fix for bug 3172
This commit is contained in:
parent
f60726b090
commit
d82b918a7b
@ -2192,6 +2192,13 @@ CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
|
|||||||
InputArray mask=noArray(), int update=0,
|
InputArray mask=noArray(), int update=0,
|
||||||
bool crosscheck=false);
|
bool crosscheck=false);
|
||||||
|
|
||||||
|
//! naive nearest neighbor finder which incrementally updates dist and nidx when called repeatedly with the same K and src1, but varying src2
|
||||||
|
CV_EXPORTS_W void batchDistanceForBFMatcher(InputArray src1, InputArray src2,
|
||||||
|
InputOutputArray dist, int dtype, InputOutputArray nidx,
|
||||||
|
int normType=NORM_L2, int K=1,
|
||||||
|
InputArray mask=noArray(), int update=0,
|
||||||
|
bool crosscheck=false);
|
||||||
|
|
||||||
//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
|
//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
|
||||||
CV_EXPORTS_W void normalize( InputArray src, OutputArray dst, double alpha=1, double beta=0,
|
CV_EXPORTS_W void normalize( InputArray src, OutputArray dst, double alpha=1, double beta=0,
|
||||||
int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray());
|
int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray());
|
||||||
|
@ -2460,32 +2460,21 @@ struct BatchDistInvoker : public ParallelLoopBody
|
|||||||
BatchDistFunc func;
|
BatchDistFunc func;
|
||||||
};
|
};
|
||||||
|
|
||||||
}
|
static void batchDistanceImpl( InputArray _src1, InputArray _src2,
|
||||||
|
InputOutputArray _dist, int dtype, InputOutputArray _nidx,
|
||||||
void cv::batchDistance( InputArray _src1, InputArray _src2,
|
int normType, int K, InputArray _mask,
|
||||||
OutputArray _dist, int dtype, OutputArray _nidx,
|
int update, bool crosscheck )
|
||||||
int normType, int K, InputArray _mask,
|
|
||||||
int update, bool crosscheck )
|
|
||||||
{
|
{
|
||||||
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat();
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat();
|
||||||
int type = src1.type();
|
int type = src1.type();
|
||||||
CV_Assert( type == src2.type() && src1.cols == src2.cols &&
|
CV_Assert( type == src2.type() && src1.cols == src2.cols &&
|
||||||
(type == CV_32F || type == CV_8U));
|
(type == CV_32F || type == CV_8U));
|
||||||
CV_Assert( _nidx.needed() == (K > 0) );
|
|
||||||
|
|
||||||
if( dtype == -1 )
|
|
||||||
{
|
|
||||||
dtype = normType == NORM_HAMMING || normType == NORM_HAMMING2 ? CV_32S : CV_32F;
|
|
||||||
}
|
|
||||||
CV_Assert( (type == CV_8U && dtype == CV_32S) || dtype == CV_32F);
|
CV_Assert( (type == CV_8U && dtype == CV_32S) || dtype == CV_32F);
|
||||||
|
|
||||||
K = std::min(K, src2.rows);
|
|
||||||
|
|
||||||
_dist.create(src1.rows, (K > 0 ? K : src2.rows), dtype);
|
|
||||||
Mat dist = _dist.getMat(), nidx;
|
Mat dist = _dist.getMat(), nidx;
|
||||||
if( _nidx.needed() )
|
if( _nidx.needed() )
|
||||||
{
|
{
|
||||||
_nidx.create(dist.size(), CV_32S);
|
|
||||||
nidx = _nidx.getMat();
|
nidx = _nidx.getMat();
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2573,6 +2562,55 @@ void cv::batchDistance( InputArray _src1, InputArray _src2,
|
|||||||
BatchDistInvoker(src1, src2, dist, nidx, K, mask, update, func));
|
BatchDistInvoker(src1, src2, dist, nidx, K, mask, update, func));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void cv::batchDistance( InputArray _src1, InputArray _src2,
|
||||||
|
OutputArray _dist, int dtype, OutputArray _nidx,
|
||||||
|
int normType, int K, InputArray _mask,
|
||||||
|
int update, bool crosscheck )
|
||||||
|
{
|
||||||
|
if( dtype == -1 )
|
||||||
|
{
|
||||||
|
dtype = normType == NORM_HAMMING || normType == NORM_HAMMING2 ? CV_32S : CV_32F;
|
||||||
|
}
|
||||||
|
|
||||||
|
// K == 0: return all matches; K > 0: return K best matches, but never more than the number of candidates in _src2
|
||||||
|
CV_Assert( _nidx.needed() == (K > 0) );
|
||||||
|
int candidates = _src2.size().height;
|
||||||
|
K = std::min( K, candidates );
|
||||||
|
_dist.create( _src1.size().height, (K > 0 ? K : candidates), dtype );
|
||||||
|
if( _nidx.needed() )
|
||||||
|
{
|
||||||
|
_nidx.create( _dist.size(), CV_32S );
|
||||||
|
}
|
||||||
|
|
||||||
|
batchDistanceImpl( _src1, _src2, _dist, dtype, _nidx, normType, K, _mask, update, crosscheck );
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void cv::batchDistanceForBFMatcher( InputArray _src1, InputArray _src2,
|
||||||
|
InputOutputArray _dist, int dtype, InputOutputArray _nidx,
|
||||||
|
int normType, int K, InputArray _mask,
|
||||||
|
int update, bool crosscheck )
|
||||||
|
{
|
||||||
|
if( dtype == -1 )
|
||||||
|
{
|
||||||
|
dtype = normType == NORM_HAMMING || normType == NORM_HAMMING2 ? CV_32S : CV_32F;
|
||||||
|
}
|
||||||
|
|
||||||
|
// always work with K matches (unlike cv::batchDistance), even if _src2 has fewer candidates
|
||||||
|
// if this function is called in a loop, then the other loop iterations may require all K
|
||||||
|
CV_Assert( K > 0 && _nidx.needed() );
|
||||||
|
cv::Size size( K, _src1.size().height );
|
||||||
|
CV_Assert( update == 0 || (_dist.size() == size && _nidx.size() == size) );
|
||||||
|
_dist.create( size, dtype );
|
||||||
|
_nidx.create( size, CV_32S );
|
||||||
|
|
||||||
|
batchDistanceImpl( _src1, _src2, _dist, dtype, _nidx, normType, K, _mask, update, crosscheck );
|
||||||
|
CV_Assert( _dist.size() == size && _nidx.size() == size );
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
void cv::findNonZero( InputArray _src, OutputArray _idx )
|
void cv::findNonZero( InputArray _src, OutputArray _idx )
|
||||||
{
|
{
|
||||||
|
@ -363,8 +363,8 @@ void BFMatcher::knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch>
|
|||||||
for( iIdx = 0; iIdx < imgCount; iIdx++ )
|
for( iIdx = 0; iIdx < imgCount; iIdx++ )
|
||||||
{
|
{
|
||||||
CV_Assert( trainDescCollection[iIdx].rows < IMGIDX_ONE );
|
CV_Assert( trainDescCollection[iIdx].rows < IMGIDX_ONE );
|
||||||
batchDistance(queryDescriptors, trainDescCollection[iIdx], dist, dtype, nidx,
|
batchDistanceForBFMatcher(queryDescriptors, trainDescCollection[iIdx], dist, dtype, nidx,
|
||||||
normType, knn, masks.empty() ? Mat() : masks[iIdx], update, crossCheck);
|
normType, knn, masks.empty() ? Mat() : masks[iIdx], update, crossCheck);
|
||||||
update += IMGIDX_ONE;
|
update += IMGIDX_ONE;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user