
// levels.push_back(level);
|
||||
|
||||
if (fabs(scale - maxScale) < FLT_EPSILON) break;
|
||||
scale = std::min(maxScale, expf(log(scale) + logFactor));
|
||||
}
|
||||
// if (fabs(scale - maxScale) < FLT_EPSILON) break;
|
||||
// scale = std::min(maxScale, expf(log(scale) + logFactor));
|
||||
// }
|
||||
|
||||
for (std::vector<Level>::iterator level = levels.begin(); level < levels.end(); ++level)
|
||||
{
|
||||
float minAbsLog = FLT_MAX;
|
||||
for (std::vector<Octave>::iterator oct = octaves.begin(); oct < octaves.end(); ++oct)
|
||||
{
|
||||
const Octave& octave =*oct;
|
||||
float logOctave = log(octave.scale);
|
||||
float logAbsScale = fabs((*level).logFactor - logOctave);
|
||||
// for (std::vector<Level>::iterator level = levels.begin(); level < levels.end(); ++level)
|
||||
// {
|
||||
// float minAbsLog = FLT_MAX;
|
||||
// for (std::vector<Octave>::iterator oct = octaves.begin(); oct < octaves.end(); ++oct)
|
||||
// {
|
||||
// const Octave& octave =*oct;
|
||||
// float logOctave = log(octave.scale);
|
||||
// float logAbsScale = fabs((*level).logFactor - logOctave);
|
||||
|
||||
if(logAbsScale < minAbsLog)
|
||||
(*level).assign(octave.scale, ORIG_OBJECT_WIDTH, ORIG_OBJECT_HEIGHT);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// if(logAbsScale < minAbsLog)
|
||||
// {
|
||||
// printf("######### %f %f %f %f\n", octave.scale, logOctave, logAbsScale, (*level).logFactor);
|
||||
// minAbsLog = logAbsScale;
|
||||
// (*level).assign(octave, ORIG_OBJECT_WIDTH, ORIG_OBJECT_HEIGHT);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
bool fill(const FileNode &root, const float mins, const float maxs)
|
||||
{
|
||||
@ -252,19 +282,22 @@ struct cv::SoftCascade::Filds
|
||||
maxScale = maxs;
|
||||
|
||||
// cascade properties
|
||||
const char *SC_STAGE_TYPE = "stageType";
|
||||
const char *SC_BOOST = "BOOST";
|
||||
const char *SC_FEATURE_TYPE = "featureType";
|
||||
const char *SC_ICF = "ICF";
|
||||
const char *SC_TREE_TYPE = "stageTreeType";
|
||||
const char *SC_STAGE_TH2 = "TH2";
|
||||
const char *SC_NUM_OCTAVES = "octavesNum";
|
||||
const char *SC_ORIG_W = "origObjWidth";
|
||||
const char *SC_ORIG_H = "origObjHeight";
|
||||
static const char *const SC_STAGE_TYPE = "stageType";
|
||||
static const char *const SC_BOOST = "BOOST";
|
||||
|
||||
const char* SC_OCTAVES = "octaves";
|
||||
const char *SC_STAGES = "stages";
|
||||
const char *SC_FEATURES = "features";
|
||||
static const char *const SC_FEATURE_TYPE = "featureType";
|
||||
static const char *const SC_ICF = "ICF";
|
||||
|
||||
static const char *const SC_ORIG_W = "width";
|
||||
static const char *const SC_ORIG_H = "height";
|
||||
|
||||
static const char *const SC_OCTAVES = "octaves";
|
||||
static const char *const SC_STAGES = "stages";
|
||||
static const char *const SC_FEATURES = "features";
|
||||
|
||||
static const char *const SC_WEEK = "weakClassifiers";
|
||||
static const char *const SC_INTERNAL = "internalNodes";
|
||||
static const char *const SC_LEAF = "leafValues";
|
||||
|
||||
|
||||
// only boost supported
|
||||
@ -275,14 +308,6 @@ struct cv::SoftCascade::Filds
|
||||
string featureTypeStr = (string)root[SC_FEATURE_TYPE];
|
||||
CV_Assert(featureTypeStr == SC_ICF);
|
||||
|
||||
// only trees of height 2
|
||||
string stageTreeTypeStr = (string)root[SC_TREE_TYPE];
|
||||
CV_Assert(stageTreeTypeStr == SC_STAGE_TH2);
|
||||
|
||||
// not empty
|
||||
noctaves = (int)root[SC_NUM_OCTAVES];
|
||||
CV_Assert(noctaves > 0);
|
||||
|
||||
origObjWidth = (int)root[SC_ORIG_W];
|
||||
CV_Assert(origObjWidth == SoftCascade::ORIG_OBJECT_WIDTH);
|
||||
|
||||
@ -293,15 +318,17 @@ struct cv::SoftCascade::Filds
|
||||
FileNode fn = root[SC_OCTAVES];
|
||||
if (fn.empty()) return false;
|
||||
|
||||
octaves.reserve(noctaves);
|
||||
// octaves.reserve(noctaves);
|
||||
FileNodeIterator it = fn.begin(), it_end = fn.end();
|
||||
for (; it != it_end; ++it)
|
||||
{
|
||||
FileNode fns = *it;
|
||||
Octave octave = Octave(fns);
|
||||
Octave octave(cv::Size(SoftCascade::ORIG_OBJECT_WIDTH, SoftCascade::ORIG_OBJECT_HEIGHT), fns);
|
||||
CV_Assert(octave.stages > 0);
|
||||
octaves.push_back(octave);
|
||||
stages.reserve(stages.size() + octave.stages);
|
||||
|
||||
FileNode ffs = fns[SC_FEATURES];
|
||||
if (ffs.empty()) return false;
|
||||
|
||||
fns = fns[SC_STAGES];
|
||||
if (fn.empty()) return false;
|
||||
@ -313,14 +340,25 @@ struct cv::SoftCascade::Filds
|
||||
fns = *st;
|
||||
stages.push_back(Stage(fns));
|
||||
|
||||
fns = fns[SC_FEATURES];
|
||||
// for each feature for tree. features stored in order {root, left, right}
|
||||
fns = fns[SC_WEEK];
|
||||
FileNodeIterator ftr = fns.begin(), ft_end = fns.end();
|
||||
for (; ftr != ft_end; ++ftr)
|
||||
{
|
||||
features.push_back(Feature(*ftr));
|
||||
fns = (*ftr)[SC_INTERNAL];
|
||||
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end();
|
||||
for (; inIt != inIt_end;)
|
||||
nodes.push_back(Node(inIt));
|
||||
|
||||
fns = (*ftr)[SC_LEAF];
|
||||
inIt = fns.begin(), inIt_end = fns.end();
|
||||
for (; inIt != inIt_end; ++inIt)
|
||||
leaves.push_back((float)(*inIt));
|
||||
}
|
||||
}
|
||||
|
||||
st = ffs.begin(), st_end = ffs.end();
|
||||
for (; st != st_end; ++st )
|
||||
features.push_back(Feature(*st));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
@ -349,7 +387,7 @@ bool cv::SoftCascade::load( const string& filename, const float minScale, const
|
||||
filds = new Filds;
|
||||
Filds& flds = *filds;
|
||||
if (!flds.fill(fs.getFirstTopLevelNode(), minScale, maxScale)) return false;
|
||||
flds.calcLevels(FRAME_WIDTH, FRAME_HEIGHT, TOTAL_SCALES);
|
||||
// // flds.calcLevels(FRAME_WIDTH, FRAME_HEIGHT, TOTAL_SCALES);
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -358,87 +396,84 @@ namespace {
|
||||
|
||||
void calcHistBins(const cv::Mat& grey, cv::Mat magIntegral, std::vector<cv::Mat>& histInts, const int bins)
|
||||
{
|
||||
CV_Assert( grey.type() == CV_8U);
|
||||
const int rows = grey.rows + 1;
|
||||
const int cols = grey.cols + 1;
|
||||
cv::Size intSumSize(cols, rows);
|
||||
// CV_Assert( grey.type() == CV_8U);
|
||||
// const int rows = grey.rows + 1;
|
||||
// const int cols = grey.cols + 1;
|
||||
// cv::Size intSumSize(cols, rows);
|
||||
|
||||
histInts.clear();
|
||||
std::vector<cv::Mat> hist;
|
||||
for (int bin = 0; bin < bins; ++bin)
|
||||
{
|
||||
hist.push_back(cv::Mat(rows, cols, CV_32FC1));
|
||||
}
|
||||
cv::Mat df_dx, df_dy, mag, angle;
|
||||
cv::Sobel(grey, df_dx, CV_32F, 1, 0);
|
||||
cv::Sobel(grey, df_dy, CV_32F, 0, 1);
|
||||
// histInts.clear();
|
||||
// std::vector<cv::Mat> hist;
|
||||
// for (int bin = 0; bin < bins; ++bin)
|
||||
// {
|
||||
// hist.push_back(cv::Mat(rows, cols, CV_32FC1));
|
||||
// }
|
||||
// cv::Mat df_dx, df_dy, mag, angle;
|
||||
// cv::Sobel(grey, df_dx, CV_32F, 1, 0);
|
||||
// cv::Sobel(grey, df_dy, CV_32F, 0, 1);
|
||||
|
||||
cv::cartToPolar(df_dx, df_dy, mag, angle, true);
|
||||
// cv::cartToPolar(df_dx, df_dy, mag, angle, true);
|
||||
|
||||
const float magnitudeScaling = 1.0 / sqrt(2);
|
||||
mag *= magnitudeScaling;
|
||||
angle /= 60;
|
||||
// const float magnitudeScaling = 1.0 / sqrt(2);
|
||||
// mag *= magnitudeScaling;
|
||||
// angle /= 60;
|
||||
|
||||
for (int h = 0; h < mag.rows; ++h)
|
||||
{
|
||||
float* magnitude = mag.ptr<float>(h);
|
||||
float* ang = angle.ptr<float>(h);
|
||||
// for (int h = 0; h < mag.rows; ++h)
|
||||
// {
|
||||
// float* magnitude = mag.ptr<float>(h);
|
||||
// float* ang = angle.ptr<float>(h);
|
||||
|
||||
for (int w = 0; w < mag.cols; ++w)
|
||||
{
|
||||
hist[(int)ang[w]].ptr<float>(h)[w] = magnitude[w];
|
||||
}
|
||||
}
|
||||
// for (int w = 0; w < mag.cols; ++w)
|
||||
// {
|
||||
// hist[(int)ang[w]].ptr<float>(h)[w] = magnitude[w];
|
||||
// }
|
||||
// }
|
||||
|
||||
for (int bin = 0; bin < bins; ++bin)
|
||||
{
|
||||
cv::Mat sum;
|
||||
cv::integral(hist[bin], sum);
|
||||
histInts.push_back(sum);
|
||||
}
|
||||
// for (int bin = 0; bin < bins; ++bin)
|
||||
// {
|
||||
// cv::Mat sum;
|
||||
// cv::integral(hist[bin], sum);
|
||||
// histInts.push_back(sum);
|
||||
// }
|
||||
|
||||
cv::integral(mag, magIntegral, mag.depth());
|
||||
// cv::integral(mag, magIntegral, mag.depth());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::Rect>& rois, std::vector<cv::Rect>& objects,
|
||||
const int step, const int rejectfactor)
|
||||
const int step, const int rejectfactor)// add step scaling
|
||||
{
|
||||
typedef std::vector<cv::Rect>::const_iterator RIter_t;
|
||||
// only color images are supperted
|
||||
CV_Assert(image.type() == CV_8UC3);
|
||||
// typedef std::vector<cv::Rect>::const_iterator RIter_t;
|
||||
// // only color images are supperted
|
||||
// CV_Assert(image.type() == CV_8UC3);
|
||||
|
||||
// only this window size allowed
|
||||
CV_Assert(image.cols == 640 && image.rows == 480);
|
||||
// // only this window size allowed
|
||||
// CV_Assert(image.cols == 640 && image.rows == 480);
|
||||
|
||||
objects.clear();
|
||||
// objects.clear();
|
||||
|
||||
// create integrals
|
||||
cv::Mat luv;
|
||||
cv::cvtColor(image, luv, CV_BGR2Luv);
|
||||
// // create integrals
|
||||
// cv::Mat luv;
|
||||
// cv::cvtColor(image, luv, CV_BGR2Luv);
|
||||
|
||||
cv::Mat luvIntegral;
|
||||
cv::integral(luv, luvIntegral);
|
||||
// cv::Mat luvIntegral;
|
||||
// cv::integral(luv, luvIntegral);
|
||||
|
||||
cv::Mat grey;
|
||||
cv::cvtColor(image, grey, CV_RGB2GRAY);
|
||||
// cv::Mat grey;
|
||||
// cv::cvtColor(image, grey, CV_RGB2GRAY);
|
||||
|
||||
std::vector<cv::Mat> hist;
|
||||
cv::Mat magnitude;
|
||||
const int bins = 6;
|
||||
calcHistBins(grey, magnitude, hist, bins);
|
||||
// std::vector<cv::Mat> hist;
|
||||
// cv::Mat magnitude;
|
||||
// const int bins = 6;
|
||||
// calcHistBins(grey, magnitude, hist, bins);
|
||||
|
||||
Integral integrals(magnitude, hist, luv);
|
||||
// Integral integrals(magnitude, hist, luv);
|
||||
|
||||
for (RIter_t it = rois.begin(); it != rois.end(); ++it)
|
||||
{
|
||||
const cv::Rect& roi = *it;
|
||||
(*filds).detectInRoi(roi, integrals, objects, step);
|
||||
}
|
||||
// for (RIter_t it = rois.begin(); it != rois.end(); ++it)
|
||||
// {
|
||||
// const cv::Rect& roi = *it;
|
||||
// (*filds).detectInRoi(roi, integrals, objects, step);
|
||||
// }
|
||||
|
||||
}
|
||||
|
||||
void cv::SoftCascade::detectForOctave(const int octave)
|
||||
{}
|
||||
}
|
@ -43,16 +43,15 @@
|
||||
|
||||
TEST(SoftCascade, readCascade)
|
||||
{
|
||||
std::string xml = "/home/kellan/icf-template.xml";
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/icf-template.xml";
|
||||
cv::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(xml));
|
||||
|
||||
}
|
||||
|
||||
TEST(SoftCascade, Detect)
|
||||
TEST(SoftCascade, detect)
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/softcascade.xml";
|
||||
std::cout << "PATH: "<< xml << std::endl;
|
||||
cv::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(xml));
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user