merged 2.4 into trunk
This commit is contained in:
@@ -404,11 +404,11 @@ Updates the predicted state from the measurement.
|
||||
BackgroundSubtractor
|
||||
--------------------
|
||||
|
||||
.. ocv:class:: BackgroundSubtractor
|
||||
.. ocv:class:: BackgroundSubtractor : public Algorithm
|
||||
|
||||
Base class for background/foreground segmentation. ::
|
||||
|
||||
class BackgroundSubtractor
|
||||
class BackgroundSubtractor : public Algorithm
|
||||
{
|
||||
public:
|
||||
virtual ~BackgroundSubtractor();
|
||||
|
@@ -54,7 +54,7 @@ namespace cv
|
||||
The class is only used to define the common interface for
|
||||
the whole family of background/foreground segmentation algorithms.
|
||||
*/
|
||||
class CV_EXPORTS_W BackgroundSubtractor
|
||||
class CV_EXPORTS_W BackgroundSubtractor : public Algorithm
|
||||
{
|
||||
public:
|
||||
//! the virtual destructor
|
||||
@@ -93,6 +93,9 @@ public:
|
||||
//! re-initiaization method
|
||||
virtual void initialize(Size frameSize, int frameType);
|
||||
|
||||
virtual AlgorithmInfo* info() const;
|
||||
|
||||
protected:
|
||||
Size frameSize;
|
||||
int frameType;
|
||||
Mat bgmodel;
|
||||
@@ -130,6 +133,9 @@ public:
|
||||
//! re-initiaization method
|
||||
virtual void initialize(Size frameSize, int frameType);
|
||||
|
||||
virtual AlgorithmInfo* info() const;
|
||||
|
||||
protected:
|
||||
Size frameSize;
|
||||
int frameType;
|
||||
Mat bgmodel;
|
||||
@@ -137,24 +143,24 @@ public:
|
||||
int nframes;
|
||||
int history;
|
||||
int nmixtures;
|
||||
//! here it is the maximum allowed number of mixture comonents.
|
||||
//! here it is the maximum allowed number of mixture components.
|
||||
//! Actual number is determined dynamically per pixel
|
||||
float varThreshold;
|
||||
// threshold on the squared Mahalan. dist. to decide if it is well described
|
||||
//by the background model or not. Related to Cthr from the paper.
|
||||
//This does not influence the update of the background. A typical value could be 4 sigma
|
||||
//and that is varThreshold=4*4=16; Corresponds to Tb in the paper.
|
||||
double varThreshold;
|
||||
// threshold on the squared Mahalanobis distance to decide if it is well described
|
||||
// by the background model or not. Related to Cthr from the paper.
|
||||
// This does not influence the update of the background. A typical value could be 4 sigma
|
||||
// and that is varThreshold=4*4=16; Corresponds to Tb in the paper.
|
||||
|
||||
/////////////////////////
|
||||
//less important parameters - things you might change but be carefull
|
||||
// less important parameters - things you might change but be carefull
|
||||
////////////////////////
|
||||
float backgroundRatio;
|
||||
//corresponds to fTB=1-cf from the paper
|
||||
//TB - threshold when the component becomes significant enough to be included into
|
||||
//the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
|
||||
//For alpha=0.001 it means that the mode should exist for approximately 105 frames before
|
||||
//it is considered foreground
|
||||
//float noiseSigma;
|
||||
// corresponds to fTB=1-cf from the paper
|
||||
// TB - threshold when the component becomes significant enough to be included into
|
||||
// the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
|
||||
// For alpha=0.001 it means that the mode should exist for approximately 105 frames before
|
||||
// it is considered foreground
|
||||
// float noiseSigma;
|
||||
float varThresholdGen;
|
||||
//correspondts to Tg - threshold on the squared Mahalan. dist. to decide
|
||||
//when a sample is close to the existing components. If it is not close
|
||||
|
@@ -134,17 +134,19 @@ template<typename VT> struct MixData
|
||||
};
|
||||
|
||||
|
||||
static void process8uC1( BackgroundSubtractorMOG& obj, const Mat& image, Mat& fgmask, double learningRate )
|
||||
static void process8uC1( const Mat& image, Mat& fgmask, double learningRate,
|
||||
Mat& bgmodel, int nmixtures, double backgroundRatio,
|
||||
double varThreshold, double noiseSigma )
|
||||
{
|
||||
int x, y, k, k1, rows = image.rows, cols = image.cols;
|
||||
float alpha = (float)learningRate, T = (float)obj.backgroundRatio, vT = (float)obj.varThreshold;
|
||||
int K = obj.nmixtures;
|
||||
MixData<float>* mptr = (MixData<float>*)obj.bgmodel.data;
|
||||
float alpha = (float)learningRate, T = (float)backgroundRatio, vT = (float)varThreshold;
|
||||
int K = nmixtures;
|
||||
MixData<float>* mptr = (MixData<float>*)bgmodel.data;
|
||||
|
||||
const float w0 = (float)defaultInitialWeight;
|
||||
const float sk0 = (float)(w0/(defaultNoiseSigma*2));
|
||||
const float var0 = (float)(defaultNoiseSigma*defaultNoiseSigma*4);
|
||||
const float minVar = (float)(obj.noiseSigma*obj.noiseSigma);
|
||||
const float minVar = (float)(noiseSigma*noiseSigma);
|
||||
|
||||
for( y = 0; y < rows; y++ )
|
||||
{
|
||||
@@ -259,17 +261,20 @@ static void process8uC1( BackgroundSubtractorMOG& obj, const Mat& image, Mat& fg
|
||||
}
|
||||
}
|
||||
|
||||
static void process8uC3( BackgroundSubtractorMOG& obj, const Mat& image, Mat& fgmask, double learningRate )
|
||||
|
||||
static void process8uC3( const Mat& image, Mat& fgmask, double learningRate,
|
||||
Mat& bgmodel, int nmixtures, double backgroundRatio,
|
||||
double varThreshold, double noiseSigma )
|
||||
{
|
||||
int x, y, k, k1, rows = image.rows, cols = image.cols;
|
||||
float alpha = (float)learningRate, T = (float)obj.backgroundRatio, vT = (float)obj.varThreshold;
|
||||
int K = obj.nmixtures;
|
||||
float alpha = (float)learningRate, T = (float)backgroundRatio, vT = (float)varThreshold;
|
||||
int K = nmixtures;
|
||||
|
||||
const float w0 = (float)defaultInitialWeight;
|
||||
const float sk0 = (float)(w0/(defaultNoiseSigma*2*sqrt(3.)));
|
||||
const float var0 = (float)(defaultNoiseSigma*defaultNoiseSigma*4);
|
||||
const float minVar = (float)(obj.noiseSigma*obj.noiseSigma);
|
||||
MixData<Vec3f>* mptr = (MixData<Vec3f>*)obj.bgmodel.data;
|
||||
const float minVar = (float)(noiseSigma*noiseSigma);
|
||||
MixData<Vec3f>* mptr = (MixData<Vec3f>*)bgmodel.data;
|
||||
|
||||
for( y = 0; y < rows; y++ )
|
||||
{
|
||||
@@ -403,9 +408,9 @@ void BackgroundSubtractorMOG::operator()(InputArray _image, OutputArray _fgmask,
|
||||
CV_Assert(learningRate >= 0);
|
||||
|
||||
if( image.type() == CV_8UC1 )
|
||||
process8uC1( *this, image, fgmask, learningRate );
|
||||
process8uC1( image, fgmask, learningRate, bgmodel, nmixtures, backgroundRatio, varThreshold, noiseSigma );
|
||||
else if( image.type() == CV_8UC3 )
|
||||
process8uC3( *this, image, fgmask, learningRate );
|
||||
process8uC3( image, fgmask, learningRate, bgmodel, nmixtures, backgroundRatio, varThreshold, noiseSigma );
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "Only 1- and 3-channel 8-bit images are supported in BackgroundSubtractorMOG" );
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
119
modules/video/src/video_init.cpp
Normal file
119
modules/video/src/video_init.cpp
Normal file
@@ -0,0 +1,119 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
static Algorithm* createMOG()
|
||||
{
|
||||
return new BackgroundSubtractorMOG;
|
||||
}
|
||||
|
||||
static AlgorithmInfo& mog_info()
|
||||
{
|
||||
static AlgorithmInfo mog_info_var("BackgroundSubtractor.MOG", createMOG);
|
||||
return mog_info_var;
|
||||
}
|
||||
|
||||
static AlgorithmInfo& mog_info_auto = mog_info();
|
||||
|
||||
AlgorithmInfo* BackgroundSubtractorMOG::info() const
|
||||
{
|
||||
static volatile bool initialized = false;
|
||||
if( !initialized )
|
||||
{
|
||||
BackgroundSubtractorMOG obj;
|
||||
|
||||
mog_info().addParam(obj, "history", obj.history);
|
||||
mog_info().addParam(obj, "nmixtures", obj.nmixtures);
|
||||
mog_info().addParam(obj, "backgroundRatio", obj.backgroundRatio);
|
||||
mog_info().addParam(obj, "noiseSigma", obj.noiseSigma);
|
||||
|
||||
initialized = true;
|
||||
}
|
||||
return &mog_info();
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
static Algorithm* createMOG2()
|
||||
{
|
||||
return new BackgroundSubtractorMOG2;
|
||||
}
|
||||
|
||||
static AlgorithmInfo& mog2_info()
|
||||
{
|
||||
static AlgorithmInfo mog2_info_var("BackgroundSubtractor.MOG2", createMOG2);
|
||||
return mog2_info_var;
|
||||
}
|
||||
|
||||
static AlgorithmInfo& mog2_info_auto = mog2_info();
|
||||
|
||||
AlgorithmInfo* BackgroundSubtractorMOG2::info() const
|
||||
{
|
||||
static volatile bool initialized = false;
|
||||
if( !initialized )
|
||||
{
|
||||
BackgroundSubtractorMOG2 obj;
|
||||
|
||||
mog2_info().addParam(obj, "history", obj.history);
|
||||
mog2_info().addParam(obj, "varThreshold", obj.varThreshold);
|
||||
mog2_info().addParam(obj, "detectShadows", obj.bShadowDetection);
|
||||
|
||||
initialized = true;
|
||||
}
|
||||
return &mog2_info();
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
bool initModule_video(void)
|
||||
{
|
||||
Ptr<Algorithm> mog = createMOG(), mog2 = createMOG2();
|
||||
return mog->info() != 0 && mog2->info() != 0;
|
||||
}
|
||||
|
||||
}
|
Reference in New Issue
Block a user