diff --git a/modules/features2d/test/test_descriptors_regression.cpp b/modules/features2d/test/test_descriptors_regression.cpp index 1be4dd89f..5ebf508d8 100644 --- a/modules/features2d/test/test_descriptors_regression.cpp +++ b/modules/features2d/test/test_descriptors_regression.cpp @@ -390,45 +390,52 @@ TEST( Features2d_Feature2d, no_crash ) size_t i, n = fnames.size(); vector keypoints; Mat descriptors; + orb->setMaxFeatures(5000); for( i = 0; i < n; i++ ) { printf("%d. image: %s:\n", (int)i, fnames[i].c_str()); + if( strstr(fnames[i].c_str(), "MP.png") != 0 ) + continue; bool checkCount = strstr(fnames[i].c_str(), "templ.png") == 0; Mat img = imread(fnames[i], -1); printf("\tAKAZE ... "); fflush(stdout); akaze->detectAndCompute(img, noArray(), keypoints, descriptors); + printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout); if( checkCount ) { - ASSERT_GT((int)keypoints.size(), 0); + EXPECT_GT((int)keypoints.size(), 0); } ASSERT_EQ(descriptors.rows, (int)keypoints.size()); printf("ok\n"); printf("\tKAZE ... "); fflush(stdout); kaze->detectAndCompute(img, noArray(), keypoints, descriptors); + printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout); if( checkCount ) { - ASSERT_GT((int)keypoints.size(), 0); + EXPECT_GT((int)keypoints.size(), 0); } ASSERT_EQ(descriptors.rows, (int)keypoints.size()); printf("ok\n"); printf("\tORB ... "); fflush(stdout); orb->detectAndCompute(img, noArray(), keypoints, descriptors); + printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout); if( checkCount ) { - ASSERT_GT((int)keypoints.size(), 0); + EXPECT_GT((int)keypoints.size(), 0); } ASSERT_EQ(descriptors.rows, (int)keypoints.size()); printf("ok\n"); printf("\tBRISK ... "); fflush(stdout); brisk->detectAndCompute(img, noArray(), keypoints, descriptors); + printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout); if( checkCount ) { - ASSERT_GT((int)keypoints.size(), 0); + EXPECT_GT((int)keypoints.size(), 0); } ASSERT_EQ(descriptors.rows, (int)keypoints.size()); printf("ok\n"); diff --git a/modules/features2d/test/test_mser.cpp b/modules/features2d/test/test_mser.cpp index 29572870a..791426751 100644 --- a/modules/features2d/test/test_mser.cpp +++ b/modules/features2d/test/test_mser.cpp @@ -41,171 +41,121 @@ //M*/ #include "test_precomp.hpp" -#include "opencv2/imgproc/imgproc_c.h" - -#if 0 +#include "opencv2/highgui.hpp" #include #include using namespace std; using namespace cv; -class CV_MserTest : public cvtest::BaseTest +#undef RENDER_MSERS +#define RENDER_MSERS 0 + +#if defined RENDER_MSERS && RENDER_MSERS +static void renderMSERs(const Mat& gray, Mat& img, const vector >& msers) { -public: - CV_MserTest(); -protected: - void run(int); - int LoadBoxes(const char* path, vector& boxes); - int SaveBoxes(const char* path, const vector& boxes); - int CompareBoxes(const vector& boxes1,const vector& boxes2, float max_rel_diff = 0.01f); -}; - -CV_MserTest::CV_MserTest() -{ -} - -int CV_MserTest::LoadBoxes(const char* path, vector& boxes) -{ - boxes.clear(); - FILE* f = fopen(path,"r"); - - if (f==NULL) + cvtColor(gray, img, COLOR_GRAY2BGR); + RNG rng((uint64)1749583); + for( int i = 0; i < (int)msers.size(); i++ ) { - return 0; - } + uchar b = rng.uniform(0, 256); + uchar g = rng.uniform(0, 256); + uchar r = rng.uniform(0, 256); + Vec3b color(b, g, r); - while (!feof(f)) - { - CvBox2D box; - int values_read = fscanf(f,"%f,%f,%f,%f,%f\n",&box.angle,&box.center.x,&box.center.y,&box.size.width,&box.size.height); - CV_Assert(values_read == 5); - boxes.push_back(box); - } - fclose(f); - return 1; -} - -int CV_MserTest::SaveBoxes(const char* path, const vector& boxes) -{ - FILE* f = fopen(path,"w"); - if (f==NULL) - { - return 0; - } - for (int i=0;i<(int)boxes.size();i++) - { - fprintf(f,"%f,%f,%f,%f,%f\n",boxes[i].angle,boxes[i].center.x,boxes[i].center.y,boxes[i].size.width,boxes[i].size.height); - } - fclose(f); - return 1; -} - -int CV_MserTest::CompareBoxes(const vector& boxes1,const vector& boxes2, float max_rel_diff) -{ - if (boxes1.size() != boxes2.size()) - return 0; - - for (int i=0; i<(int)boxes1.size();i++) - { - float rel_diff; - if (!((boxes1[i].angle == 0.0f) && (abs(boxes2[i].angle) < max_rel_diff))) - { - float angle_diff = (float)fmod(boxes1[i].angle - boxes2[i].angle, 180); - // for angular correctness, it makes no sense to use a "relative" error. - // a 1-degree error around 5 degrees is equally bas as around 250 degrees. - // in correct cases, angle_diff can now be a bit above 0 or a bit below 180 - if (angle_diff > 90.0f) - { - angle_diff -= 180.0f; - } - rel_diff = (float)fabs(angle_diff); - if (rel_diff > max_rel_diff) - return i; - } - - if (!((boxes1[i].center.x == 0.0f) && (abs(boxes2[i].center.x) < max_rel_diff))) - { - rel_diff = abs(boxes1[i].center.x-boxes2[i].center.x)/abs(boxes1[i].center.x); - if (rel_diff > max_rel_diff) - return i; - } - - if (!((boxes1[i].center.y == 0.0f) && (abs(boxes2[i].center.y) < max_rel_diff))) - { - rel_diff = abs(boxes1[i].center.y-boxes2[i].center.y)/abs(boxes1[i].center.y); - if (rel_diff > max_rel_diff) - return i; - } - if (!((boxes1[i].size.width == 0.0f) && (abs(boxes2[i].size.width) < max_rel_diff))) - { - rel_diff = abs(boxes1[i].size.width-boxes2[i].size.width)/abs(boxes1[i].size.width); - if (rel_diff > max_rel_diff) - return i; - } - - if (!((boxes1[i].size.height == 0.0f) && (abs(boxes2[i].size.height) < max_rel_diff))) - { - rel_diff = abs(boxes1[i].size.height-boxes2[i].size.height)/abs(boxes1[i].size.height); - if (rel_diff > max_rel_diff) - return i; - } - } - - return -1; -} - -void CV_MserTest::run(int) -{ - string image_path = string(ts->get_data_path()) + "mser/puzzle.png"; - - Mat img = imread( image_path ); - if (img.empty()) - { - ts->printf( cvtest::TS::LOG, "Unable to open image mser/puzzle.png\n"); - ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); - return; - } - - Mat yuv; - cvtColor(img, yuv, COLOR_BGR2YCrCb); - vector > msers; - MSER()(yuv, msers); - - vector boxes; - vector boxes_orig; - for ( size_t i = 0; i < msers.size(); i++ ) - { - RotatedRect box = fitEllipse(msers[i]); - box.angle=(float)CV_PI/2-box.angle; - boxes.push_back(box); - } - - string boxes_path = string(ts->get_data_path()) + "mser/boxes.txt"; - string calc_boxes_path = string(ts->get_data_path()) + "mser/boxes.calc.txt"; - - if (!LoadBoxes(boxes_path.c_str(),boxes_orig)) - { - SaveBoxes(boxes_path.c_str(),boxes); - ts->printf( cvtest::TS::LOG, "Unable to open data file mser/boxes.txt\n"); - ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); - return; - } - - const float dissimularity = 0.01f; - int n_box = CompareBoxes(boxes_orig,boxes,dissimularity); - if (n_box < 0) - { - ts->set_failed_test_info(cvtest::TS::OK); - } - else - { - SaveBoxes(calc_boxes_path.c_str(), boxes); - ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); - ts->printf( cvtest::TS::LOG, "Incorrect correspondence in box %d\n",n_box); + const Point* pt = &msers[i][0]; + size_t j, n = msers[i].size(); + for( j = 0; j < n; j++ ) + img.at(pt[j]) = color; } } - -TEST(Features2d_MSER, DISABLED_regression) { CV_MserTest test; test.safe_run(); } - #endif + +TEST(Features2d_MSER, cases) +{ + uchar buf[] = + { + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 + }; + Mat big_image = imread(cvtest::TS::ptr()->get_data_path() + "mser/puzzle.png", 0); + Mat small_image(14, 26, CV_8U, buf); + static const int thresharr[] = { 0, 70, 120, 180, 255 }; + + const int kDelta = 5; + Ptr mserExtractor = MSER::create( kDelta ); + vector > msers; + vector boxes; + + RNG& rng = theRNG(); + + for( int i = 0; i < 30; i++ ) + { + bool use_big_image = rng.uniform(0, 7) != 0; + bool invert = rng.uniform(0, 2) != 0; + bool binarize = use_big_image ? rng.uniform(0, 5) != 0 : false; + bool blur = rng.uniform(0, 2) != 0; + int thresh = thresharr[rng.uniform(0, 5)]; + + /*if( i == 0 ) + { + use_big_image = true; + invert = binarize = blur = false; + }*/ + + const Mat& src0 = use_big_image ? big_image : small_image; + Mat src = src0.clone(); + + int kMinArea = use_big_image ? 256 : 10; + int kMaxArea = (int)src.total()/4; + + mserExtractor->setMinArea(kMinArea); + mserExtractor->setMaxArea(kMaxArea); + + if( invert ) + bitwise_not(src, src); + if( binarize ) + threshold(src, src, thresh, 255, THRESH_BINARY); + if( blur ) + GaussianBlur(src, src, Size(5, 5), 1.5, 1.5); + + int minRegs = use_big_image ? 10 : 2; + int maxRegs = use_big_image ? 1000 : 10; + if( binarize && (thresh == 0 || thresh == 255) ) + minRegs = maxRegs = 0; + + mserExtractor->detectRegions( src, msers, boxes ); + int nmsers = (int)msers.size(); + ASSERT_EQ(nmsers, (int)boxes.size()); + + if( maxRegs < nmsers || minRegs > nmsers ) + { + printf("%d. minArea=%d, maxArea=%d, nmsers=%d, minRegs=%d, maxRegs=%d, " + "image=%s, invert=%d, binarize=%d, thresh=%d, blur=%d\n", + i, kMinArea, kMaxArea, nmsers, minRegs, maxRegs, use_big_image ? "big" : "small", + (int)invert, (int)binarize, thresh, (int)blur); + #if defined RENDER_MSERS && RENDER_MSERS + Mat image; + imshow("source", src); + renderMSERs(src, image, msers); + imshow("result", image); + waitKey(); + #endif + } + + ASSERT_LE(minRegs, nmsers); + ASSERT_GE(maxRegs, nmsers); + } +}