avoid empty clusters in k-means in a more elegant way (relates to ticket #7698)
This commit is contained in:
parent
806aab164b
commit
d62e486b69
@ -2434,6 +2434,7 @@ double cv::kmeans( InputArray _data, int K,
|
||||
|
||||
attempts = std::max(attempts, 1);
|
||||
CV_Assert( data.dims <= 2 && type == CV_32F && K > 0 );
|
||||
CV_Assert( N >= K );
|
||||
|
||||
_bestLabels.create(N, 1, CV_32S, -1, true);
|
||||
|
||||
@ -2557,18 +2558,61 @@ double cv::kmeans( InputArray _data, int K,
|
||||
|
||||
if( iter > 0 )
|
||||
max_center_shift = 0;
|
||||
|
||||
for( k = 0; k < K; k++ )
|
||||
{
|
||||
if( counters[k] != 0 )
|
||||
continue;
|
||||
|
||||
// if some cluster appeared to be empty then:
|
||||
// 1. find the biggest cluster
|
||||
// 2. find the farthest from the center point in the biggest cluster
|
||||
// 3. exclude the farthest point from the biggest cluster and form a new 1-point cluster.
|
||||
int max_k = 0;
|
||||
for( int k1 = 1; k1 < K; k++ )
|
||||
{
|
||||
if( counters[max_k] < counters[k1] )
|
||||
max_k = k1;
|
||||
}
|
||||
|
||||
double max_dist = 0;
|
||||
int farthest_i = -1;
|
||||
float* new_center = centers.ptr<float>(k);
|
||||
float* old_center = centers.ptr<float>(max_k);
|
||||
|
||||
for( i = 0; i < N; i++ )
|
||||
{
|
||||
if( labels[i] != max_k )
|
||||
continue;
|
||||
sample = data.ptr<float>(i);
|
||||
double dist = normL2Sqr_(sample, old_center, dims);
|
||||
|
||||
if( max_dist <= dist )
|
||||
{
|
||||
max_dist = dist;
|
||||
farthest_i = i;
|
||||
}
|
||||
}
|
||||
|
||||
counters[max_k]--;
|
||||
counters[k]++;
|
||||
sample = data.ptr<float>(farthest_i);
|
||||
|
||||
for( j = 0; j < dims; j++ )
|
||||
{
|
||||
old_center[j] -= sample[j];
|
||||
new_center[j] += sample[j];
|
||||
}
|
||||
}
|
||||
|
||||
for( k = 0; k < K; k++ )
|
||||
{
|
||||
float* center = centers.ptr<float>(k);
|
||||
if( counters[k] != 0 )
|
||||
{
|
||||
float scale = 1.f/counters[k];
|
||||
for( j = 0; j < dims; j++ )
|
||||
center[j] *= scale;
|
||||
}
|
||||
else
|
||||
generateRandomCenter(_box, center, rng);
|
||||
CV_Assert( counters[k] != 0 );
|
||||
|
||||
float scale = 1.f/counters[k];
|
||||
for( j = 0; j < dims; j++ )
|
||||
center[j] *= scale;
|
||||
|
||||
if( iter > 0 )
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user