updated detectors quality test, added descriptors quality test

This commit is contained in:
Maria Dimashova 2010-05-17 17:45:05 +00:00
parent 0043fe6fcd
commit d79c97696b
2 changed files with 1812 additions and 899 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,899 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "cvtest.h"
#include <limits>
#include <cstdio>
using namespace std;
using namespace cv;
inline Point2f applyHomography( const Mat_<double>& H, const Point2f& pt )
{
double w = 1./(H(2,0)*pt.x + H(2,1)*pt.y + H(2,2));
return Point2f( (H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w, (H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w );
}
inline void linearizeHomographyAt( const Mat_<double>& H, const Point2f& pt, Mat_<double>& A )
{
A.create(2,2);
double p1 = H(0,0)*pt.x + H(0,1)*pt.y + H(0,2),
p2 = H(1,0)*pt.x + H(1,1)*pt.y + H(1,2),
p3 = H(2,0)*pt.x + H(2,1)*pt.y + H(2,2),
p3_2 = p3*p3;
A(0,0) = H(0,0)/p3 - p1*H(2,0)/p3_2; // fxdx
A(0,1) = H(0,1)/p3 - p1*H(2,1)/p3_2; // fxdy
A(1,0) = H(1,0)/p3 - p2*H(2,0)/p3_2; // fydx
A(1,1) = H(1,1)/p3 - p2*H(2,1)/p3_2; // fydx
}
//----------------------------------- Repeatability ---------------------------------------------------
// Find the key points located in the part of the scene present in both images
// and project keypoints2 on img1
void getCommonKeyPointsOnImg1( const Mat& img1, const Mat img2, const Mat& H12,
const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
vector<KeyPoint>& ckeypoints1, vector<KeyPoint>& hckeypoints2,
bool isAffineInvariant )
{
assert( !img1.empty() && !img2.empty() );
assert( !H12.empty() && H12.cols==3 && H12.rows==3 && H12.type()==CV_64FC1 );
ckeypoints1.clear();
hckeypoints2.clear();
Rect r1(0, 0, img1.cols, img1.rows), r2(0, 0, img2.cols, img2.rows);
Mat H21; invert( H12, H21 );
for( vector<KeyPoint>::const_iterator it = keypoints1.begin();
it != keypoints1.end(); ++it )
{
if( r2.contains(applyHomography(H12, it->pt)) )
ckeypoints1.push_back(*it);
}
for( vector<KeyPoint>::const_iterator it = keypoints2.begin();
it != keypoints2.end(); ++it )
{
Point2f pt = applyHomography(H21, it->pt);
if( r1.contains(pt) )
{
KeyPoint kp = *it;
kp.pt = pt;
if( isAffineInvariant )
assert(0);
else // scale invariant
{
Mat_<double> A, eval;
linearizeHomographyAt(H21, it->pt, A);
eigen(A, eval);
assert( eval.type()==CV_64FC1 && eval.cols==1 && eval.rows==2 );
kp.size *= sqrt(eval(0,0) * eval(1,0)) /*scale from linearized homography matrix*/;
}
hckeypoints2.push_back(kp);
}
}
}
// Locations p1 and p2 are repeated if ||p1 - H21*p2|| < 1.5 pixels.
// Regions are repeated if Es < 0.4 (Es differs for scale invariant and affine invarian detectors).
// For more details see "Scale&Affine Invariant Interest Point Detectors", Mikolajczyk, Schmid.
void repeatability( const Mat& img1, const Mat img2, const Mat& H12,
const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
int& repeatingLocationCount, float& repeatingLocationRltv,
int& repeatingRegionCount, float& repeatingRegionRltv,
bool isAffineInvariant )
{
const double locThreshold = 1.5,
regThreshold = 0.4;
assert( !img1.empty() && !img2.empty() );
assert( !H12.empty() && H12.cols==3 && H12.rows==3 && H12.type()==CV_64FC1 );
Mat H21; invert( H12, H21 );
vector<KeyPoint> ckeypoints1, hckeypoints2;
getCommonKeyPointsOnImg1( img1, img2, H12, keypoints1, keypoints2, ckeypoints1, hckeypoints2, false );
vector<KeyPoint> *smallKPSet, *bigKPSet;
if( ckeypoints1.size() < hckeypoints2.size() )
{
smallKPSet = &ckeypoints1;
bigKPSet = &hckeypoints2;
}
else
{
smallKPSet = &hckeypoints2;
bigKPSet = &ckeypoints1;
}
if( smallKPSet->size() == 0 )
{
repeatingLocationCount = repeatingRegionCount = -1;
repeatingLocationRltv = repeatingRegionRltv = -1.f;
}
else
{
vector<bool> matchedMask( bigKPSet->size(), false);
repeatingLocationCount = repeatingRegionCount = 0;
for( vector<KeyPoint>::const_iterator skpIt = smallKPSet->begin(); skpIt != smallKPSet->end(); ++skpIt )
{
int nearestIdx = -1, bkpIdx = 0;
double minDist = numeric_limits<double>::max();
vector<KeyPoint>::const_iterator nearestBkp;
for( vector<KeyPoint>::const_iterator bkpIt = bigKPSet->begin(); bkpIt != bigKPSet->end(); ++bkpIt, bkpIdx++ )
{
if( !matchedMask[bkpIdx] )
{
Point p1(cvRound(skpIt->pt.x), cvRound(skpIt->pt.y)),
p2(cvRound(bkpIt->pt.x), cvRound(bkpIt->pt.y));
double dist = norm(p1 - p2);
if( dist < minDist )
{
nearestIdx = bkpIdx;
minDist = dist;
nearestBkp = bkpIt;
}
}
}
if( minDist < locThreshold )
{
matchedMask[nearestIdx] = true;
repeatingLocationCount++;
if( isAffineInvariant )
assert(0);
else // scale invariant
{
double minRadius = min( skpIt->size, nearestBkp->size ),
maxRadius = max( skpIt->size, nearestBkp->size );
double Es = abs(1 - (minRadius*minRadius)/(maxRadius*maxRadius));
if( Es < regThreshold )
repeatingRegionCount++;
}
}
}
repeatingLocationRltv = (float)repeatingLocationCount / smallKPSet->size();
repeatingRegionRltv = (float)repeatingRegionCount / smallKPSet->size();
}
}
//----------------------------------- base class of detector test ------------------------------------
const int DATASETS_COUNT = 8;
const int TEST_CASE_COUNT = 5;
const string DATASET_DIR = "detectors/datasets/";
const string ALGORITHMS_DIR = "detectors/algorithms/";
const string PARAMS_POSTFIX = "_params.xml";
const string RES_POSTFIX = "_res.xml";
const string RLC = "repeating_locations_count";
const string RLR = "repeating_locations_rltv";
const string RRC = "repeating_regions_count";
const string RRR = "repeating_regions_rltv";
string DATASET_NAMES[DATASETS_COUNT] = { "bark", "bikes", "boat", "graf", "leuven", "trees", "ubc", "wall"};
class CV_DetectorRepeatabilityTest : public CvTest
{
public:
CV_DetectorRepeatabilityTest( const char* _detectorName, const char* testName ) : CvTest( testName, "repeatability-of-detector" )
{
detectorName = _detectorName;
isAffineInvariant = false;
validRepeatability.resize(DATASETS_COUNT);
calcRepeatability.resize(DATASETS_COUNT);
}
protected:
virtual FeatureDetector* createDetector( int datasetIdx ) = 0;
void readAllRunParams();
virtual void readRunParams( FileNode& fn, int datasetIdx ) = 0;
void writeAllRunParams();
virtual void writeRunParams( FileStorage& fs, int datasetIdx ) = 0;
void setDefaultAllRunParams();
virtual void setDefaultRunParams( int datasetIdx ) = 0;
void readResults();
void writeResults();
bool readDataset( const string& datasetName, vector<Mat>& Hs, vector<Mat>& imgs );
void run( int );
void processResults();
bool isAffineInvariant;
string detectorName;
bool isWriteParams, isWriteResults;
struct Repeatability
{
int repeatingLocationCount;
float repeatingLocationRltv;
int repeatingRegionCount;
float repeatingRegionRltv;
};
vector<vector<Repeatability> > validRepeatability;
vector<vector<Repeatability> > calcRepeatability;
};
void CV_DetectorRepeatabilityTest::readAllRunParams()
{
string filename = string(ts->get_data_path()) + ALGORITHMS_DIR + detectorName + PARAMS_POSTFIX;
FileStorage fs( filename, FileStorage::READ );
if( !fs.isOpened() )
{
isWriteParams = true;
setDefaultAllRunParams();
ts->printf(CvTS::LOG, "all runParams are default\n");
}
else
{
isWriteParams = false;
FileNode topfn = fs.getFirstTopLevelNode();
for( int i = 0; i < DATASETS_COUNT; i++ )
{
FileNode fn = topfn[DATASET_NAMES[i]];
if( fn.empty() )
{
ts->printf( CvTS::LOG, "%d-runParams is default\n", i);
setDefaultRunParams(i);
}
else
readRunParams(fn, i);
}
}
}
void CV_DetectorRepeatabilityTest::writeAllRunParams()
{
string filename = string(ts->get_data_path()) + ALGORITHMS_DIR + detectorName + PARAMS_POSTFIX;
FileStorage fs( filename, FileStorage::WRITE );
if( fs.isOpened() )
{
fs << "run_params" << "{"; // top file node
for( int i = 0; i < DATASETS_COUNT; i++ )
{
fs << DATASET_NAMES[i] << "{";
writeRunParams(fs, i);
fs << "}";
}
fs << "}";
}
else
ts->printf(CvTS::LOG, "file %s for writing run params can not be opened\n", filename.c_str() );
}
void CV_DetectorRepeatabilityTest::setDefaultAllRunParams()
{
for( int i = 0; i < DATASETS_COUNT; i++ )
setDefaultRunParams(i);
}
bool CV_DetectorRepeatabilityTest::readDataset( const string& datasetName, vector<Mat>& Hs, vector<Mat>& imgs )
{
Hs.resize( TEST_CASE_COUNT );
imgs.resize( TEST_CASE_COUNT+1 );
string dirname = string(ts->get_data_path()) + DATASET_DIR + datasetName + "/";
for( int i = 0; i < (int)Hs.size(); i++ )
{
stringstream filename; filename << "H1to" << i+2 << "p.xml";
FileStorage fs( dirname + filename.str(), FileStorage::READ );
if( !fs.isOpened() )
return false;
fs.getFirstTopLevelNode() >> Hs[i];
}
for( int i = 0; i < (int)imgs.size(); i++ )
{
stringstream filename; filename << "img" << i+1 << ".png";
imgs[i] = imread( dirname + filename.str(), 0 );
if( imgs[i].empty() )
return false;
}
return true;
}
void CV_DetectorRepeatabilityTest::readResults()
{
string filename = string(ts->get_data_path()) + ALGORITHMS_DIR + detectorName + RES_POSTFIX;
FileStorage fs( filename, FileStorage::READ );
if( fs.isOpened() )
{
isWriteResults = false;
FileNode topfn = fs.getFirstTopLevelNode();
for( int di = 0; di < DATASETS_COUNT; di++ )
{
FileNode datafn = topfn[DATASET_NAMES[di]];
if( datafn.empty() )
{
validRepeatability[di].clear();
ts->printf( CvTS::LOG, "results for %s dataset were not read\n",
DATASET_NAMES[di].c_str());
}
else
{
validRepeatability[di].resize(TEST_CASE_COUNT);
for( int ci = 0; ci < TEST_CASE_COUNT; ci++ )
{
stringstream ss; ss << "case" << ci;
FileNode casefn = datafn[ss.str()];
CV_Assert( !casefn.empty() );
validRepeatability[di][ci].repeatingLocationCount = casefn[RLC];
validRepeatability[di][ci].repeatingLocationRltv = casefn[RLR];
validRepeatability[di][ci].repeatingRegionCount = casefn[RRC];
validRepeatability[di][ci].repeatingRegionRltv = casefn[RRR];
}
}
}
}
else
isWriteResults = true;
}
void CV_DetectorRepeatabilityTest::writeResults()
{
string filename = string(ts->get_data_path()) + ALGORITHMS_DIR + detectorName + RES_POSTFIX;
FileStorage fs( filename, FileStorage::WRITE );
if( fs.isOpened() )
{
fs << "results" << "{";
for( int di = 0; di < DATASETS_COUNT; di++ )
{
if( calcRepeatability[di].empty() )
{
ts->printf(CvTS::LOG, "results on %s dataset were not write because of empty\n",
DATASET_NAMES[di].c_str());
}
else
{
fs << DATASET_NAMES[di] << "{";
for( int ci = 0; ci < TEST_CASE_COUNT; ci++ )
{
stringstream ss; ss << "case" << ci;
fs << ss.str() << "{";
fs << RLC << calcRepeatability[di][ci].repeatingLocationCount;
fs << RLR << calcRepeatability[di][ci].repeatingLocationRltv;
fs << RRC << calcRepeatability[di][ci].repeatingRegionCount;
fs << RRR << calcRepeatability[di][ci].repeatingRegionRltv;
fs << "}"; //ss.str()
}
fs << "}"; //DATASET_NAMES[di]
}
}
fs << "}"; //results
}
else
ts->printf(CvTS::LOG, "results were not written because file %s can not be opened\n", filename.c_str() );
}
void CV_DetectorRepeatabilityTest::run( int )
{
readAllRunParams();
readResults();
int notReadDatasets = 0;
int progress = 0, progressCount = DATASETS_COUNT*TEST_CASE_COUNT;
for(int di = 0; di < DATASETS_COUNT; di++ )
{
vector<Mat> imgs, Hs;
if( !readDataset( DATASET_NAMES[di], Hs, imgs ) )
{
calcRepeatability[di].clear();
ts->printf( CvTS::LOG, "images or homography matrices of dataset named %s can not be read\n",
DATASET_NAMES[di].c_str());
notReadDatasets++;
}
else
{
calcRepeatability[di].resize(TEST_CASE_COUNT);
Ptr<FeatureDetector> detector = createDetector(di);
vector<KeyPoint> keypoints1;
detector->detect( imgs[0], keypoints1 );
for( int ci = 0; ci < TEST_CASE_COUNT; ci++ )
{
progress = update_progress( progress, di*TEST_CASE_COUNT + ci, progressCount, 0 );
vector<KeyPoint> keypoints2;
detector->detect( imgs[ci+1], keypoints2 );
repeatability( imgs[0], imgs[ci+1], Hs[ci], keypoints1, keypoints2,
calcRepeatability[di][ci].repeatingLocationCount, calcRepeatability[di][ci].repeatingLocationRltv,
calcRepeatability[di][ci].repeatingRegionCount, calcRepeatability[di][ci].repeatingRegionRltv,
isAffineInvariant );
}
}
}
if( notReadDatasets == DATASETS_COUNT )
{
ts->printf(CvTS::LOG, "All datasets were not be read\n");
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
}
else
processResults();
}
void testLog( CvTS* ts, bool isBadAccuracy )
{
if( isBadAccuracy )
ts->printf(CvTS::LOG, " bad accuracy\n");
else
ts->printf(CvTS::LOG, "\n");
}
void CV_DetectorRepeatabilityTest::processResults()
{
if( isWriteParams )
writeAllRunParams();
bool isBadAccuracy;
int res = CvTS::OK;
if( isWriteResults )
writeResults();
else
{
for( int di = 0; di < DATASETS_COUNT; di++ )
{
if( validRepeatability[di].empty() || calcRepeatability[di].empty() )
continue;
ts->printf(CvTS::LOG, "\nDataset: %s\n", DATASET_NAMES[di].c_str() );
int countEps = 1;
float rltvEps = 0.001f;
for( int ci = 0; ci < TEST_CASE_COUNT; ci++ )
{
ts->printf(CvTS::LOG, "case%d\n", ci);
Repeatability valid = validRepeatability[di][ci], calc = calcRepeatability[di][ci];
ts->printf(CvTS::LOG, "%s: calc=%d, valid=%d", RLC.c_str(), calc.repeatingLocationCount, valid.repeatingLocationCount );
isBadAccuracy = valid.repeatingLocationCount - calc.repeatingLocationCount > countEps;
testLog( ts, isBadAccuracy );
res = isBadAccuracy ? CvTS::FAIL_BAD_ACCURACY : res;
ts->printf(CvTS::LOG, "%s: calc=%f, valid=%f", RLR.c_str(), calc.repeatingLocationRltv, valid.repeatingLocationRltv );
isBadAccuracy = valid.repeatingLocationRltv - calc.repeatingLocationRltv > rltvEps;
testLog( ts, isBadAccuracy );
res = isBadAccuracy ? CvTS::FAIL_BAD_ACCURACY : res;
ts->printf(CvTS::LOG, "%s: calc=%d, valid=%d", RRC.c_str(), calc.repeatingRegionCount, valid.repeatingRegionCount );
isBadAccuracy = valid.repeatingRegionCount - calc.repeatingRegionCount > countEps;
testLog( ts, isBadAccuracy );
res = isBadAccuracy ? CvTS::FAIL_BAD_ACCURACY : res;
ts->printf(CvTS::LOG, "%s: calc=%f, valid=%f", RRR.c_str(), calc.repeatingRegionRltv, valid.repeatingRegionRltv );
isBadAccuracy = valid.repeatingRegionRltv - calc.repeatingRegionRltv > rltvEps;
testLog( ts, isBadAccuracy );
res = isBadAccuracy ? CvTS::FAIL_BAD_ACCURACY : res;
}
}
}
if( res != CvTS::OK )
ts->printf(CvTS::LOG, "BAD ACCURACY\n");
ts->set_failed_test_info( res );
}
//--------------------------------- FAST detector test --------------------------------------------
class CV_FastDetectorTest : public CV_DetectorRepeatabilityTest
{
public:
CV_FastDetectorTest() : CV_DetectorRepeatabilityTest( "fast", "repeatability-fast-detector" )
{ runParams.resize(DATASETS_COUNT); }
protected:
virtual FeatureDetector* createDetector( int datasetIdx );
virtual void readRunParams( FileNode& fn, int datasetIdx );
virtual void writeRunParams( FileStorage& fs, int datasetIdx );
virtual void setDefaultRunParams( int datasetIdx );
struct RunParams
{
int threshold;
bool nonmaxSuppression;
};
vector<RunParams> runParams;
};
FeatureDetector* CV_FastDetectorTest::createDetector( int datasetIdx )
{
return new FastFeatureDetector( runParams[datasetIdx].threshold, runParams[datasetIdx].nonmaxSuppression );
}
void CV_FastDetectorTest::readRunParams( FileNode& fn, int datasetIdx )
{
runParams[datasetIdx].threshold = fn["threshold"];
runParams[datasetIdx].nonmaxSuppression = (int)fn["nonmaxSuppression"] ? true : false;
}
void CV_FastDetectorTest::writeRunParams( FileStorage& fs, int datasetIdx )
{
fs << "threshold" << runParams[datasetIdx].threshold;
fs << "nonmaxSuppression" << runParams[datasetIdx].nonmaxSuppression;
}
void CV_FastDetectorTest::setDefaultRunParams( int datasetIdx )
{
runParams[datasetIdx].threshold = 1;
runParams[datasetIdx].nonmaxSuppression = true;
}
CV_FastDetectorTest fastDetector;
//--------------------------------- GFTT & HARRIS detectors tests --------------------------------------------
class CV_BaseGfttDetectorTest : public CV_DetectorRepeatabilityTest
{
public:
CV_BaseGfttDetectorTest( const char* detectorName, const char* testName )
: CV_DetectorRepeatabilityTest( detectorName, testName )
{
runParams.resize(DATASETS_COUNT);
useHarrisDetector = false;
}
protected:
virtual FeatureDetector* createDetector( int datasetIdx );
virtual void readRunParams( FileNode& fn, int datasetIdx );
virtual void writeRunParams( FileStorage& fs, int datasetIdx );
virtual void setDefaultRunParams( int datasetIdx );
struct RunParams
{
int maxCorners;
double qualityLevel;
double minDistance;
int blockSize;
double k;
};
vector<RunParams> runParams;
bool useHarrisDetector;
};
FeatureDetector* CV_BaseGfttDetectorTest::createDetector( int datasetIdx )
{
return new GoodFeaturesToTrackDetector( runParams[datasetIdx].maxCorners,
runParams[datasetIdx].qualityLevel,
runParams[datasetIdx].minDistance,
runParams[datasetIdx].blockSize,
useHarrisDetector,
runParams[datasetIdx].k );
}
void CV_BaseGfttDetectorTest::readRunParams( FileNode& fn, int datasetIdx )
{
runParams[datasetIdx].maxCorners = fn["maxCorners"];
runParams[datasetIdx].qualityLevel = fn["qualityLevel"];
runParams[datasetIdx].minDistance = fn["minDistance"];
runParams[datasetIdx].blockSize = fn["blockSize"];
runParams[datasetIdx].k = fn["k"];
}
void CV_BaseGfttDetectorTest::writeRunParams( FileStorage& fs, int datasetIdx )
{
fs << "maxCorners" << runParams[datasetIdx].maxCorners;
fs << "qualityLevel" << runParams[datasetIdx].qualityLevel;
fs << "minDistance" << runParams[datasetIdx].minDistance;
fs << "blockSize" << runParams[datasetIdx].blockSize;
fs << "k" << runParams[datasetIdx].k;
}
void CV_BaseGfttDetectorTest::setDefaultRunParams( int datasetIdx )
{
runParams[datasetIdx].maxCorners = 1500;
runParams[datasetIdx].qualityLevel = 0.01;
runParams[datasetIdx].minDistance = 2.0;
runParams[datasetIdx].blockSize = 3;
runParams[datasetIdx].k = 0.04;
}
class CV_GfttDetectorTest : public CV_BaseGfttDetectorTest
{
public:
CV_GfttDetectorTest() : CV_BaseGfttDetectorTest( "gftt", "repeatability-gftt-detector" ) {}
};
CV_GfttDetectorTest gfttDetector;
class CV_HarrisDetectorTest : public CV_BaseGfttDetectorTest
{
public:
CV_HarrisDetectorTest() : CV_BaseGfttDetectorTest( "harris", "repeatability-harris-detector" )
{ useHarrisDetector = true; }
};
CV_HarrisDetectorTest harrisDetector;
//--------------------------------- MSER detector test --------------------------------------------
class CV_MserDetectorTest : public CV_DetectorRepeatabilityTest
{
public:
CV_MserDetectorTest() : CV_DetectorRepeatabilityTest( "mser", "repeatability-mser-detector" )
{ runParams.resize(DATASETS_COUNT); }
protected:
virtual FeatureDetector* createDetector( int datasetIdx );
virtual void readRunParams( FileNode& fn, int datasetIdx );
virtual void writeRunParams( FileStorage& fs, int datasetIdx );
virtual void setDefaultRunParams( int datasetIdx );
struct RunParams
{
int delta;
int minArea;
int maxArea;
float maxVariation;
float minDiversity;
int maxEvolution;
double areaThreshold;
double minMargin;
int edgeBlurSize;
};
vector<RunParams> runParams;
};
FeatureDetector* CV_MserDetectorTest::createDetector( int datasetIdx )
{
return new MserFeatureDetector( runParams[datasetIdx].delta,
runParams[datasetIdx].minArea,
runParams[datasetIdx].maxArea,
runParams[datasetIdx].maxVariation,
runParams[datasetIdx].minDiversity,
runParams[datasetIdx].maxEvolution,
runParams[datasetIdx].areaThreshold,
runParams[datasetIdx].minMargin,
runParams[datasetIdx].edgeBlurSize );
}
void CV_MserDetectorTest::readRunParams( FileNode& fn, int datasetIdx )
{
runParams[datasetIdx].delta = fn["delta"];
runParams[datasetIdx].minArea = fn["minArea"];
runParams[datasetIdx].maxArea = fn["maxArea"];
runParams[datasetIdx].maxVariation = fn["maxVariation"];
runParams[datasetIdx].minDiversity = fn["minDiversity"];
runParams[datasetIdx].maxEvolution = fn["maxEvolution"];
runParams[datasetIdx].areaThreshold = fn["areaThreshold"];
runParams[datasetIdx].minMargin = fn["minMargin"];
runParams[datasetIdx].edgeBlurSize = fn["edgeBlurSize"];
}
void CV_MserDetectorTest::writeRunParams( FileStorage& fs, int datasetIdx )
{
fs << "delta" << runParams[datasetIdx].delta;
fs << "minArea" << runParams[datasetIdx].minArea;
fs << "maxArea" << runParams[datasetIdx].maxArea;
fs << "maxVariation" << runParams[datasetIdx].maxVariation;
fs << "minDiversity" << runParams[datasetIdx].minDiversity;
fs << "maxEvolution" << runParams[datasetIdx].maxEvolution;
fs << "areaThreshold" << runParams[datasetIdx].areaThreshold;
fs << "minMargin" << runParams[datasetIdx].minMargin;
fs << "edgeBlurSize" << runParams[datasetIdx].edgeBlurSize;
}
void CV_MserDetectorTest::setDefaultRunParams( int datasetIdx )
{
runParams[datasetIdx].delta = 5;
runParams[datasetIdx].minArea = 60;
runParams[datasetIdx].maxArea = 14400;
runParams[datasetIdx].maxVariation = 0.25f;
runParams[datasetIdx].minDiversity = 0.2;
runParams[datasetIdx].maxEvolution = 200;
runParams[datasetIdx].areaThreshold = 1.01;
runParams[datasetIdx].minMargin = 0.003;
runParams[datasetIdx].edgeBlurSize = 5;
}
CV_MserDetectorTest mserDetector;
//--------------------------------- STAR detector test --------------------------------------------
class CV_StarDetectorTest : public CV_DetectorRepeatabilityTest
{
public:
CV_StarDetectorTest() : CV_DetectorRepeatabilityTest( "star", "repeatability-star-detector" )
{ runParams.resize(DATASETS_COUNT); }
protected:
virtual FeatureDetector* createDetector( int datasetIdx );
virtual void readRunParams( FileNode& fn, int datasetIdx );
virtual void writeRunParams( FileStorage& fs, int datasetIdx );
virtual void setDefaultRunParams( int datasetIdx );
struct RunParams
{
int maxSize;
int responseThreshold;
int lineThresholdProjected;
int lineThresholdBinarized;
int suppressNonmaxSize;
};
vector<RunParams> runParams;
};
FeatureDetector* CV_StarDetectorTest::createDetector( int datasetIdx )
{
return new StarFeatureDetector( runParams[datasetIdx].maxSize,
runParams[datasetIdx].responseThreshold,
runParams[datasetIdx].lineThresholdProjected,
runParams[datasetIdx].lineThresholdBinarized,
runParams[datasetIdx].suppressNonmaxSize );
}
void CV_StarDetectorTest::readRunParams( FileNode& fn, int datasetIdx )
{
runParams[datasetIdx].maxSize = fn["maxSize"];
runParams[datasetIdx].responseThreshold = fn["responseThreshold"];
runParams[datasetIdx].lineThresholdProjected = fn["lineThresholdProjected"];
runParams[datasetIdx].lineThresholdBinarized = fn["lineThresholdBinarized"];
runParams[datasetIdx].suppressNonmaxSize = fn["suppressNonmaxSize"];
}
void CV_StarDetectorTest::writeRunParams( FileStorage& fs, int datasetIdx )
{
fs << "maxSize" << runParams[datasetIdx].maxSize;
fs << "responseThreshold" << runParams[datasetIdx].responseThreshold;
fs << "lineThresholdProjected" << runParams[datasetIdx].lineThresholdProjected;
fs << "lineThresholdBinarized" << runParams[datasetIdx].lineThresholdBinarized;
fs << "suppressNonmaxSize" << runParams[datasetIdx].suppressNonmaxSize;
}
void CV_StarDetectorTest::setDefaultRunParams( int datasetIdx )
{
runParams[datasetIdx].maxSize = 16;
runParams[datasetIdx].responseThreshold = 30;
runParams[datasetIdx].lineThresholdProjected = 10;
runParams[datasetIdx].lineThresholdBinarized = 8;
runParams[datasetIdx].suppressNonmaxSize = 5;
}
CV_StarDetectorTest starDetector;
//--------------------------------- SIFT detector test --------------------------------------------
class CV_SiftDetectorTest : public CV_DetectorRepeatabilityTest
{
public:
CV_SiftDetectorTest() : CV_DetectorRepeatabilityTest( "sift", "repeatability-sift-detector" )
{ runParams.resize(DATASETS_COUNT); }
protected:
virtual FeatureDetector* createDetector( int datasetIdx );
virtual void readRunParams( FileNode& fn, int datasetIdx );
virtual void writeRunParams( FileStorage& fs, int datasetIdx );
virtual void setDefaultRunParams( int datasetIdx );
struct RunParams
{
SIFT::CommonParams comm;
SIFT::DetectorParams detect;
};
vector<RunParams> runParams;
};
FeatureDetector* CV_SiftDetectorTest::createDetector( int datasetIdx )
{
return new SiftFeatureDetector( runParams[datasetIdx].detect.threshold,
runParams[datasetIdx].detect.edgeThreshold,
runParams[datasetIdx].detect.angleMode,
runParams[datasetIdx].comm.nOctaves,
runParams[datasetIdx].comm.nOctaveLayers,
runParams[datasetIdx].comm.firstOctave );
}
void CV_SiftDetectorTest::readRunParams( FileNode& fn, int datasetIdx )
{
runParams[datasetIdx].detect.threshold = fn["threshold"];
runParams[datasetIdx].detect.edgeThreshold = fn["edgeThreshold"];
runParams[datasetIdx].detect.angleMode = fn["angleMode"];
runParams[datasetIdx].comm.nOctaves = fn["nOctaves"];
runParams[datasetIdx].comm.nOctaveLayers = fn["nOctaveLayers"];
runParams[datasetIdx].comm.firstOctave = fn["firstOctave"];
}
void CV_SiftDetectorTest::writeRunParams( FileStorage& fs, int datasetIdx )
{
fs << "threshold" << runParams[datasetIdx].detect.threshold;
fs << "edgeThreshold" << runParams[datasetIdx].detect.edgeThreshold;
fs << "angleMode" << runParams[datasetIdx].detect.angleMode;
fs << "nOctaves" << runParams[datasetIdx].comm.nOctaves;
fs << "nOctaveLayers" << runParams[datasetIdx].comm.nOctaveLayers;
fs << "firstOctave" << runParams[datasetIdx].comm.firstOctave;
}
void CV_SiftDetectorTest::setDefaultRunParams( int datasetIdx )
{
runParams[datasetIdx].detect = SIFT::DetectorParams();
runParams[datasetIdx].comm = SIFT::CommonParams();
}
CV_SiftDetectorTest siftDetector;
//--------------------------------- SURF detector test --------------------------------------------
class CV_SurfDetectorTest : public CV_DetectorRepeatabilityTest
{
public:
CV_SurfDetectorTest() : CV_DetectorRepeatabilityTest( "surf", "repeatability-surf-detector" )
{ runParams.resize(DATASETS_COUNT); }
protected:
virtual FeatureDetector* createDetector( int datasetIdx );
virtual void readRunParams( FileNode& fn, int datasetIdx );
virtual void writeRunParams( FileStorage& fs, int datasetIdx );
virtual void setDefaultRunParams( int datasetIdx );
struct RunParams
{
double hessianThreshold;
int octaves;
int octaveLayers;
};
vector<RunParams> runParams;
};
FeatureDetector* CV_SurfDetectorTest::createDetector( int datasetIdx )
{
return new SurfFeatureDetector( runParams[datasetIdx].hessianThreshold,
runParams[datasetIdx].octaves,
runParams[datasetIdx].octaveLayers );
}
void CV_SurfDetectorTest::readRunParams( FileNode& fn, int datasetIdx )
{
runParams[datasetIdx].hessianThreshold = fn["hessianThreshold"];
runParams[datasetIdx].octaves = fn["octaves"];
runParams[datasetIdx].octaveLayers = fn["octaveLayers"];
}
void CV_SurfDetectorTest::writeRunParams( FileStorage& fs, int datasetIdx )
{
fs << "hessianThreshold" << runParams[datasetIdx].hessianThreshold;
fs << "octaves" << runParams[datasetIdx].octaves;
fs << "octaveLayers" << runParams[datasetIdx].octaveLayers;
}
void CV_SurfDetectorTest::setDefaultRunParams( int datasetIdx )
{
runParams[datasetIdx].hessianThreshold = 400.;
runParams[datasetIdx].octaves = 3;
runParams[datasetIdx].octaveLayers = 4;
}
CV_SurfDetectorTest surfDetector;