Documentation: fixed references for C++ operators
This commit is contained in:
parent
23c15d562d
commit
d7a9b99b1d
16
doc/ocv.py
16
doc/ocv.py
@ -302,9 +302,10 @@ _visibility_re = re.compile(r'\b(public|private|protected)\b')
|
||||
_operator_re = re.compile(r'''(?x)
|
||||
\[\s*\]
|
||||
| \(\s*\)
|
||||
| (<<|>>)=?
|
||||
| [!<>=/*%+|&^-]=?
|
||||
| \+\+ | --
|
||||
| (<<|>>)=? | ~ | && | \| | \|\|
|
||||
| ~ | && | \| | \|\|
|
||||
| ->\*? | \,
|
||||
''')
|
||||
|
||||
@ -1150,7 +1151,7 @@ class OCVObject(ObjectDescription):
|
||||
theid = sig#obj.get_id()
|
||||
theid = re.sub(r" +", " ", theid)
|
||||
theid = re.sub(r"=[^,()]+\([^)]*?\)[^,)]*(,|\))", "\\1", theid)
|
||||
theid = re.sub(r"=[^,)]+(,|\))", "\\1", theid)
|
||||
theid = re.sub(r"=\w*[^,)(]+(,|\))", "\\1", theid)
|
||||
theid = theid.replace("( ", "(").replace(" )", ")")
|
||||
name = unicode(sigobj.name)
|
||||
if theid not in self.state.document.ids:
|
||||
@ -1418,9 +1419,9 @@ class OCVDomain(Domain):
|
||||
'func' : OCVXRefRole(fix_parens=True),
|
||||
'funcx' : OCVXRefRole(),
|
||||
'cfunc' : OCVXRefRole(fix_parens=True),
|
||||
'cfunc' : OCVXRefRole(),
|
||||
'cfuncx' : OCVXRefRole(),
|
||||
'jfunc' : OCVXRefRole(fix_parens=True),
|
||||
'jfunc' : OCVXRefRole(),
|
||||
'jfuncx' : OCVXRefRole(),
|
||||
'pyfunc' : OCVPyXRefRole(),
|
||||
'pyoldfunc' : OCVPyXRefRole(),
|
||||
'member': OCVXRefRole(),
|
||||
@ -1458,8 +1459,13 @@ class OCVDomain(Domain):
|
||||
obj = dict[name]
|
||||
if obj[1] not in self.objtypes_for_role(typ):
|
||||
return None
|
||||
title = obj[2]
|
||||
if "class" in self.objtypes_for_role(typ):
|
||||
title = u"class " + title
|
||||
elif "struct" in self.objtypes_for_role(typ):
|
||||
title = u"struct " + title
|
||||
return make_refnode(builder, fromdocname, obj[0], obj[2],
|
||||
contnode, name)
|
||||
contnode, title)
|
||||
|
||||
parser = DefinitionParser(target)
|
||||
try:
|
||||
|
@ -921,7 +921,7 @@ Reprojects a disparity image to 3D space.
|
||||
|
||||
:param Q: :math:`4 \times 4` perspective transformation matrix that can be obtained with :ocv:func:`stereoRectify`.
|
||||
|
||||
:param handleMissingValues: Indicates, whether the function should handle missing values (i.e. points where the disparity was not computed). If ``handleMissingValues=true``, then pixels with the minimal disparity that corresponds to the outliers (see :ocv:func:`StereoBM::operator()` ) are transformed to 3D points with a very large Z value (currently set to 10000).
|
||||
:param handleMissingValues: Indicates, whether the function should handle missing values (i.e. points where the disparity was not computed). If ``handleMissingValues=true``, then pixels with the minimal disparity that corresponds to the outliers (see :ocv:funcx:`StereoBM::operator()` ) are transformed to 3D points with a very large Z value (currently set to 10000).
|
||||
|
||||
:param ddepth: The optional output array depth. If it is ``-1``, the output image will have ``CV_32F`` depth. ``ddepth`` can also be set to ``CV_16S``, ``CV_32S`` or ``CV_32F``.
|
||||
|
||||
@ -1036,7 +1036,7 @@ Class for computing stereo correspondence using the block matching algorithm. ::
|
||||
Ptr<CvStereoBMState> state;
|
||||
};
|
||||
|
||||
The class is a C++ wrapper for the associated functions. In particular, :ocv:func:`StereoBM::operator()` is the wrapper for
|
||||
The class is a C++ wrapper for the associated functions. In particular, :ocv:funcx:`StereoBM::operator()` is the wrapper for
|
||||
:ocv:cfunc:`cvFindStereoCorrespondenceBM`.
|
||||
|
||||
|
||||
@ -1137,7 +1137,7 @@ The class implements the modified H. Hirschmuller algorithm HH08 that differs fr
|
||||
|
||||
* Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi sub-pixel metric from BT96 is used. Though, the color images are supported as well.
|
||||
|
||||
* Some pre- and post- processing steps from K. Konolige algorithm :ocv:func:`StereoBM::operator()` are included, for example: pre-filtering (``CV_STEREO_BM_XSOBEL`` type) and post-filtering (uniqueness check, quadratic interpolation and speckle filtering).
|
||||
* Some pre- and post- processing steps from K. Konolige algorithm :ocv:funcx:`StereoBM::operator()` are included, for example: pre-filtering (``CV_STEREO_BM_XSOBEL`` type) and post-filtering (uniqueness check, quadratic interpolation and speckle filtering).
|
||||
|
||||
|
||||
|
||||
|
@ -2173,7 +2173,7 @@ PCA constructors
|
||||
:param maxComponents: Maximum number of components that PCA should retain. By default, all the components are retained.
|
||||
|
||||
The default constructor initializes an empty PCA structure. The second constructor initializes the structure and calls
|
||||
:ocv:func:`PCA::operator()` .
|
||||
:ocv:funcx:`PCA::operator()` .
|
||||
|
||||
|
||||
|
||||
@ -3115,7 +3115,7 @@ The constructors.
|
||||
* **SVD::FULL_UV** When the matrix is not square, by default the algorithm produces ``u`` and ``vt`` matrices of sufficiently large size for the further ``A`` reconstruction. If, however, ``FULL_UV`` flag is specified, ``u`` and ``vt`` will be full-size square orthogonal matrices.
|
||||
|
||||
The first constructor initializes an empty ``SVD`` structure. The second constructor initializes an empty ``SVD`` structure and then calls
|
||||
:ocv:func:`SVD::operator()` .
|
||||
:ocv:funcx:`SVD::operator()` .
|
||||
|
||||
|
||||
SVD::operator ()
|
||||
|
@ -80,23 +80,21 @@ The structure represents a possible decision tree node split. It has public memb
|
||||
|
||||
.. ocv:member:: int[] subset
|
||||
|
||||
Bit array indicating the value subset in case of split on a categorical variable. The rule is:
|
||||
Bit array indicating the value subset in case of split on a categorical variable. The rule is: ::
|
||||
|
||||
::
|
||||
if var_value in subset
|
||||
then next_node <- left
|
||||
else next_node <- right
|
||||
|
||||
if var_value in subset
|
||||
then next_node <- left
|
||||
else next_node <- right
|
||||
|
||||
.. ocv:member:: float ord.c
|
||||
.. ocv:member:: float ord::c
|
||||
|
||||
The threshold value in case of split on an ordered variable. The rule is: ::
|
||||
|
||||
if var_value < c
|
||||
if var_value < ord.c
|
||||
then next_node<-left
|
||||
else next_node<-right
|
||||
|
||||
.. ocv:member:: int ord.split_point
|
||||
.. ocv:member:: int ord::split_point
|
||||
|
||||
Used internally by the training algorithm.
|
||||
|
||||
|
@ -71,7 +71,7 @@ so the error on the test set usually starts increasing after the network
|
||||
size reaches a limit. Besides, the larger networks are trained much
|
||||
longer than the smaller ones, so it is reasonable to pre-process the data,
|
||||
using
|
||||
:ocv:func:`PCA::operator()` or similar technique, and train a smaller network
|
||||
:ocv:funcx:`PCA::operator()` or similar technique, and train a smaller network
|
||||
on only essential features.
|
||||
|
||||
Another MPL feature is an inability to handle categorical
|
||||
|
@ -562,7 +562,7 @@ Updates the background model and returns the foreground mask
|
||||
|
||||
.. ocv:function:: void BackgroundSubtractorMOG::operator()(InputArray image, OutputArray fgmask, double learningRate=0)
|
||||
|
||||
Parameters are the same as in ``BackgroundSubtractor::operator()``
|
||||
Parameters are the same as in :ocv:funcx:`BackgroundSubtractor::operator()`
|
||||
|
||||
|
||||
BackgroundSubtractorMOG2
|
||||
@ -639,7 +639,7 @@ Updates the background model and computes the foreground mask
|
||||
|
||||
.. ocv:function:: void BackgroundSubtractorMOG2::operator()(InputArray image, OutputArray fgmask, double learningRate=-1)
|
||||
|
||||
See :ocv:func:`BackgroundSubtractor::operator()`.
|
||||
See :ocv:funcx:`BackgroundSubtractor::operator()`.
|
||||
|
||||
|
||||
BackgroundSubtractorMOG2::getBackgroundImage
|
||||
|
Loading…
Reference in New Issue
Block a user