merged 2.4 into trunk

This commit is contained in:
Vadim Pisarevsky
2012-04-30 14:33:52 +00:00
parent 3f1c6d7357
commit d5a0088bbe
194 changed files with 10158 additions and 8225 deletions

View File

@@ -433,6 +433,25 @@ namespace cv { namespace gpu { namespace device { namespace optflow_farneback
}
void boxFilter5Gpu_CC11(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream)
{
int height = src.rows / 5;
int width = src.cols;
dim3 block(128);
dim3 grid(divUp(width, block.x), divUp(height, block.y));
int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float);
float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf));
boxFilter5<<<grid, block, smem, stream>>>(height, width, src, ksizeHalf, boxAreaInv, dst);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
__constant__ float c_gKer[MAX_KSIZE_HALF + 1];
template <typename Border>
@@ -575,14 +594,14 @@ namespace cv { namespace gpu { namespace device { namespace optflow_farneback
}
template <typename Border>
template <typename Border, int blockDimX>
void gaussianBlur5Caller(
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream)
{
int height = src.rows / 5;
int width = src.cols;
dim3 block(256);
dim3 block(blockDimX);
dim3 grid(divUp(width, block.x), divUp(height, block.y));
int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float);
Border b(height, width);
@@ -603,12 +622,26 @@ namespace cv { namespace gpu { namespace device { namespace optflow_farneback
static const caller_t callers[] =
{
gaussianBlur5Caller<BrdReflect101<float> >,
gaussianBlur5Caller<BrdReplicate<float> >,
gaussianBlur5Caller<BrdReflect101<float>,256>,
gaussianBlur5Caller<BrdReplicate<float>,256>,
};
callers[borderMode](src, ksizeHalf, dst, stream);
}
}
void gaussianBlur5Gpu_CC11(
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderMode, cudaStream_t stream)
{
typedef void (*caller_t)(const DevMem2Df, int, DevMem2Df, cudaStream_t);
static const caller_t callers[] =
{
gaussianBlur5Caller<BrdReflect101<float>,128>,
gaussianBlur5Caller<BrdReplicate<float>,128>,
};
callers[borderMode](src, ksizeHalf, dst, stream);
}
}}}} // namespace cv { namespace gpu { namespace device { namespace optflow_farneback

View File

@@ -181,6 +181,7 @@ namespace cv { namespace gpu { namespace device
smem3[tid] = val3;
__syncthreads();
#if __CUDA_ARCH__ > 110
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
@@ -188,6 +189,7 @@ namespace cv { namespace gpu { namespace device
smem3[tid] = val3 += smem3[tid + 128];
}
__syncthreads();
#endif
if (tid < 64)
{
@@ -235,12 +237,14 @@ namespace cv { namespace gpu { namespace device
smem2[tid] = val2;
__syncthreads();
#if __CUDA_ARCH__ > 110
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem2[tid] = val2 += smem2[tid + 128];
}
__syncthreads();
#endif
if (tid < 64)
{
@@ -279,11 +283,13 @@ namespace cv { namespace gpu { namespace device
smem1[tid] = val1;
__syncthreads();
#if __CUDA_ARCH__ > 110
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
}
__syncthreads();
#endif
if (tid < 64)
{
@@ -310,9 +316,15 @@ namespace cv { namespace gpu { namespace device
__global__ void lkSparse(const PtrStepb I, const PtrStepb J, const PtrStep<short> dIdx, const PtrStep<short> dIdy,
const float2* prevPts, float2* nextPts, uchar* status, float* err, const int level, const int rows, const int cols)
{
#if __CUDA_ARCH__ <= 110
__shared__ float smem1[128];
__shared__ float smem2[128];
__shared__ float smem3[128];
#else
__shared__ float smem1[256];
__shared__ float smem2[256];
__shared__ float smem3[256];
#endif
const int tid = threadIdx.y * blockDim.x + threadIdx.x;

View File

@@ -172,11 +172,11 @@ static void add(float *res, const float *rhs, const int count, cudaStream_t stre
///////////////////////////////////////////////////////////////////////////////
__global__ void scaleVector(float *d_res, const float *d_src, float scale, const int len)
{
const int pos = blockIdx.x * blockDim.x + threadIdx.x;
if (pos >= len) return;
d_res[pos] = d_src[pos] * scale;
const int pos = blockIdx.x * blockDim.x + threadIdx.x;
if (pos >= len) return;
d_res[pos] = d_src[pos] * scale;
}
///////////////////////////////////////////////////////////////////////////////
@@ -191,10 +191,10 @@ __global__ void scaleVector(float *d_res, const float *d_src, float scale, const
///////////////////////////////////////////////////////////////////////////////
static void ScaleVector(float *d_res, const float *d_src, float scale, const int len, cudaStream_t stream)
{
dim3 threads(256);
dim3 blocks(iDivUp(len, threads.x));
scaleVector<<<blocks, threads, 0, stream>>>(d_res, d_src, scale, len);
dim3 threads(256);
dim3 blocks(iDivUp(len, threads.x));
scaleVector<<<blocks, threads, 0, stream>>>(d_res, d_src, scale, len);
}
const int SOR_TILE_WIDTH = 32;
@@ -1128,14 +1128,14 @@ NCVStatus NCVBroxOpticalFlow(const NCVBroxOpticalFlowDescriptor desc,
ncvAssertReturnNcvStat( nppiStResize_32f_C1R (ptrU->ptr(), srcSize, kLevelStride * sizeof (float), srcROI,
ptrUNew->ptr(), dstSize, ns * sizeof (float), dstROI, 1.0f/scale_factor, 1.0f/scale_factor, nppStBicubic) );
ScaleVector(ptrUNew->ptr(), ptrUNew->ptr(), 1.0f/scale_factor, ns * nh, stream);
ScaleVector(ptrUNew->ptr(), ptrUNew->ptr(), 1.0f/scale_factor, ns * nh, stream);
ncvAssertCUDALastErrorReturn(NCV_CUDA_ERROR);
ncvAssertReturnNcvStat( nppiStResize_32f_C1R (ptrV->ptr(), srcSize, kLevelStride * sizeof (float), srcROI,
ptrVNew->ptr(), dstSize, ns * sizeof (float), dstROI, 1.0f/scale_factor, 1.0f/scale_factor, nppStBicubic) );
ScaleVector(ptrVNew->ptr(), ptrVNew->ptr(), 1.0f/scale_factor, ns * nh, stream);
ScaleVector(ptrVNew->ptr(), ptrVNew->ptr(), 1.0f/scale_factor, ns * nh, stream);
ncvAssertCUDALastErrorReturn(NCV_CUDA_ERROR);
cv::gpu::device::swap<FloatVector*>(ptrU, ptrUNew);

View File

@@ -2508,7 +2508,7 @@ __global__ void resizeBicubic(NcvSize32u srcSize,
wsum += wx;
}
}
dst[(ix + dstROI.x)+ (iy + dstROI.y) * dstStep] = sum / wsum;
dst[(ix + dstROI.x)+ (iy + dstROI.y) * dstStep] = (!wsum)? 0 : sum / wsum;
}

View File

@@ -81,6 +81,8 @@ namespace cv { namespace gpu { namespace device { namespace optflow_farneback
void boxFilter5Gpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream);
void boxFilter5Gpu_CC11(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream);
void setGaussianBlurKernel(const float *gKer, int ksizeHalf);
void gaussianBlurGpu(
@@ -89,6 +91,9 @@ namespace cv { namespace gpu { namespace device { namespace optflow_farneback
void gaussianBlur5Gpu(
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderType, cudaStream_t stream);
void gaussianBlur5Gpu_CC11(
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderType, cudaStream_t stream);
}}}} // namespace cv { namespace gpu { namespace device { namespace optflow_farneback
@@ -167,7 +172,10 @@ void cv::gpu::FarnebackOpticalFlow::updateFlow_boxFilter(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
{
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, S(streams[0]));
if (!isDeviceArch11_)
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, S(streams[0]));
else
device::optflow_farneback::boxFilter5Gpu_CC11(M, blockSize/2, bufM, S(streams[0]));
swap(M, bufM);
for (int i = 1; i < 5; ++i)
@@ -183,8 +191,12 @@ void cv::gpu::FarnebackOpticalFlow::updateFlow_gaussianBlur(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
{
device::optflow_farneback::gaussianBlur5Gpu(
M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0]));
if (!isDeviceArch11_)
device::optflow_farneback::gaussianBlur5Gpu(
M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0]));
else
device::optflow_farneback::gaussianBlur5Gpu_CC11(
M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0]));
swap(M, bufM);
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0]));

View File

@@ -622,6 +622,9 @@ void cv::gpu::ORB_GPU::computeDescriptors(GpuMat& descriptors)
if (keyPointsCount_[level] == 0)
continue;
if (keyPointsCount_[level] == 0)
continue;
GpuMat descRange = descriptors.rowRange(offset, offset + keyPointsCount_[level]);
if (blurForDescriptor)