Remove deprecated methods from cv::Algorithm
This commit is contained in:
@@ -122,7 +122,6 @@ CV_INLINE CvParamLattice cvDefaultParamLattice( void )
|
||||
#define CV_TYPE_NAME_ML_SVM "opencv-ml-svm"
|
||||
#define CV_TYPE_NAME_ML_KNN "opencv-ml-knn"
|
||||
#define CV_TYPE_NAME_ML_NBAYES "opencv-ml-bayesian"
|
||||
#define CV_TYPE_NAME_ML_EM "opencv-ml-em"
|
||||
#define CV_TYPE_NAME_ML_BOOSTING "opencv-ml-boost-tree"
|
||||
#define CV_TYPE_NAME_ML_TREE "opencv-ml-tree"
|
||||
#define CV_TYPE_NAME_ML_ANN_MLP "opencv-ml-ann-mlp"
|
||||
@@ -562,100 +561,6 @@ private:
|
||||
CvSVM& operator = (const CvSVM&);
|
||||
};
|
||||
|
||||
/****************************************************************************************\
|
||||
* Expectation - Maximization *
|
||||
\****************************************************************************************/
|
||||
namespace cv
|
||||
{
|
||||
class EM : public Algorithm
|
||||
{
|
||||
public:
|
||||
// Type of covariation matrices
|
||||
enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL};
|
||||
|
||||
// Default parameters
|
||||
enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};
|
||||
|
||||
// The initial step
|
||||
enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
|
||||
|
||||
CV_WRAP EM(int nclusters=EM::DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
|
||||
const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
|
||||
EM::DEFAULT_MAX_ITERS, FLT_EPSILON));
|
||||
|
||||
virtual ~EM();
|
||||
CV_WRAP virtual void clear();
|
||||
|
||||
CV_WRAP virtual bool train(InputArray samples,
|
||||
OutputArray logLikelihoods=noArray(),
|
||||
OutputArray labels=noArray(),
|
||||
OutputArray probs=noArray());
|
||||
|
||||
CV_WRAP virtual bool trainE(InputArray samples,
|
||||
InputArray means0,
|
||||
InputArray covs0=noArray(),
|
||||
InputArray weights0=noArray(),
|
||||
OutputArray logLikelihoods=noArray(),
|
||||
OutputArray labels=noArray(),
|
||||
OutputArray probs=noArray());
|
||||
|
||||
CV_WRAP virtual bool trainM(InputArray samples,
|
||||
InputArray probs0,
|
||||
OutputArray logLikelihoods=noArray(),
|
||||
OutputArray labels=noArray(),
|
||||
OutputArray probs=noArray());
|
||||
|
||||
CV_WRAP Vec2d predict(InputArray sample,
|
||||
OutputArray probs=noArray()) const;
|
||||
|
||||
CV_WRAP bool isTrained() const;
|
||||
|
||||
AlgorithmInfo* info() const;
|
||||
virtual void read(const FileNode& fn);
|
||||
|
||||
protected:
|
||||
|
||||
virtual void setTrainData(int startStep, const Mat& samples,
|
||||
const Mat* probs0,
|
||||
const Mat* means0,
|
||||
const std::vector<Mat>* covs0,
|
||||
const Mat* weights0);
|
||||
|
||||
bool doTrain(int startStep,
|
||||
OutputArray logLikelihoods,
|
||||
OutputArray labels,
|
||||
OutputArray probs);
|
||||
virtual void eStep();
|
||||
virtual void mStep();
|
||||
|
||||
void clusterTrainSamples();
|
||||
void decomposeCovs();
|
||||
void computeLogWeightDivDet();
|
||||
|
||||
Vec2d computeProbabilities(const Mat& sample, Mat* probs) const;
|
||||
|
||||
// all inner matrices have type CV_64FC1
|
||||
CV_PROP_RW int nclusters;
|
||||
CV_PROP_RW int covMatType;
|
||||
CV_PROP_RW int maxIters;
|
||||
CV_PROP_RW double epsilon;
|
||||
|
||||
Mat trainSamples;
|
||||
Mat trainProbs;
|
||||
Mat trainLogLikelihoods;
|
||||
Mat trainLabels;
|
||||
|
||||
CV_PROP Mat weights;
|
||||
CV_PROP Mat means;
|
||||
CV_PROP std::vector<Mat> covs;
|
||||
|
||||
std::vector<Mat> covsEigenValues;
|
||||
std::vector<Mat> covsRotateMats;
|
||||
std::vector<Mat> invCovsEigenValues;
|
||||
Mat logWeightDivDet;
|
||||
};
|
||||
} // namespace cv
|
||||
|
||||
/****************************************************************************************\
|
||||
* Decision Tree *
|
||||
\****************************************************************************************/\
|
||||
@@ -2155,8 +2060,6 @@ typedef CvGBTreesParams GradientBoostingTreeParams;
|
||||
typedef CvGBTrees GradientBoostingTrees;
|
||||
|
||||
template<> void DefaultDeleter<CvDTreeSplit>::operator ()(CvDTreeSplit* obj) const;
|
||||
|
||||
bool initModule_ml(void);
|
||||
}
|
||||
|
||||
#endif // __cplusplus
|
||||
|
Reference in New Issue
Block a user