merged 2.4 into trunk
This commit is contained in:
@@ -1750,6 +1750,7 @@ public:
|
||||
useInitialFlow = false;
|
||||
minEigThreshold = 1e-4f;
|
||||
getMinEigenVals = false;
|
||||
isDeviceArch11_ = !DeviceInfo().supports(FEATURE_SET_COMPUTE_12);
|
||||
}
|
||||
|
||||
void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
|
||||
@@ -1796,6 +1797,8 @@ private:
|
||||
|
||||
vector<GpuMat> uPyr_;
|
||||
vector<GpuMat> vPyr_;
|
||||
|
||||
bool isDeviceArch11_;
|
||||
};
|
||||
|
||||
|
||||
@@ -1812,6 +1815,7 @@ public:
|
||||
polyN = 5;
|
||||
polySigma = 1.1;
|
||||
flags = 0;
|
||||
isDeviceArch11_ = !DeviceInfo().supports(FEATURE_SET_COMPUTE_12);
|
||||
}
|
||||
|
||||
int numLevels;
|
||||
@@ -1859,6 +1863,8 @@ private:
|
||||
GpuMat frames_[2];
|
||||
GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
|
||||
std::vector<GpuMat> pyramid0_, pyramid1_;
|
||||
|
||||
bool isDeviceArch11_;
|
||||
};
|
||||
|
||||
|
||||
|
@@ -433,6 +433,25 @@ namespace cv { namespace gpu { namespace device { namespace optflow_farneback
|
||||
}
|
||||
|
||||
|
||||
void boxFilter5Gpu_CC11(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream)
|
||||
{
|
||||
int height = src.rows / 5;
|
||||
int width = src.cols;
|
||||
|
||||
dim3 block(128);
|
||||
dim3 grid(divUp(width, block.x), divUp(height, block.y));
|
||||
int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float);
|
||||
|
||||
float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf));
|
||||
boxFilter5<<<grid, block, smem, stream>>>(height, width, src, ksizeHalf, boxAreaInv, dst);
|
||||
|
||||
cudaSafeCall(cudaGetLastError());
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
__constant__ float c_gKer[MAX_KSIZE_HALF + 1];
|
||||
|
||||
template <typename Border>
|
||||
@@ -575,14 +594,14 @@ namespace cv { namespace gpu { namespace device { namespace optflow_farneback
|
||||
}
|
||||
|
||||
|
||||
template <typename Border>
|
||||
template <typename Border, int blockDimX>
|
||||
void gaussianBlur5Caller(
|
||||
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream)
|
||||
{
|
||||
int height = src.rows / 5;
|
||||
int width = src.cols;
|
||||
|
||||
dim3 block(256);
|
||||
dim3 block(blockDimX);
|
||||
dim3 grid(divUp(width, block.x), divUp(height, block.y));
|
||||
int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float);
|
||||
Border b(height, width);
|
||||
@@ -603,12 +622,26 @@ namespace cv { namespace gpu { namespace device { namespace optflow_farneback
|
||||
|
||||
static const caller_t callers[] =
|
||||
{
|
||||
gaussianBlur5Caller<BrdReflect101<float> >,
|
||||
gaussianBlur5Caller<BrdReplicate<float> >,
|
||||
gaussianBlur5Caller<BrdReflect101<float>,256>,
|
||||
gaussianBlur5Caller<BrdReplicate<float>,256>,
|
||||
};
|
||||
|
||||
callers[borderMode](src, ksizeHalf, dst, stream);
|
||||
}
|
||||
}
|
||||
|
||||
void gaussianBlur5Gpu_CC11(
|
||||
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderMode, cudaStream_t stream)
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2Df, int, DevMem2Df, cudaStream_t);
|
||||
|
||||
static const caller_t callers[] =
|
||||
{
|
||||
gaussianBlur5Caller<BrdReflect101<float>,128>,
|
||||
gaussianBlur5Caller<BrdReplicate<float>,128>,
|
||||
};
|
||||
|
||||
callers[borderMode](src, ksizeHalf, dst, stream);
|
||||
}
|
||||
|
||||
}}}} // namespace cv { namespace gpu { namespace device { namespace optflow_farneback
|
||||
|
||||
|
@@ -181,6 +181,7 @@ namespace cv { namespace gpu { namespace device
|
||||
smem3[tid] = val3;
|
||||
__syncthreads();
|
||||
|
||||
#if __CUDA_ARCH__ > 110
|
||||
if (tid < 128)
|
||||
{
|
||||
smem1[tid] = val1 += smem1[tid + 128];
|
||||
@@ -188,6 +189,7 @@ namespace cv { namespace gpu { namespace device
|
||||
smem3[tid] = val3 += smem3[tid + 128];
|
||||
}
|
||||
__syncthreads();
|
||||
#endif
|
||||
|
||||
if (tid < 64)
|
||||
{
|
||||
@@ -235,12 +237,14 @@ namespace cv { namespace gpu { namespace device
|
||||
smem2[tid] = val2;
|
||||
__syncthreads();
|
||||
|
||||
#if __CUDA_ARCH__ > 110
|
||||
if (tid < 128)
|
||||
{
|
||||
smem1[tid] = val1 += smem1[tid + 128];
|
||||
smem2[tid] = val2 += smem2[tid + 128];
|
||||
}
|
||||
__syncthreads();
|
||||
#endif
|
||||
|
||||
if (tid < 64)
|
||||
{
|
||||
@@ -279,11 +283,13 @@ namespace cv { namespace gpu { namespace device
|
||||
smem1[tid] = val1;
|
||||
__syncthreads();
|
||||
|
||||
#if __CUDA_ARCH__ > 110
|
||||
if (tid < 128)
|
||||
{
|
||||
smem1[tid] = val1 += smem1[tid + 128];
|
||||
}
|
||||
__syncthreads();
|
||||
#endif
|
||||
|
||||
if (tid < 64)
|
||||
{
|
||||
@@ -310,9 +316,15 @@ namespace cv { namespace gpu { namespace device
|
||||
__global__ void lkSparse(const PtrStepb I, const PtrStepb J, const PtrStep<short> dIdx, const PtrStep<short> dIdy,
|
||||
const float2* prevPts, float2* nextPts, uchar* status, float* err, const int level, const int rows, const int cols)
|
||||
{
|
||||
#if __CUDA_ARCH__ <= 110
|
||||
__shared__ float smem1[128];
|
||||
__shared__ float smem2[128];
|
||||
__shared__ float smem3[128];
|
||||
#else
|
||||
__shared__ float smem1[256];
|
||||
__shared__ float smem2[256];
|
||||
__shared__ float smem3[256];
|
||||
#endif
|
||||
|
||||
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
|
||||
|
@@ -172,11 +172,11 @@ static void add(float *res, const float *rhs, const int count, cudaStream_t stre
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
__global__ void scaleVector(float *d_res, const float *d_src, float scale, const int len)
|
||||
{
|
||||
const int pos = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (pos >= len) return;
|
||||
|
||||
d_res[pos] = d_src[pos] * scale;
|
||||
const int pos = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (pos >= len) return;
|
||||
|
||||
d_res[pos] = d_src[pos] * scale;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -191,10 +191,10 @@ __global__ void scaleVector(float *d_res, const float *d_src, float scale, const
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
static void ScaleVector(float *d_res, const float *d_src, float scale, const int len, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(256);
|
||||
dim3 blocks(iDivUp(len, threads.x));
|
||||
|
||||
scaleVector<<<blocks, threads, 0, stream>>>(d_res, d_src, scale, len);
|
||||
dim3 threads(256);
|
||||
dim3 blocks(iDivUp(len, threads.x));
|
||||
|
||||
scaleVector<<<blocks, threads, 0, stream>>>(d_res, d_src, scale, len);
|
||||
}
|
||||
|
||||
const int SOR_TILE_WIDTH = 32;
|
||||
@@ -1128,14 +1128,14 @@ NCVStatus NCVBroxOpticalFlow(const NCVBroxOpticalFlowDescriptor desc,
|
||||
|
||||
ncvAssertReturnNcvStat( nppiStResize_32f_C1R (ptrU->ptr(), srcSize, kLevelStride * sizeof (float), srcROI,
|
||||
ptrUNew->ptr(), dstSize, ns * sizeof (float), dstROI, 1.0f/scale_factor, 1.0f/scale_factor, nppStBicubic) );
|
||||
|
||||
ScaleVector(ptrUNew->ptr(), ptrUNew->ptr(), 1.0f/scale_factor, ns * nh, stream);
|
||||
|
||||
ScaleVector(ptrUNew->ptr(), ptrUNew->ptr(), 1.0f/scale_factor, ns * nh, stream);
|
||||
ncvAssertCUDALastErrorReturn(NCV_CUDA_ERROR);
|
||||
|
||||
ncvAssertReturnNcvStat( nppiStResize_32f_C1R (ptrV->ptr(), srcSize, kLevelStride * sizeof (float), srcROI,
|
||||
ptrVNew->ptr(), dstSize, ns * sizeof (float), dstROI, 1.0f/scale_factor, 1.0f/scale_factor, nppStBicubic) );
|
||||
|
||||
ScaleVector(ptrVNew->ptr(), ptrVNew->ptr(), 1.0f/scale_factor, ns * nh, stream);
|
||||
|
||||
ScaleVector(ptrVNew->ptr(), ptrVNew->ptr(), 1.0f/scale_factor, ns * nh, stream);
|
||||
ncvAssertCUDALastErrorReturn(NCV_CUDA_ERROR);
|
||||
|
||||
cv::gpu::device::swap<FloatVector*>(ptrU, ptrUNew);
|
||||
|
@@ -2508,7 +2508,7 @@ __global__ void resizeBicubic(NcvSize32u srcSize,
|
||||
wsum += wx;
|
||||
}
|
||||
}
|
||||
dst[(ix + dstROI.x)+ (iy + dstROI.y) * dstStep] = sum / wsum;
|
||||
dst[(ix + dstROI.x)+ (iy + dstROI.y) * dstStep] = (!wsum)? 0 : sum / wsum;
|
||||
}
|
||||
|
||||
|
||||
|
@@ -81,6 +81,8 @@ namespace cv { namespace gpu { namespace device { namespace optflow_farneback
|
||||
|
||||
void boxFilter5Gpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream);
|
||||
|
||||
void boxFilter5Gpu_CC11(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream);
|
||||
|
||||
void setGaussianBlurKernel(const float *gKer, int ksizeHalf);
|
||||
|
||||
void gaussianBlurGpu(
|
||||
@@ -89,6 +91,9 @@ namespace cv { namespace gpu { namespace device { namespace optflow_farneback
|
||||
void gaussianBlur5Gpu(
|
||||
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderType, cudaStream_t stream);
|
||||
|
||||
void gaussianBlur5Gpu_CC11(
|
||||
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderType, cudaStream_t stream);
|
||||
|
||||
}}}} // namespace cv { namespace gpu { namespace device { namespace optflow_farneback
|
||||
|
||||
|
||||
@@ -167,7 +172,10 @@ void cv::gpu::FarnebackOpticalFlow::updateFlow_boxFilter(
|
||||
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
|
||||
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
|
||||
{
|
||||
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, S(streams[0]));
|
||||
if (!isDeviceArch11_)
|
||||
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, S(streams[0]));
|
||||
else
|
||||
device::optflow_farneback::boxFilter5Gpu_CC11(M, blockSize/2, bufM, S(streams[0]));
|
||||
swap(M, bufM);
|
||||
|
||||
for (int i = 1; i < 5; ++i)
|
||||
@@ -183,8 +191,12 @@ void cv::gpu::FarnebackOpticalFlow::updateFlow_gaussianBlur(
|
||||
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
|
||||
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
|
||||
{
|
||||
device::optflow_farneback::gaussianBlur5Gpu(
|
||||
M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0]));
|
||||
if (!isDeviceArch11_)
|
||||
device::optflow_farneback::gaussianBlur5Gpu(
|
||||
M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0]));
|
||||
else
|
||||
device::optflow_farneback::gaussianBlur5Gpu_CC11(
|
||||
M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0]));
|
||||
swap(M, bufM);
|
||||
|
||||
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0]));
|
||||
|
@@ -622,6 +622,9 @@ void cv::gpu::ORB_GPU::computeDescriptors(GpuMat& descriptors)
|
||||
if (keyPointsCount_[level] == 0)
|
||||
continue;
|
||||
|
||||
if (keyPointsCount_[level] == 0)
|
||||
continue;
|
||||
|
||||
GpuMat descRange = descriptors.rowRange(offset, offset + keyPointsCount_[level]);
|
||||
|
||||
if (blurForDescriptor)
|
||||
|
@@ -1,499 +1,416 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace {
|
||||
|
||||
//#define DUMP
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// BroxOpticalFlow
|
||||
|
||||
#define BROX_OPTICAL_FLOW_DUMP_FILE "opticalflow/brox_optical_flow.bin"
|
||||
#define BROX_OPTICAL_FLOW_DUMP_FILE_CC20 "opticalflow/brox_optical_flow_cc20.bin"
|
||||
|
||||
struct BroxOpticalFlow : testing::TestWithParam<cv::gpu::DeviceInfo>
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GetParam();
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(BroxOpticalFlow, Regression)
|
||||
{
|
||||
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
|
||||
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
|
||||
|
||||
cv::gpu::GpuMat u;
|
||||
cv::gpu::GpuMat v;
|
||||
brox(loadMat(frame0), loadMat(frame1), u, v);
|
||||
|
||||
#ifndef DUMP
|
||||
std::string fname(cvtest::TS::ptr()->get_data_path());
|
||||
if (devInfo.majorVersion() >= 2)
|
||||
fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20;
|
||||
else
|
||||
fname += BROX_OPTICAL_FLOW_DUMP_FILE;
|
||||
|
||||
std::ifstream f(fname.c_str(), std::ios_base::binary);
|
||||
|
||||
int rows, cols;
|
||||
|
||||
f.read((char*)&rows, sizeof(rows));
|
||||
f.read((char*)&cols, sizeof(cols));
|
||||
|
||||
cv::Mat u_gold(rows, cols, CV_32FC1);
|
||||
|
||||
for (int i = 0; i < u_gold.rows; ++i)
|
||||
f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float));
|
||||
|
||||
cv::Mat v_gold(rows, cols, CV_32FC1);
|
||||
|
||||
for (int i = 0; i < v_gold.rows; ++i)
|
||||
f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float));
|
||||
|
||||
EXPECT_MAT_NEAR(u_gold, u, 0);
|
||||
EXPECT_MAT_NEAR(v_gold, v, 0);
|
||||
#else
|
||||
std::string fname(cvtest::TS::ptr()->get_data_path());
|
||||
if (devInfo.majorVersion() >= 2)
|
||||
fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20;
|
||||
else
|
||||
fname += BROX_OPTICAL_FLOW_DUMP_FILE;
|
||||
|
||||
std::ofstream f(fname.c_str(), std::ios_base::binary);
|
||||
|
||||
f.write((char*)&u.rows, sizeof(u.rows));
|
||||
f.write((char*)&u.cols, sizeof(u.cols));
|
||||
|
||||
cv::Mat h_u(u);
|
||||
cv::Mat h_v(v);
|
||||
|
||||
for (int i = 0; i < u.rows; ++i)
|
||||
f.write(h_u.ptr<char>(i), u.cols * sizeof(float));
|
||||
|
||||
for (int i = 0; i < v.rows; ++i)
|
||||
f.write(h_v.ptr<char>(i), v.cols * sizeof(float));
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, BroxOpticalFlow, ALL_DEVICES);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// GoodFeaturesToTrack
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(MinDistance, double)
|
||||
|
||||
PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
double minDistance;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
minDistance = GET_PARAM(1);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(GoodFeaturesToTrack, Accuracy)
|
||||
{
|
||||
cv::Mat image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
|
||||
int maxCorners = 1000;
|
||||
double qualityLevel = 0.01;
|
||||
|
||||
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
|
||||
|
||||
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat d_pts;
|
||||
detector(loadMat(image), d_pts);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsNotImplemented, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat d_pts;
|
||||
detector(loadMat(image), d_pts);
|
||||
|
||||
std::vector<cv::Point2f> pts(d_pts.cols);
|
||||
cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*)&pts[0]);
|
||||
d_pts.download(pts_mat);
|
||||
|
||||
std::vector<cv::Point2f> pts_gold;
|
||||
cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance);
|
||||
|
||||
ASSERT_EQ(pts_gold.size(), pts.size());
|
||||
|
||||
size_t mistmatch = 0;
|
||||
for (size_t i = 0; i < pts.size(); ++i)
|
||||
{
|
||||
cv::Point2i a = pts_gold[i];
|
||||
cv::Point2i b = pts[i];
|
||||
|
||||
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
|
||||
|
||||
if (!eq)
|
||||
++mistmatch;
|
||||
}
|
||||
|
||||
double bad_ratio = static_cast<double>(mistmatch) / pts.size();
|
||||
|
||||
ASSERT_LE(bad_ratio, 0.01);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, GoodFeaturesToTrack, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(MinDistance(0.0), MinDistance(3.0))));
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// PyrLKOpticalFlow
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(UseGray, bool)
|
||||
|
||||
PARAM_TEST_CASE(PyrLKOpticalFlow, cv::gpu::DeviceInfo, UseGray)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
bool useGray;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
useGray = GET_PARAM(1);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(PyrLKOpticalFlow, Sparse)
|
||||
{
|
||||
cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
cv::Mat gray_frame;
|
||||
if (useGray)
|
||||
gray_frame = frame0;
|
||||
else
|
||||
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
|
||||
|
||||
std::vector<cv::Point2f> pts;
|
||||
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
|
||||
|
||||
cv::gpu::GpuMat d_pts;
|
||||
cv::Mat pts_mat(1, (int)pts.size(), CV_32FC2, (void*)&pts[0]);
|
||||
d_pts.upload(pts_mat);
|
||||
|
||||
cv::gpu::PyrLKOpticalFlow pyrLK;
|
||||
|
||||
cv::gpu::GpuMat d_nextPts;
|
||||
cv::gpu::GpuMat d_status;
|
||||
cv::gpu::GpuMat d_err;
|
||||
pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status, &d_err);
|
||||
|
||||
std::vector<cv::Point2f> nextPts(d_nextPts.cols);
|
||||
cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]);
|
||||
d_nextPts.download(nextPts_mat);
|
||||
|
||||
std::vector<unsigned char> status(d_status.cols);
|
||||
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*)&status[0]);
|
||||
d_status.download(status_mat);
|
||||
|
||||
std::vector<float> err(d_err.cols);
|
||||
cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]);
|
||||
d_err.download(err_mat);
|
||||
|
||||
std::vector<cv::Point2f> nextPts_gold;
|
||||
std::vector<unsigned char> status_gold;
|
||||
std::vector<float> err_gold;
|
||||
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold);
|
||||
|
||||
ASSERT_EQ(nextPts_gold.size(), nextPts.size());
|
||||
ASSERT_EQ(status_gold.size(), status.size());
|
||||
ASSERT_EQ(err_gold.size(), err.size());
|
||||
|
||||
size_t mistmatch = 0;
|
||||
for (size_t i = 0; i < nextPts.size(); ++i)
|
||||
{
|
||||
if (status[i] != status_gold[i])
|
||||
{
|
||||
++mistmatch;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (status[i])
|
||||
{
|
||||
cv::Point2i a = nextPts[i];
|
||||
cv::Point2i b = nextPts_gold[i];
|
||||
|
||||
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
|
||||
float errdiff = std::abs(err[i] - err_gold[i]);
|
||||
|
||||
if (!eq || errdiff > 1e-1)
|
||||
++mistmatch;
|
||||
}
|
||||
}
|
||||
|
||||
double bad_ratio = static_cast<double>(mistmatch) / nextPts.size();
|
||||
|
||||
ASSERT_LE(bad_ratio, 0.01);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(UseGray(true), UseGray(false))));
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// FarnebackOpticalFlow
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(PyrScale, double)
|
||||
IMPLEMENT_PARAM_CLASS(PolyN, int)
|
||||
CV_FLAGS(FarnebackOptFlowFlags, 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN)
|
||||
IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
|
||||
|
||||
PARAM_TEST_CASE(FarnebackOpticalFlow, cv::gpu::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
double pyrScale;
|
||||
int polyN;
|
||||
int flags;
|
||||
bool useInitFlow;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
pyrScale = GET_PARAM(1);
|
||||
polyN = GET_PARAM(2);
|
||||
flags = GET_PARAM(3);
|
||||
useInitFlow = GET_PARAM(4);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(FarnebackOpticalFlow, Accuracy)
|
||||
{
|
||||
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
double polySigma = polyN <= 5 ? 1.1 : 1.5;
|
||||
|
||||
cv::gpu::FarnebackOpticalFlow calc;
|
||||
calc.pyrScale = pyrScale;
|
||||
calc.polyN = polyN;
|
||||
calc.polySigma = polySigma;
|
||||
calc.flags = flags;
|
||||
|
||||
cv::gpu::GpuMat d_flowx, d_flowy;
|
||||
calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
|
||||
|
||||
cv::Mat flow;
|
||||
if (useInitFlow)
|
||||
{
|
||||
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
|
||||
cv::merge(flowxy, 2, flow);
|
||||
}
|
||||
|
||||
if (useInitFlow)
|
||||
{
|
||||
calc.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
|
||||
calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
|
||||
}
|
||||
|
||||
cv::calcOpticalFlowFarneback(
|
||||
frame0, frame1, flow, calc.pyrScale, calc.numLevels, calc.winSize,
|
||||
calc.numIters, calc.polyN, calc.polySigma, calc.flags);
|
||||
|
||||
std::vector<cv::Mat> flowxy;
|
||||
cv::split(flow, flowxy);
|
||||
|
||||
EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1);
|
||||
EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, FarnebackOpticalFlow, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
|
||||
testing::Values(PolyN(5), PolyN(7)),
|
||||
testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
|
||||
testing::Values(UseInitFlow(false), UseInitFlow(true))));
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// VideoWriter
|
||||
|
||||
#ifdef WIN32
|
||||
|
||||
PARAM_TEST_CASE(VideoWriter, cv::gpu::DeviceInfo, std::string)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
std::string inputFile;
|
||||
|
||||
std::string outputFile;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
inputFile = GET_PARAM(1);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + inputFile;
|
||||
outputFile = inputFile.substr(0, inputFile.find('.')) + "_test.avi";
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(VideoWriter, Regression)
|
||||
{
|
||||
const double FPS = 25.0;
|
||||
|
||||
cv::VideoCapture reader(inputFile);
|
||||
ASSERT_TRUE( reader.isOpened() );
|
||||
|
||||
cv::gpu::VideoWriter_GPU d_writer;
|
||||
|
||||
cv::Mat frame;
|
||||
std::vector<cv::Mat> frames;
|
||||
cv::gpu::GpuMat d_frame;
|
||||
|
||||
for (int i = 1; i < 10; ++i)
|
||||
{
|
||||
reader >> frame;
|
||||
|
||||
if (frame.empty())
|
||||
break;
|
||||
|
||||
frames.push_back(frame.clone());
|
||||
d_frame.upload(frame);
|
||||
|
||||
if (!d_writer.isOpened())
|
||||
d_writer.open(outputFile, frame.size(), FPS);
|
||||
|
||||
d_writer.write(d_frame);
|
||||
}
|
||||
|
||||
reader.release();
|
||||
d_writer.close();
|
||||
|
||||
reader.open(outputFile);
|
||||
ASSERT_TRUE( reader.isOpened() );
|
||||
|
||||
for (int i = 0; i < 5; ++i)
|
||||
{
|
||||
reader >> frame;
|
||||
ASSERT_FALSE( frame.empty() );
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, VideoWriter, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(std::string("VID00003-20100701-2204.mpg"), std::string("big_buck_bunny.mpg"))));
|
||||
|
||||
#endif // WIN32
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// VideoReader
|
||||
|
||||
PARAM_TEST_CASE(VideoReader, cv::gpu::DeviceInfo, std::string)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
std::string inputFile;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
inputFile = GET_PARAM(1);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + inputFile;
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(VideoReader, Regression)
|
||||
{
|
||||
cv::gpu::VideoReader_GPU reader(inputFile);
|
||||
ASSERT_TRUE( reader.isOpened() );
|
||||
|
||||
cv::gpu::GpuMat frame;
|
||||
|
||||
for (int i = 0; i < 5; ++i)
|
||||
{
|
||||
ASSERT_TRUE( reader.read(frame) );
|
||||
ASSERT_FALSE( frame.empty() );
|
||||
}
|
||||
|
||||
reader.close();
|
||||
ASSERT_FALSE( reader.isOpened() );
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, VideoReader, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(std::string("VID00003-20100701-2204.mpg"))));
|
||||
|
||||
} // namespace
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace {
|
||||
|
||||
//#define DUMP
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// BroxOpticalFlow
|
||||
|
||||
#define BROX_OPTICAL_FLOW_DUMP_FILE "opticalflow/brox_optical_flow.bin"
|
||||
#define BROX_OPTICAL_FLOW_DUMP_FILE_CC20 "opticalflow/brox_optical_flow_cc20.bin"
|
||||
|
||||
struct BroxOpticalFlow : testing::TestWithParam<cv::gpu::DeviceInfo>
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GetParam();
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(BroxOpticalFlow, Regression)
|
||||
{
|
||||
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
|
||||
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
|
||||
|
||||
cv::gpu::GpuMat u;
|
||||
cv::gpu::GpuMat v;
|
||||
brox(loadMat(frame0), loadMat(frame1), u, v);
|
||||
|
||||
#ifndef DUMP
|
||||
std::string fname(cvtest::TS::ptr()->get_data_path());
|
||||
if (devInfo.majorVersion() >= 2)
|
||||
fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20;
|
||||
else
|
||||
fname += BROX_OPTICAL_FLOW_DUMP_FILE;
|
||||
|
||||
std::ifstream f(fname.c_str(), std::ios_base::binary);
|
||||
|
||||
int rows, cols;
|
||||
|
||||
f.read((char*)&rows, sizeof(rows));
|
||||
f.read((char*)&cols, sizeof(cols));
|
||||
|
||||
cv::Mat u_gold(rows, cols, CV_32FC1);
|
||||
|
||||
for (int i = 0; i < u_gold.rows; ++i)
|
||||
f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float));
|
||||
|
||||
cv::Mat v_gold(rows, cols, CV_32FC1);
|
||||
|
||||
for (int i = 0; i < v_gold.rows; ++i)
|
||||
f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float));
|
||||
|
||||
EXPECT_MAT_NEAR(u_gold, u, 0);
|
||||
EXPECT_MAT_NEAR(v_gold, v, 0);
|
||||
#else
|
||||
std::string fname(cvtest::TS::ptr()->get_data_path());
|
||||
if (devInfo.majorVersion() >= 2)
|
||||
fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20;
|
||||
else
|
||||
fname += BROX_OPTICAL_FLOW_DUMP_FILE;
|
||||
|
||||
std::ofstream f(fname.c_str(), std::ios_base::binary);
|
||||
|
||||
f.write((char*)&u.rows, sizeof(u.rows));
|
||||
f.write((char*)&u.cols, sizeof(u.cols));
|
||||
|
||||
cv::Mat h_u(u);
|
||||
cv::Mat h_v(v);
|
||||
|
||||
for (int i = 0; i < u.rows; ++i)
|
||||
f.write(h_u.ptr<char>(i), u.cols * sizeof(float));
|
||||
|
||||
for (int i = 0; i < v.rows; ++i)
|
||||
f.write(h_v.ptr<char>(i), v.cols * sizeof(float));
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, BroxOpticalFlow, ALL_DEVICES);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// GoodFeaturesToTrack
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(MinDistance, double)
|
||||
|
||||
PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
double minDistance;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
minDistance = GET_PARAM(1);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(GoodFeaturesToTrack, Accuracy)
|
||||
{
|
||||
cv::Mat image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
|
||||
int maxCorners = 1000;
|
||||
double qualityLevel = 0.01;
|
||||
|
||||
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
|
||||
|
||||
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat d_pts;
|
||||
detector(loadMat(image), d_pts);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsNotImplemented, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat d_pts;
|
||||
detector(loadMat(image), d_pts);
|
||||
|
||||
std::vector<cv::Point2f> pts(d_pts.cols);
|
||||
cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*)&pts[0]);
|
||||
d_pts.download(pts_mat);
|
||||
|
||||
std::vector<cv::Point2f> pts_gold;
|
||||
cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance);
|
||||
|
||||
ASSERT_EQ(pts_gold.size(), pts.size());
|
||||
|
||||
size_t mistmatch = 0;
|
||||
for (size_t i = 0; i < pts.size(); ++i)
|
||||
{
|
||||
cv::Point2i a = pts_gold[i];
|
||||
cv::Point2i b = pts[i];
|
||||
|
||||
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
|
||||
|
||||
if (!eq)
|
||||
++mistmatch;
|
||||
}
|
||||
|
||||
double bad_ratio = static_cast<double>(mistmatch) / pts.size();
|
||||
|
||||
ASSERT_LE(bad_ratio, 0.01);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, GoodFeaturesToTrack, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(MinDistance(0.0), MinDistance(3.0))));
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// PyrLKOpticalFlow
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(UseGray, bool)
|
||||
|
||||
PARAM_TEST_CASE(PyrLKOpticalFlow, cv::gpu::DeviceInfo, UseGray)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
bool useGray;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
useGray = GET_PARAM(1);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(PyrLKOpticalFlow, Sparse)
|
||||
{
|
||||
cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
cv::Mat gray_frame;
|
||||
if (useGray)
|
||||
gray_frame = frame0;
|
||||
else
|
||||
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
|
||||
|
||||
std::vector<cv::Point2f> pts;
|
||||
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
|
||||
|
||||
cv::gpu::GpuMat d_pts;
|
||||
cv::Mat pts_mat(1, (int)pts.size(), CV_32FC2, (void*)&pts[0]);
|
||||
d_pts.upload(pts_mat);
|
||||
|
||||
cv::gpu::PyrLKOpticalFlow pyrLK;
|
||||
|
||||
cv::gpu::GpuMat d_nextPts;
|
||||
cv::gpu::GpuMat d_status;
|
||||
cv::gpu::GpuMat d_err;
|
||||
pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status, &d_err);
|
||||
|
||||
std::vector<cv::Point2f> nextPts(d_nextPts.cols);
|
||||
cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]);
|
||||
d_nextPts.download(nextPts_mat);
|
||||
|
||||
std::vector<unsigned char> status(d_status.cols);
|
||||
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*)&status[0]);
|
||||
d_status.download(status_mat);
|
||||
|
||||
std::vector<float> err(d_err.cols);
|
||||
cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]);
|
||||
d_err.download(err_mat);
|
||||
|
||||
std::vector<cv::Point2f> nextPts_gold;
|
||||
std::vector<unsigned char> status_gold;
|
||||
std::vector<float> err_gold;
|
||||
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold);
|
||||
|
||||
ASSERT_EQ(nextPts_gold.size(), nextPts.size());
|
||||
ASSERT_EQ(status_gold.size(), status.size());
|
||||
ASSERT_EQ(err_gold.size(), err.size());
|
||||
|
||||
size_t mistmatch = 0;
|
||||
for (size_t i = 0; i < nextPts.size(); ++i)
|
||||
{
|
||||
if (status[i] != status_gold[i])
|
||||
{
|
||||
++mistmatch;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (status[i])
|
||||
{
|
||||
cv::Point2i a = nextPts[i];
|
||||
cv::Point2i b = nextPts_gold[i];
|
||||
|
||||
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
|
||||
float errdiff = std::abs(err[i] - err_gold[i]);
|
||||
|
||||
if (!eq || errdiff > 1e-1)
|
||||
++mistmatch;
|
||||
}
|
||||
}
|
||||
|
||||
double bad_ratio = static_cast<double>(mistmatch) / nextPts.size();
|
||||
|
||||
ASSERT_LE(bad_ratio, 0.01);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(UseGray(true), UseGray(false))));
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// FarnebackOpticalFlow
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(PyrScale, double)
|
||||
IMPLEMENT_PARAM_CLASS(PolyN, int)
|
||||
CV_FLAGS(FarnebackOptFlowFlags, 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN)
|
||||
IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
|
||||
|
||||
PARAM_TEST_CASE(FarnebackOpticalFlow, cv::gpu::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
double pyrScale;
|
||||
int polyN;
|
||||
int flags;
|
||||
bool useInitFlow;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
pyrScale = GET_PARAM(1);
|
||||
polyN = GET_PARAM(2);
|
||||
flags = GET_PARAM(3);
|
||||
useInitFlow = GET_PARAM(4);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(FarnebackOpticalFlow, Accuracy)
|
||||
{
|
||||
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
double polySigma = polyN <= 5 ? 1.1 : 1.5;
|
||||
|
||||
cv::gpu::FarnebackOpticalFlow calc;
|
||||
calc.pyrScale = pyrScale;
|
||||
calc.polyN = polyN;
|
||||
calc.polySigma = polySigma;
|
||||
calc.flags = flags;
|
||||
|
||||
cv::gpu::GpuMat d_flowx, d_flowy;
|
||||
calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
|
||||
|
||||
cv::Mat flow;
|
||||
if (useInitFlow)
|
||||
{
|
||||
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
|
||||
cv::merge(flowxy, 2, flow);
|
||||
}
|
||||
|
||||
if (useInitFlow)
|
||||
{
|
||||
calc.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
|
||||
calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
|
||||
}
|
||||
|
||||
cv::calcOpticalFlowFarneback(
|
||||
frame0, frame1, flow, calc.pyrScale, calc.numLevels, calc.winSize,
|
||||
calc.numIters, calc.polyN, calc.polySigma, calc.flags);
|
||||
|
||||
std::vector<cv::Mat> flowxy;
|
||||
cv::split(flow, flowxy);
|
||||
|
||||
EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1);
|
||||
EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1);
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, FarnebackOpticalFlow, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
|
||||
testing::Values(PolyN(5), PolyN(7)),
|
||||
testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
|
||||
testing::Values(UseInitFlow(false), UseInitFlow(true))));
|
||||
|
||||
struct OpticalFlowNan : public BroxOpticalFlow {};
|
||||
|
||||
TEST_P(OpticalFlowNan, Regression)
|
||||
{
|
||||
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
cv::Mat r_frame0, r_frame1;
|
||||
cv::resize(frame0, r_frame0, cv::Size(1380,1000));
|
||||
|
||||
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
cv::resize(frame1, r_frame1, cv::Size(1380,1000));
|
||||
|
||||
cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
|
||||
5 /*inner_iterations*/, 150 /*outer_iterations*/, 10 /*solver_iterations*/);
|
||||
|
||||
cv::gpu::GpuMat u;
|
||||
cv::gpu::GpuMat v;
|
||||
brox(loadMat(r_frame0), loadMat(r_frame1), u, v);
|
||||
|
||||
cv::Mat h_u, h_v;
|
||||
u.download(h_u);
|
||||
v.download(h_v);
|
||||
EXPECT_TRUE(cv::checkRange(h_u));
|
||||
EXPECT_TRUE(cv::checkRange(h_v));
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowNan, ALL_DEVICES);
|
||||
|
||||
} // namespace
|
||||
|
Reference in New Issue
Block a user