removed ANN digits recognition
added deskew for SVN and KNearest recognition sample
This commit is contained in:
parent
f2e78eed8c
commit
d636e1128b
@ -1,78 +1,128 @@
|
|||||||
'''
|
'''
|
||||||
Neural network digit recognition sample.
|
SVN and KNearest digit recognition.
|
||||||
|
|
||||||
|
Sample loads a dataset of handwritten digits from 'digits.png'.
|
||||||
|
Then it trains a SVN and KNearest classifiers on it and evaluates
|
||||||
|
their accuracy. Moment-based image deskew is used to improve
|
||||||
|
the recognition accuracy.
|
||||||
|
|
||||||
Usage:
|
Usage:
|
||||||
digits.py
|
digits.py
|
||||||
|
|
||||||
Sample loads a dataset of handwritten digits from 'digits.png'.
|
|
||||||
Then it trains a neural network classifier on it and evaluates
|
|
||||||
its classification accuracy.
|
|
||||||
'''
|
'''
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
from common import mosaic
|
from multiprocessing.pool import ThreadPool
|
||||||
|
from common import clock, mosaic
|
||||||
def unroll_responses(responses, class_n):
|
|
||||||
'''[1, 0, 2, ...] -> [[0, 1, 0], [1, 0, 0], [0, 0, 1], ...]'''
|
|
||||||
sample_n = len(responses)
|
|
||||||
new_responses = np.zeros((sample_n, class_n), np.float32)
|
|
||||||
new_responses[np.arange(sample_n), responses] = 1
|
|
||||||
return new_responses
|
|
||||||
|
|
||||||
|
|
||||||
SZ = 20 # size of each digit is SZ x SZ
|
SZ = 20 # size of each digit is SZ x SZ
|
||||||
CLASS_N = 10
|
CLASS_N = 10
|
||||||
digits_img = cv2.imread('digits.png', 0)
|
|
||||||
|
|
||||||
# prepare dataset
|
def load_digits(fn):
|
||||||
h, w = digits_img.shape
|
print 'loading "%s" ...' % fn
|
||||||
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
|
digits_img = cv2.imread(fn, 0)
|
||||||
digits = np.float32(digits).reshape(-1, SZ*SZ)
|
h, w = digits_img.shape
|
||||||
N = len(digits)
|
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
|
||||||
labels = np.repeat(np.arange(CLASS_N), N/CLASS_N)
|
digits = np.array(digits).reshape(-1, SZ, SZ)
|
||||||
|
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
|
||||||
|
return digits, labels
|
||||||
|
|
||||||
# split it onto train and test subsets
|
def deskew(img):
|
||||||
shuffle = np.random.permutation(N)
|
m = cv2.moments(img)
|
||||||
train_n = int(0.9*N)
|
if abs(m['mu02']) < 1e-2:
|
||||||
digits_train, digits_test = np.split(digits[shuffle], [train_n])
|
return img.copy()
|
||||||
labels_train, labels_test = np.split(labels[shuffle], [train_n])
|
skew = m['mu11']/m['mu02']
|
||||||
|
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
|
||||||
|
img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
|
||||||
|
return img
|
||||||
|
|
||||||
# train model
|
class StatModel(object):
|
||||||
model = cv2.ANN_MLP()
|
def load(self, fn):
|
||||||
layer_sizes = np.int32([SZ*SZ, 25, CLASS_N])
|
self.model.load(fn)
|
||||||
model.create(layer_sizes)
|
def save(self, fn):
|
||||||
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 100, 0.01),
|
self.model.save(fn)
|
||||||
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
|
|
||||||
bp_dw_scale = 0.001,
|
|
||||||
bp_moment_scale = 0.0 )
|
|
||||||
print 'training...'
|
|
||||||
labels_train_unrolled = unroll_responses(labels_train, CLASS_N)
|
|
||||||
model.train(digits_train, labels_train_unrolled, None, params=params)
|
|
||||||
model.save('dig_nn.dat')
|
|
||||||
model.load('dig_nn.dat')
|
|
||||||
|
|
||||||
def evaluate(model, samples, labels):
|
class KNearest(StatModel):
|
||||||
'''Evaluates classifier preformance on a given labeled samples set.'''
|
def __init__(self, k = 3):
|
||||||
ret, resp = model.predict(samples)
|
self.k = k
|
||||||
resp = resp.argmax(-1)
|
self.model = cv2.KNearest()
|
||||||
error_mask = (resp == labels)
|
|
||||||
accuracy = error_mask.mean()
|
|
||||||
return accuracy, error_mask
|
|
||||||
|
|
||||||
# evaluate model
|
def train(self, samples, responses):
|
||||||
train_accuracy, _ = evaluate(model, digits_train, labels_train)
|
self.model = cv2.KNearest()
|
||||||
print 'train accuracy: ', train_accuracy
|
self.model.train(samples, responses)
|
||||||
test_accuracy, test_error_mask = evaluate(model, digits_test, labels_test)
|
|
||||||
print 'test accuracy: ', test_accuracy
|
|
||||||
|
|
||||||
# visualize test results
|
def predict(self, samples):
|
||||||
vis = []
|
retval, results, neigh_resp, dists = self.model.find_nearest(samples, self.k)
|
||||||
for img, flag in zip(digits_test, test_error_mask):
|
return results.ravel()
|
||||||
img = np.uint8(img).reshape(SZ, SZ)
|
|
||||||
|
class SVM(StatModel):
|
||||||
|
def __init__(self, C = 1, gamma = 0.5):
|
||||||
|
self.params = dict( kernel_type = cv2.SVM_RBF,
|
||||||
|
svm_type = cv2.SVM_C_SVC,
|
||||||
|
C = C,
|
||||||
|
gamma = gamma )
|
||||||
|
self.model = cv2.SVM()
|
||||||
|
|
||||||
|
def train(self, samples, responses):
|
||||||
|
self.model = cv2.SVM()
|
||||||
|
self.model.train(samples, responses, params = self.params)
|
||||||
|
|
||||||
|
def predict(self, samples):
|
||||||
|
return self.model.predict_all(samples).ravel()
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate_model(model, digits, samples, labels):
|
||||||
|
resp = model.predict(samples)
|
||||||
|
err = (labels != resp).mean()
|
||||||
|
print 'error: %.2f %%' % (err*100)
|
||||||
|
|
||||||
|
confusion = np.zeros((10, 10), np.int32)
|
||||||
|
for i, j in zip(labels, resp):
|
||||||
|
confusion[i, j] += 1
|
||||||
|
print 'confusion matrix:'
|
||||||
|
print confusion
|
||||||
|
print
|
||||||
|
|
||||||
|
vis = []
|
||||||
|
for img, flag in zip(digits, resp == labels):
|
||||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||||
if not flag:
|
if not flag:
|
||||||
img[...,:2] = 0
|
img[...,:2] = 0
|
||||||
vis.append(img)
|
vis.append(img)
|
||||||
vis = mosaic(25, vis)
|
return mosaic(25, vis)
|
||||||
cv2.imshow('test', vis)
|
|
||||||
cv2.waitKey()
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
print __doc__
|
||||||
|
|
||||||
|
digits, labels = load_digits('digits.png')
|
||||||
|
|
||||||
|
print 'preprocessing...'
|
||||||
|
# shuffle digits
|
||||||
|
rand = np.random.RandomState(12345)
|
||||||
|
shuffle = rand.permutation(len(digits))
|
||||||
|
digits, labels = digits[shuffle], labels[shuffle]
|
||||||
|
|
||||||
|
digits2 = map(deskew, digits)
|
||||||
|
samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0
|
||||||
|
|
||||||
|
train_n = int(0.9*len(samples))
|
||||||
|
cv2.imshow('test set', mosaic(25, digits[train_n:]))
|
||||||
|
digits_train, digits_test = np.split(digits2, [train_n])
|
||||||
|
samples_train, samples_test = np.split(samples, [train_n])
|
||||||
|
labels_train, labels_test = np.split(labels, [train_n])
|
||||||
|
|
||||||
|
|
||||||
|
print 'training KNearest...'
|
||||||
|
model = KNearest(k=1)
|
||||||
|
model.train(samples_train, labels_train)
|
||||||
|
vis = evaluate_model(model, digits_test, samples_test, labels_test)
|
||||||
|
cv2.imshow('KNearest test', vis)
|
||||||
|
|
||||||
|
print 'training SVM...'
|
||||||
|
model = SVM(C=4.66, gamma=0.08)
|
||||||
|
model.train(samples_train, labels_train)
|
||||||
|
vis = evaluate_model(model, digits_test, samples_test, labels_test)
|
||||||
|
cv2.imshow('SVM test', vis)
|
||||||
|
|
||||||
|
cv2.waitKey(0)
|
||||||
|
@ -1,161 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
import cv2
|
|
||||||
from multiprocessing.pool import ThreadPool
|
|
||||||
|
|
||||||
SZ = 20 # size of each digit is SZ x SZ
|
|
||||||
CLASS_N = 10
|
|
||||||
|
|
||||||
def load_base(fn):
|
|
||||||
print 'loading "%s" ...' % fn
|
|
||||||
digits_img = cv2.imread(fn, 0)
|
|
||||||
h, w = digits_img.shape
|
|
||||||
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
|
|
||||||
digits = np.array(digits).reshape(-1, SZ, SZ)
|
|
||||||
digits = np.float32(digits).reshape(-1, SZ*SZ) / 255.0
|
|
||||||
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
|
|
||||||
return digits, labels
|
|
||||||
|
|
||||||
def cross_validate(model_class, params, samples, labels, kfold = 4, pool = None):
|
|
||||||
n = len(samples)
|
|
||||||
folds = np.array_split(np.arange(n), kfold)
|
|
||||||
def f(i):
|
|
||||||
model = model_class(**params)
|
|
||||||
test_idx = folds[i]
|
|
||||||
train_idx = list(folds)
|
|
||||||
train_idx.pop(i)
|
|
||||||
train_idx = np.hstack(train_idx)
|
|
||||||
train_samples, train_labels = samples[train_idx], labels[train_idx]
|
|
||||||
test_samples, test_labels = samples[test_idx], labels[test_idx]
|
|
||||||
model.train(train_samples, train_labels)
|
|
||||||
resp = model.predict(test_samples)
|
|
||||||
score = (resp != test_labels).mean()
|
|
||||||
print ".",
|
|
||||||
return score
|
|
||||||
if pool is None:
|
|
||||||
scores = map(f, xrange(kfold))
|
|
||||||
else:
|
|
||||||
scores = pool.map(f, xrange(kfold))
|
|
||||||
return np.mean(scores)
|
|
||||||
|
|
||||||
class StatModel(object):
|
|
||||||
def load(self, fn):
|
|
||||||
self.model.load(fn)
|
|
||||||
def save(self, fn):
|
|
||||||
self.model.save(fn)
|
|
||||||
|
|
||||||
class KNearest(StatModel):
|
|
||||||
def __init__(self, k = 3):
|
|
||||||
self.k = k
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def adjust(samples, labels):
|
|
||||||
print 'adjusting KNearest ...'
|
|
||||||
best_err, best_k = np.inf, -1
|
|
||||||
for k in xrange(1, 11):
|
|
||||||
err = cross_validate(KNearest, dict(k=k), samples, labels)
|
|
||||||
if err < best_err:
|
|
||||||
best_err, best_k = err, k
|
|
||||||
print 'k = %d, error: %.2f %%' % (k, err*100)
|
|
||||||
best_params = dict(k=best_k)
|
|
||||||
print 'best params:', best_params
|
|
||||||
return best_params
|
|
||||||
|
|
||||||
def train(self, samples, responses):
|
|
||||||
self.model = cv2.KNearest()
|
|
||||||
self.model.train(samples, responses)
|
|
||||||
|
|
||||||
def predict(self, samples):
|
|
||||||
retval, results, neigh_resp, dists = self.model.find_nearest(samples, self.k)
|
|
||||||
return results.ravel()
|
|
||||||
|
|
||||||
class SVM(StatModel):
|
|
||||||
def __init__(self, C = 1, gamma = 0.5):
|
|
||||||
self.params = dict( kernel_type = cv2.SVM_RBF,
|
|
||||||
svm_type = cv2.SVM_C_SVC,
|
|
||||||
C = C,
|
|
||||||
gamma = gamma )
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def adjust(samples, labels):
|
|
||||||
Cs = np.logspace(0, 5, 10, base=2)
|
|
||||||
gammas = np.logspace(-7, -2, 10, base=2)
|
|
||||||
scores = np.zeros((len(Cs), len(gammas)))
|
|
||||||
scores[:] = np.nan
|
|
||||||
|
|
||||||
print 'adjusting SVM (may take a long time) ...'
|
|
||||||
def f(job):
|
|
||||||
i, j = job
|
|
||||||
params = dict(C = Cs[i], gamma=gammas[j])
|
|
||||||
score = cross_validate(SVM, params, samples, labels)
|
|
||||||
scores[i, j] = score
|
|
||||||
nready = np.isfinite(scores).sum()
|
|
||||||
print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (nready, scores.size, np.nanmin(scores)*100, score*100)
|
|
||||||
|
|
||||||
pool = ThreadPool(processes=cv2.getNumberOfCPUs())
|
|
||||||
pool.map(f, np.ndindex(*scores.shape))
|
|
||||||
print scores
|
|
||||||
|
|
||||||
i, j = np.unravel_index(scores.argmin(), scores.shape)
|
|
||||||
best_params = dict(C = Cs[i], gamma=gammas[j])
|
|
||||||
print 'best params:', best_params
|
|
||||||
print 'best error: %.2f %%' % (scores.min()*100)
|
|
||||||
return best_params
|
|
||||||
|
|
||||||
def train(self, samples, responses):
|
|
||||||
self.model = cv2.SVM()
|
|
||||||
self.model.train(samples, responses, params = self.params)
|
|
||||||
|
|
||||||
def predict(self, samples):
|
|
||||||
return self.model.predict_all(samples).ravel()
|
|
||||||
|
|
||||||
def main_adjustSVM(samples, labels):
|
|
||||||
params = SVM.adjust(samples, labels)
|
|
||||||
print 'training SVM on all samples ...'
|
|
||||||
model = SVN(**params)
|
|
||||||
model.train(samples, labels)
|
|
||||||
print 'saving "digits_svm.dat" ...'
|
|
||||||
model.save('digits_svm.dat')
|
|
||||||
|
|
||||||
def main_adjustKNearest(samples, labels):
|
|
||||||
params = KNearest.adjust(samples, labels)
|
|
||||||
|
|
||||||
def main_showSVM(samples, labels):
|
|
||||||
from common import mosaic
|
|
||||||
|
|
||||||
train_n = int(0.9*len(samples))
|
|
||||||
digits_train, digits_test = np.split(samples[shuffle], [train_n])
|
|
||||||
labels_train, labels_test = np.split(labels[shuffle], [train_n])
|
|
||||||
|
|
||||||
print 'training SVM ...'
|
|
||||||
model = SVM(C=2.16, gamma=0.0536)
|
|
||||||
model.train(digits_train, labels_train)
|
|
||||||
|
|
||||||
train_err = (model.predict(digits_train) != labels_train).mean()
|
|
||||||
resp_test = model.predict(digits_test)
|
|
||||||
test_err = (resp_test != labels_test).mean()
|
|
||||||
print 'train errors: %.2f %%' % (train_err*100)
|
|
||||||
print 'test errors: %.2f %%' % (test_err*100)
|
|
||||||
|
|
||||||
|
|
||||||
# visualize test results
|
|
||||||
vis = []
|
|
||||||
for img, flag in zip(digits_test, resp_test == labels_test):
|
|
||||||
img = np.uint8(img*255).reshape(SZ, SZ)
|
|
||||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
|
||||||
if not flag:
|
|
||||||
img[...,:2] = 0
|
|
||||||
vis.append(img)
|
|
||||||
vis = mosaic(25, vis)
|
|
||||||
cv2.imshow('test', vis)
|
|
||||||
cv2.waitKey()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
samples, labels = load_base('digits.png')
|
|
||||||
shuffle = np.random.permutation(len(samples))
|
|
||||||
samples, labels = samples[shuffle], labels[shuffle]
|
|
||||||
|
|
||||||
#main_adjustSVM(samples, labels)
|
|
||||||
#main_adjustKNearest(samples, labels)
|
|
||||||
main_showSVM(samples, labels)
|
|
Loading…
x
Reference in New Issue
Block a user