Refactored motion estimators in stitching module
This commit is contained in:
parent
4a5abc7552
commit
dbce155874
@ -80,29 +80,61 @@ private:
|
||||
};
|
||||
|
||||
|
||||
// Minimizes reprojection error
|
||||
class CV_EXPORTS BundleAdjusterReproj : public Estimator
|
||||
class CV_EXPORTS BundleAdjusterBase : public Estimator
|
||||
{
|
||||
public:
|
||||
BundleAdjusterReproj(float conf_thresh = 1.f) : conf_thresh_(conf_thresh) {}
|
||||
double confThresh() const { return conf_thresh_; }
|
||||
void setConfThresh(double conf_thresh) { conf_thresh_ = conf_thresh; }
|
||||
|
||||
private:
|
||||
void estimate(const std::vector<ImageFeatures> &features, const std::vector<MatchesInfo> &pairwise_matches,
|
||||
std::vector<CameraParams> &cameras);
|
||||
protected:
|
||||
BundleAdjusterBase(int num_params_per_cam, int num_errs_per_measurement)
|
||||
: num_params_per_cam_(num_params_per_cam),
|
||||
num_errs_per_measurement_(num_errs_per_measurement)
|
||||
{ setConfThresh(1.); }
|
||||
|
||||
void calcError(Mat &err);
|
||||
void calcJacobian();
|
||||
// Runs bundle adjustment
|
||||
virtual void estimate(const std::vector<ImageFeatures> &features,
|
||||
const std::vector<MatchesInfo> &pairwise_matches,
|
||||
std::vector<CameraParams> &cameras);
|
||||
|
||||
virtual void setUpInitialCameraParams(const std::vector<CameraParams> &cameras) = 0;
|
||||
virtual void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const = 0;
|
||||
virtual void calcError(Mat &err) = 0;
|
||||
virtual void calcJacobian(Mat &jac) = 0;
|
||||
|
||||
int num_images_;
|
||||
int total_num_matches_;
|
||||
|
||||
int num_params_per_cam_;
|
||||
int num_errs_per_measurement_;
|
||||
|
||||
const ImageFeatures *features_;
|
||||
const MatchesInfo *pairwise_matches_;
|
||||
Mat cameras_;
|
||||
std::vector<std::pair<int,int> > edges_;
|
||||
|
||||
float conf_thresh_;
|
||||
Mat err_, err1_, err2_;
|
||||
Mat J_;
|
||||
// Threshold to filter out poorly matched image pairs
|
||||
double conf_thresh_;
|
||||
|
||||
// Camera parameters matrix (CV_64F)
|
||||
Mat cam_params_;
|
||||
|
||||
// Connected images pairs
|
||||
std::vector<std::pair<int,int> > edges_;
|
||||
};
|
||||
|
||||
|
||||
// Minimizes reprojection error
|
||||
class CV_EXPORTS BundleAdjusterReproj : public BundleAdjusterBase
|
||||
{
|
||||
public:
|
||||
BundleAdjusterReproj() : BundleAdjusterBase(6, 2) {}
|
||||
|
||||
private:
|
||||
void setUpInitialCameraParams(const std::vector<CameraParams> &cameras);
|
||||
void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const;
|
||||
void calcError(Mat &err);
|
||||
void calcJacobian(Mat &jac);
|
||||
|
||||
Mat err1_, err2_;
|
||||
};
|
||||
|
||||
|
||||
|
@ -155,9 +155,9 @@ void HomographyBasedEstimator::estimate(const vector<ImageFeatures> &features, c
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void BundleAdjusterReproj::estimate(const vector<ImageFeatures> &features,
|
||||
const vector<MatchesInfo> &pairwise_matches,
|
||||
vector<CameraParams> &cameras)
|
||||
void BundleAdjusterBase::estimate(const vector<ImageFeatures> &features,
|
||||
const vector<MatchesInfo> &pairwise_matches,
|
||||
vector<CameraParams> &cameras)
|
||||
{
|
||||
LOG("Bundle adjustment");
|
||||
int64 t = getTickCount();
|
||||
@ -166,28 +166,9 @@ void BundleAdjusterReproj::estimate(const vector<ImageFeatures> &features,
|
||||
features_ = &features[0];
|
||||
pairwise_matches_ = &pairwise_matches[0];
|
||||
|
||||
// Prepare focals and rotations
|
||||
cameras_.create(num_images_ * 6, 1, CV_64F);
|
||||
SVD svd;
|
||||
for (int i = 0; i < num_images_; ++i)
|
||||
{
|
||||
cameras_.at<double>(i * 6, 0) = cameras[i].focal;
|
||||
cameras_.at<double>(i * 6 + 1, 0) = cameras[i].ppx;
|
||||
cameras_.at<double>(i * 6 + 2, 0) = cameras[i].ppy;
|
||||
setUpInitialCameraParams(cameras);
|
||||
|
||||
svd(cameras[i].R, SVD::FULL_UV);
|
||||
Mat R = svd.u * svd.vt;
|
||||
if (determinant(R) < 0)
|
||||
R *= -1;
|
||||
|
||||
Mat rvec;
|
||||
Rodrigues(R, rvec); CV_Assert(rvec.type() == CV_32F);
|
||||
cameras_.at<double>(i * 6 + 3, 0) = rvec.at<float>(0, 0);
|
||||
cameras_.at<double>(i * 6 + 4, 0) = rvec.at<float>(1, 0);
|
||||
cameras_.at<double>(i * 6 + 5, 0) = rvec.at<float>(2, 0);
|
||||
}
|
||||
|
||||
// Select only consistent image pairs for futher adjustment
|
||||
// Leave only consistent image pairs
|
||||
edges_.clear();
|
||||
for (int i = 0; i < num_images_ - 1; ++i)
|
||||
{
|
||||
@ -202,63 +183,53 @@ void BundleAdjusterReproj::estimate(const vector<ImageFeatures> &features,
|
||||
// Compute number of correspondences
|
||||
total_num_matches_ = 0;
|
||||
for (size_t i = 0; i < edges_.size(); ++i)
|
||||
total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].num_inliers);
|
||||
total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ +
|
||||
edges_[i].second].num_inliers);
|
||||
|
||||
CvLevMarq solver(num_images_ * 6, total_num_matches_ * 2,
|
||||
CvLevMarq solver(num_images_ * num_params_per_cam_,
|
||||
total_num_matches_ * num_errs_per_measurement_,
|
||||
cvTermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 1000, DBL_EPSILON));
|
||||
|
||||
CvMat matParams = cameras_;
|
||||
Mat err, jac;
|
||||
CvMat matParams = cam_params_;
|
||||
cvCopy(&matParams, solver.param);
|
||||
|
||||
int count = 0;
|
||||
int iter = 0;
|
||||
for(;;)
|
||||
{
|
||||
const CvMat* _param = 0;
|
||||
CvMat* _J = 0;
|
||||
CvMat* _jac = 0;
|
||||
CvMat* _err = 0;
|
||||
|
||||
bool proceed = solver.update(_param, _J, _err);
|
||||
bool proceed = solver.update(_param, _jac, _err);
|
||||
|
||||
cvCopy( _param, &matParams );
|
||||
cvCopy(_param, &matParams);
|
||||
|
||||
if( !proceed || !_err )
|
||||
if (!proceed || !_err)
|
||||
break;
|
||||
|
||||
if( _J )
|
||||
if (_jac)
|
||||
{
|
||||
calcJacobian();
|
||||
CvMat matJ = J_;
|
||||
cvCopy( &matJ, _J );
|
||||
calcJacobian(jac);
|
||||
CvMat tmp = jac;
|
||||
cvCopy(&tmp, _jac);
|
||||
}
|
||||
|
||||
if (_err)
|
||||
{
|
||||
calcError(err_);
|
||||
calcError(err);
|
||||
LOG(".");
|
||||
count++;
|
||||
CvMat matErr = err_;
|
||||
cvCopy( &matErr, _err );
|
||||
iter++;
|
||||
CvMat tmp = err;
|
||||
cvCopy(&tmp, _err);
|
||||
}
|
||||
}
|
||||
LOGLN("");
|
||||
LOGLN("Bundle adjustment, final error: " << sqrt(err_.dot(err_)) / total_num_matches_);
|
||||
LOGLN("Bundle adjustment, iterations done: " << count);
|
||||
|
||||
// Obtain global motion
|
||||
for (int i = 0; i < num_images_; ++i)
|
||||
{
|
||||
cameras[i].focal = cameras_.at<double>(i * 6, 0);
|
||||
cameras[i].ppx = cameras_.at<double>(i * 6 + 1, 0);
|
||||
cameras[i].ppy = cameras_.at<double>(i * 6 + 2, 0);
|
||||
Mat rvec(3, 1, CV_64F);
|
||||
rvec.at<double>(0, 0) = cameras_.at<double>(i * 6 + 3, 0);
|
||||
rvec.at<double>(1, 0) = cameras_.at<double>(i * 6 + 4, 0);
|
||||
rvec.at<double>(2, 0) = cameras_.at<double>(i * 6 + 5, 0);
|
||||
Rodrigues(rvec, cameras[i].R);
|
||||
Mat Mf;
|
||||
cameras[i].R.convertTo(Mf, CV_32F);
|
||||
cameras[i].R = Mf;
|
||||
}
|
||||
LOGLN("");
|
||||
LOGLN("Bundle adjustment, final RMS error: " << sqrt(err.dot(err) / total_num_matches_));
|
||||
LOGLN("Bundle adjustment, iterations done: " << iter);
|
||||
|
||||
obtainRefinedCameraParams(cameras);
|
||||
|
||||
// Normalize motion to center image
|
||||
Graph span_tree;
|
||||
@ -272,6 +243,55 @@ void BundleAdjusterReproj::estimate(const vector<ImageFeatures> &features,
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void BundleAdjusterReproj::setUpInitialCameraParams(const vector<CameraParams> &cameras)
|
||||
{
|
||||
cam_params_.create(num_images_ * 6, 1, CV_64F);
|
||||
SVD svd;
|
||||
for (int i = 0; i < num_images_; ++i)
|
||||
{
|
||||
cam_params_.at<double>(i * 6, 0) = cameras[i].focal;
|
||||
cam_params_.at<double>(i * 6 + 1, 0) = cameras[i].ppx;
|
||||
cam_params_.at<double>(i * 6 + 2, 0) = cameras[i].ppy;
|
||||
|
||||
svd(cameras[i].R, SVD::FULL_UV);
|
||||
Mat R = svd.u * svd.vt;
|
||||
if (determinant(R) < 0)
|
||||
R *= -1;
|
||||
|
||||
Mat rvec;
|
||||
Rodrigues(R, rvec);
|
||||
CV_Assert(rvec.type() == CV_32F);
|
||||
cam_params_.at<double>(i * 6 + 3, 0) = rvec.at<float>(0, 0);
|
||||
cam_params_.at<double>(i * 6 + 4, 0) = rvec.at<float>(1, 0);
|
||||
cam_params_.at<double>(i * 6 + 5, 0) = rvec.at<float>(2, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void BundleAdjusterReproj::obtainRefinedCameraParams(vector<CameraParams> &cameras) const
|
||||
{
|
||||
for (int i = 0; i < num_images_; ++i)
|
||||
{
|
||||
cameras[i].focal = cam_params_.at<double>(i * 6, 0);
|
||||
cameras[i].ppx = cam_params_.at<double>(i * 6 + 1, 0);
|
||||
cameras[i].ppy = cam_params_.at<double>(i * 6 + 2, 0);
|
||||
cameras[i].aspect = 1.;
|
||||
|
||||
Mat rvec(3, 1, CV_64F);
|
||||
rvec.at<double>(0, 0) = cam_params_.at<double>(i * 6 + 3, 0);
|
||||
rvec.at<double>(1, 0) = cam_params_.at<double>(i * 6 + 4, 0);
|
||||
rvec.at<double>(2, 0) = cam_params_.at<double>(i * 6 + 5, 0);
|
||||
Rodrigues(rvec, cameras[i].R);
|
||||
|
||||
Mat tmp;
|
||||
cameras[i].R.convertTo(tmp, CV_32F);
|
||||
cameras[i].R = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void BundleAdjusterReproj::calcError(Mat &err)
|
||||
{
|
||||
err.create(total_num_matches_ * 2, 1, CV_64F);
|
||||
@ -281,26 +301,26 @@ void BundleAdjusterReproj::calcError(Mat &err)
|
||||
{
|
||||
int i = edges_[edge_idx].first;
|
||||
int j = edges_[edge_idx].second;
|
||||
double f1 = cameras_.at<double>(i * 6, 0);
|
||||
double f2 = cameras_.at<double>(j * 6, 0);
|
||||
double ppx1 = cameras_.at<double>(i * 6 + 1, 0);
|
||||
double ppx2 = cameras_.at<double>(j * 6 + 1, 0);
|
||||
double ppy1 = cameras_.at<double>(i * 6 + 2, 0);
|
||||
double ppy2 = cameras_.at<double>(j * 6 + 2, 0);
|
||||
double f1 = cam_params_.at<double>(i * 6, 0);
|
||||
double f2 = cam_params_.at<double>(j * 6, 0);
|
||||
double ppx1 = cam_params_.at<double>(i * 6 + 1, 0);
|
||||
double ppx2 = cam_params_.at<double>(j * 6 + 1, 0);
|
||||
double ppy1 = cam_params_.at<double>(i * 6 + 2, 0);
|
||||
double ppy2 = cam_params_.at<double>(j * 6 + 2, 0);
|
||||
|
||||
double R1[9];
|
||||
Mat R1_(3, 3, CV_64F, R1);
|
||||
Mat rvec(3, 1, CV_64F);
|
||||
rvec.at<double>(0, 0) = cameras_.at<double>(i * 6 + 3, 0);
|
||||
rvec.at<double>(1, 0) = cameras_.at<double>(i * 6 + 4, 0);
|
||||
rvec.at<double>(2, 0) = cameras_.at<double>(i * 6 + 5, 0);
|
||||
rvec.at<double>(0, 0) = cam_params_.at<double>(i * 6 + 3, 0);
|
||||
rvec.at<double>(1, 0) = cam_params_.at<double>(i * 6 + 4, 0);
|
||||
rvec.at<double>(2, 0) = cam_params_.at<double>(i * 6 + 5, 0);
|
||||
Rodrigues(rvec, R1_);
|
||||
|
||||
double R2[9];
|
||||
Mat R2_(3, 3, CV_64F, R2);
|
||||
rvec.at<double>(0, 0) = cameras_.at<double>(j * 6 + 3, 0);
|
||||
rvec.at<double>(1, 0) = cameras_.at<double>(j * 6 + 4, 0);
|
||||
rvec.at<double>(2, 0) = cameras_.at<double>(j * 6 + 5, 0);
|
||||
rvec.at<double>(0, 0) = cam_params_.at<double>(j * 6 + 3, 0);
|
||||
rvec.at<double>(1, 0) = cam_params_.at<double>(j * 6 + 4, 0);
|
||||
rvec.at<double>(2, 0) = cam_params_.at<double>(j * 6 + 5, 0);
|
||||
Rodrigues(rvec, R2_);
|
||||
|
||||
const ImageFeatures& features1 = features_[i];
|
||||
@ -321,8 +341,8 @@ void BundleAdjusterReproj::calcError(Mat &err)
|
||||
{
|
||||
if (!matches_info.inliers_mask[k])
|
||||
continue;
|
||||
const DMatch& m = matches_info.matches[k];
|
||||
|
||||
const DMatch& m = matches_info.matches[k];
|
||||
Point2f p1 = features1.keypoints[m.queryIdx].pt;
|
||||
Point2f p2 = features2.keypoints[m.trainIdx].pt;
|
||||
double x = H(0,0)*p1.x + H(0,1)*p1.y + H(0,2);
|
||||
@ -337,9 +357,9 @@ void BundleAdjusterReproj::calcError(Mat &err)
|
||||
}
|
||||
|
||||
|
||||
void BundleAdjusterReproj::calcJacobian()
|
||||
void BundleAdjusterReproj::calcJacobian(Mat &jac)
|
||||
{
|
||||
J_.create(total_num_matches_ * 2, num_images_ * 6, CV_64F);
|
||||
jac.create(total_num_matches_ * 2, num_images_ * 6, CV_64F);
|
||||
|
||||
double val;
|
||||
const double step = 1e-4;
|
||||
@ -348,13 +368,13 @@ void BundleAdjusterReproj::calcJacobian()
|
||||
{
|
||||
for (int j = 0; j < 6; ++j)
|
||||
{
|
||||
val = cameras_.at<double>(i * 6 + j, 0);
|
||||
cameras_.at<double>(i * 6 + j, 0) = val - step;
|
||||
val = cam_params_.at<double>(i * 6 + j, 0);
|
||||
cam_params_.at<double>(i * 6 + j, 0) = val - step;
|
||||
calcError(err1_);
|
||||
cameras_.at<double>(i * 6 + j, 0) = val + step;
|
||||
cam_params_.at<double>(i * 6 + j, 0) = val + step;
|
||||
calcError(err2_);
|
||||
calcDeriv(err1_, err2_, 2 * step, J_.col(i * 6 + j));
|
||||
cameras_.at<double>(i * 6 + j, 0) = val;
|
||||
calcDeriv(err1_, err2_, 2 * step, jac.col(i * 6 + j));
|
||||
cam_params_.at<double>(i * 6 + j, 0) = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -189,7 +189,8 @@ Stitcher::Status Stitcher::stitch(InputArray imgs_, OutputArray pano_)
|
||||
LOGLN("Initial intrinsic parameters #" << indices[i]+1 << ":\n " << cameras[i].K());
|
||||
}
|
||||
|
||||
detail::BundleAdjusterReproj adjuster(conf_thresh_);
|
||||
detail::BundleAdjusterReproj adjuster;
|
||||
adjuster.setConfThresh(conf_thresh_);
|
||||
adjuster(features, pairwise_matches, cameras);
|
||||
|
||||
// Find median focal length
|
||||
|
@ -413,7 +413,8 @@ int main(int argc, char* argv[])
|
||||
LOGLN("Initial intrinsics #" << indices[i]+1 << ":\n" << cameras[i].K());
|
||||
}
|
||||
|
||||
BundleAdjusterReproj adjuster(conf_thresh);
|
||||
BundleAdjusterReproj adjuster;
|
||||
adjuster.setConfThresh(conf_thresh);
|
||||
adjuster(features, pairwise_matches, cameras);
|
||||
|
||||
// Find median focal length
|
||||
|
Loading…
Reference in New Issue
Block a user