merged 2.4 into trunk

This commit is contained in:
Vadim Pisarevsky
2012-04-30 14:33:52 +00:00
parent 3f1c6d7357
commit d5a0088bbe
194 changed files with 10158 additions and 8225 deletions

View File

@@ -2020,6 +2020,15 @@ public:
};
typedef void (*BinaryFunc)(const uchar* src1, size_t step1,
const uchar* src2, size_t step2,
uchar* dst, size_t step, Size sz,
void*);
CV_EXPORTS BinaryFunc getConvertFunc(int sdepth, int ddepth);
CV_EXPORTS BinaryFunc getConvertScaleFunc(int sdepth, int ddepth);
CV_EXPORTS BinaryFunc getCopyMaskFunc(size_t esz);
//! swaps two matrices
CV_EXPORTS void swap(Mat& a, Mat& b);
@@ -2133,11 +2142,11 @@ CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx);
CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst);
CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst);
CV_EXPORTS_W void hconcat(InputArray src, OutputArray dst);
CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst);
CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst);
CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst);
CV_EXPORTS_W void vconcat(InputArray src, OutputArray dst);
CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst);
//! computes bitwise conjunction of the two arrays (dst = src1 & src2)
CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2,
@@ -2205,6 +2214,9 @@ CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude);
//! checks that each matrix element is within the specified range.
CV_EXPORTS_W bool checkRange(InputArray a, bool quiet=true, CV_OUT Point* pos=0,
double minVal=-DBL_MAX, double maxVal=DBL_MAX);
//! converts NaN's to the given number
CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val=0);
//! implements generalized matrix product algorithm GEMM from BLAS
CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
InputArray src3, double gamma, OutputArray dst, int flags=0);
@@ -4263,7 +4275,7 @@ template<typename _Tp> struct ParamType {};
/*!
Base class for high-level OpenCV algorithms
*/
class CV_EXPORTS Algorithm
class CV_EXPORTS_W Algorithm
{
public:
Algorithm();
@@ -4272,13 +4284,22 @@ public:
template<typename _Tp> typename ParamType<_Tp>::member_type get(const string& name) const;
template<typename _Tp> typename ParamType<_Tp>::member_type get(const char* name) const;
void set(const string& name, int value);
void set(const string& name, double value);
void set(const string& name, bool value);
void set(const string& name, const string& value);
void set(const string& name, const Mat& value);
void set(const string& name, const vector<Mat>& value);
void set(const string& name, const Ptr<Algorithm>& value);
CV_WRAP int getInt(const string& name) const;
CV_WRAP double getDouble(const string& name) const;
CV_WRAP bool getBool(const string& name) const;
CV_WRAP string getString(const string& name) const;
CV_WRAP Mat getMat(const string& name) const;
CV_WRAP vector<Mat> getMatVector(const string& name) const;
CV_WRAP Ptr<Algorithm> getAlgorithm(const string& name) const;
CV_WRAP_AS(setInt) void set(const string& name, int value);
CV_WRAP_AS(setDouble) void set(const string& name, double value);
CV_WRAP_AS(setBool) void set(const string& name, bool value);
CV_WRAP_AS(setString) void set(const string& name, const string& value);
CV_WRAP_AS(setMat) void set(const string& name, const Mat& value);
CV_WRAP_AS(setMatVector) void set(const string& name, const vector<Mat>& value);
CV_WRAP_AS(setAlgorithm) void set(const string& name, const Ptr<Algorithm>& value);
void set(const char* name, int value);
void set(const char* name, double value);
@@ -4288,10 +4309,10 @@ public:
void set(const char* name, const vector<Mat>& value);
void set(const char* name, const Ptr<Algorithm>& value);
string paramHelp(const string& name) const;
CV_WRAP string paramHelp(const string& name) const;
int paramType(const char* name) const;
int paramType(const string& name) const;
void getParams(vector<string>& names) const;
CV_WRAP int paramType(const string& name) const;
CV_WRAP void getParams(CV_OUT vector<string>& names) const;
virtual void write(FileStorage& fs) const;
@@ -4301,8 +4322,8 @@ public:
typedef int (Algorithm::*Getter)() const;
typedef void (Algorithm::*Setter)(int);
static void getList(vector<string>& algorithms);
static Ptr<Algorithm> _create(const string& name);
CV_WRAP static void getList(CV_OUT vector<string>& algorithms);
CV_WRAP static Ptr<Algorithm> _create(const string& name);
template<typename _Tp> static Ptr<_Tp> create(const string& name);
virtual AlgorithmInfo* info() const /* TODO: make it = 0;*/ { return 0; }
@@ -4312,10 +4333,10 @@ public:
class CV_EXPORTS AlgorithmInfo
{
public:
friend class Algorithm;
AlgorithmInfo(const string& name, Algorithm::Constructor create);
~AlgorithmInfo();
void get(const Algorithm* algo, const char* name, int argType, void* value) const;
void set(Algorithm* algo, const char* name, int argType, const void* value) const;
void addParam_(Algorithm& algo, const char* name, int argType,
void* value, bool readOnly,
Algorithm::Getter getter, Algorithm::Setter setter,
@@ -4365,6 +4386,8 @@ public:
const string& help=string());
protected:
AlgorithmInfoData* data;
void set(Algorithm* algo, const char* name, int argType,
const void* value, bool force=false) const;
};

View File

@@ -1,161 +1,161 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CORE_DevMem2D_HPP__
#define __OPENCV_CORE_DevMem2D_HPP__
#ifdef __cplusplus
#ifdef __CUDACC__
#define __CV_GPU_HOST_DEVICE__ __host__ __device__ __forceinline__
#else
#define __CV_GPU_HOST_DEVICE__
#endif
namespace cv
{
namespace gpu
{
// Simple lightweight structures that encapsulates information about an image on device.
// It is intended to pass to nvcc-compiled code. GpuMat depends on headers that nvcc can't compile
template <bool expr> struct StaticAssert;
template <> struct StaticAssert<true> {static __CV_GPU_HOST_DEVICE__ void check(){}};
template<typename T> struct DevPtr
{
typedef T elem_type;
typedef int index_type;
enum { elem_size = sizeof(elem_type) };
T* data;
__CV_GPU_HOST_DEVICE__ DevPtr() : data(0) {}
__CV_GPU_HOST_DEVICE__ DevPtr(T* data_) : data(data_) {}
__CV_GPU_HOST_DEVICE__ size_t elemSize() const { return elem_size; }
__CV_GPU_HOST_DEVICE__ operator T*() { return data; }
__CV_GPU_HOST_DEVICE__ operator const T*() const { return data; }
};
template<typename T> struct PtrSz : public DevPtr<T>
{
__CV_GPU_HOST_DEVICE__ PtrSz() : size(0) {}
__CV_GPU_HOST_DEVICE__ PtrSz(T* data_, size_t size_) : DevPtr<T>(data_), size(size_) {}
size_t size;
};
template<typename T> struct PtrStep : public DevPtr<T>
{
__CV_GPU_HOST_DEVICE__ PtrStep() : step(0) {}
__CV_GPU_HOST_DEVICE__ PtrStep(T* data_, size_t step_) : DevPtr<T>(data_), step(step_) {}
/** \brief stride between two consecutive rows in bytes. Step is stored always and everywhere in bytes!!! */
size_t step;
__CV_GPU_HOST_DEVICE__ T* ptr(int y = 0) { return ( T*)( ( char*)DevPtr<T>::data + y * step); }
__CV_GPU_HOST_DEVICE__ const T* ptr(int y = 0) const { return (const T*)( (const char*)DevPtr<T>::data + y * step); }
__CV_GPU_HOST_DEVICE__ T& operator ()(int y, int x) { return ptr(y)[x]; }
__CV_GPU_HOST_DEVICE__ const T& operator ()(int y, int x) const { return ptr(y)[x]; }
};
template <typename T> struct PtrStepSz : public PtrStep<T>
{
__CV_GPU_HOST_DEVICE__ PtrStepSz() : cols(0), rows(0) {}
__CV_GPU_HOST_DEVICE__ PtrStepSz(int rows_, int cols_, T* data_, size_t step_)
: PtrStep<T>(data_, step_), cols(cols_), rows(rows_) {}
int cols;
int rows;
};
template <typename T> struct DevMem2D_ : public PtrStepSz<T>
{
DevMem2D_() {}
DevMem2D_(int rows_, int cols_, T* data_, size_t step_) : PtrStepSz<T>(rows_, cols_, data_, step_) {}
template <typename U>
explicit DevMem2D_(const DevMem2D_<U>& d) : PtrStepSz<T>(d.rows, d.cols, (T*)d.data, d.step) {}
};
template<typename T> struct PtrElemStep_ : public PtrStep<T>
{
PtrElemStep_(const DevMem2D_<T>& mem) : PtrStep<T>(mem.data, mem.step)
{
StaticAssert<256 % sizeof(T) == 0>::check();
PtrStep<T>::step /= PtrStep<T>::elem_size;
}
__CV_GPU_HOST_DEVICE__ T* ptr(int y = 0) { return PtrStep<T>::data + y * PtrStep<T>::step; }
__CV_GPU_HOST_DEVICE__ const T* ptr(int y = 0) const { return PtrStep<T>::data + y * PtrStep<T>::step; }
__CV_GPU_HOST_DEVICE__ T& operator ()(int y, int x) { return ptr(y)[x]; }
__CV_GPU_HOST_DEVICE__ const T& operator ()(int y, int x) const { return ptr(y)[x]; }
};
template<typename T> struct PtrStep_ : public PtrStep<T>
{
PtrStep_() {}
PtrStep_(const DevMem2D_<T>& mem) : PtrStep<T>(mem.data, mem.step) {}
};
typedef DevMem2D_<unsigned char> DevMem2Db;
typedef DevMem2Db DevMem2D;
typedef DevMem2D_<float> DevMem2Df;
typedef DevMem2D_<int> DevMem2Di;
typedef PtrStep<unsigned char> PtrStepb;
typedef PtrStep<float> PtrStepf;
typedef PtrStep<int> PtrStepi;
typedef PtrElemStep_<unsigned char> PtrElemStep;
typedef PtrElemStep_<float> PtrElemStepf;
typedef PtrElemStep_<int> PtrElemStepi;
}
}
#endif // __cplusplus
#endif /* __OPENCV_GPU_DevMem2D_HPP__ */
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CORE_DevMem2D_HPP__
#define __OPENCV_CORE_DevMem2D_HPP__
#ifdef __cplusplus
#ifdef __CUDACC__
#define __CV_GPU_HOST_DEVICE__ __host__ __device__ __forceinline__
#else
#define __CV_GPU_HOST_DEVICE__
#endif
namespace cv
{
namespace gpu
{
// Simple lightweight structures that encapsulates information about an image on device.
// It is intended to pass to nvcc-compiled code. GpuMat depends on headers that nvcc can't compile
template <bool expr> struct StaticAssert;
template <> struct StaticAssert<true> {static __CV_GPU_HOST_DEVICE__ void check(){}};
template<typename T> struct DevPtr
{
typedef T elem_type;
typedef int index_type;
enum { elem_size = sizeof(elem_type) };
T* data;
__CV_GPU_HOST_DEVICE__ DevPtr() : data(0) {}
__CV_GPU_HOST_DEVICE__ DevPtr(T* data_) : data(data_) {}
__CV_GPU_HOST_DEVICE__ size_t elemSize() const { return elem_size; }
__CV_GPU_HOST_DEVICE__ operator T*() { return data; }
__CV_GPU_HOST_DEVICE__ operator const T*() const { return data; }
};
template<typename T> struct PtrSz : public DevPtr<T>
{
__CV_GPU_HOST_DEVICE__ PtrSz() : size(0) {}
__CV_GPU_HOST_DEVICE__ PtrSz(T* data_, size_t size_) : DevPtr<T>(data_), size(size_) {}
size_t size;
};
template<typename T> struct PtrStep : public DevPtr<T>
{
__CV_GPU_HOST_DEVICE__ PtrStep() : step(0) {}
__CV_GPU_HOST_DEVICE__ PtrStep(T* data_, size_t step_) : DevPtr<T>(data_), step(step_) {}
/** \brief stride between two consecutive rows in bytes. Step is stored always and everywhere in bytes!!! */
size_t step;
__CV_GPU_HOST_DEVICE__ T* ptr(int y = 0) { return ( T*)( ( char*)DevPtr<T>::data + y * step); }
__CV_GPU_HOST_DEVICE__ const T* ptr(int y = 0) const { return (const T*)( (const char*)DevPtr<T>::data + y * step); }
__CV_GPU_HOST_DEVICE__ T& operator ()(int y, int x) { return ptr(y)[x]; }
__CV_GPU_HOST_DEVICE__ const T& operator ()(int y, int x) const { return ptr(y)[x]; }
};
template <typename T> struct PtrStepSz : public PtrStep<T>
{
__CV_GPU_HOST_DEVICE__ PtrStepSz() : cols(0), rows(0) {}
__CV_GPU_HOST_DEVICE__ PtrStepSz(int rows_, int cols_, T* data_, size_t step_)
: PtrStep<T>(data_, step_), cols(cols_), rows(rows_) {}
int cols;
int rows;
};
template <typename T> struct DevMem2D_ : public PtrStepSz<T>
{
DevMem2D_() {}
DevMem2D_(int rows_, int cols_, T* data_, size_t step_) : PtrStepSz<T>(rows_, cols_, data_, step_) {}
template <typename U>
explicit DevMem2D_(const DevMem2D_<U>& d) : PtrStepSz<T>(d.rows, d.cols, (T*)d.data, d.step) {}
};
template<typename T> struct PtrElemStep_ : public PtrStep<T>
{
PtrElemStep_(const DevMem2D_<T>& mem) : PtrStep<T>(mem.data, mem.step)
{
StaticAssert<256 % sizeof(T) == 0>::check();
PtrStep<T>::step /= PtrStep<T>::elem_size;
}
__CV_GPU_HOST_DEVICE__ T* ptr(int y = 0) { return PtrStep<T>::data + y * PtrStep<T>::step; }
__CV_GPU_HOST_DEVICE__ const T* ptr(int y = 0) const { return PtrStep<T>::data + y * PtrStep<T>::step; }
__CV_GPU_HOST_DEVICE__ T& operator ()(int y, int x) { return ptr(y)[x]; }
__CV_GPU_HOST_DEVICE__ const T& operator ()(int y, int x) const { return ptr(y)[x]; }
};
template<typename T> struct PtrStep_ : public PtrStep<T>
{
PtrStep_() {}
PtrStep_(const DevMem2D_<T>& mem) : PtrStep<T>(mem.data, mem.step) {}
};
typedef DevMem2D_<unsigned char> DevMem2Db;
typedef DevMem2Db DevMem2D;
typedef DevMem2D_<float> DevMem2Df;
typedef DevMem2D_<int> DevMem2Di;
typedef PtrStep<unsigned char> PtrStepb;
typedef PtrStep<float> PtrStepf;
typedef PtrStep<int> PtrStepi;
typedef PtrElemStep_<unsigned char> PtrElemStep;
typedef PtrElemStep_<float> PtrElemStepf;
typedef PtrElemStep_<int> PtrElemStepi;
}
}
#endif // __cplusplus
#endif /* __OPENCV_GPU_DevMem2D_HPP__ */

View File

@@ -561,18 +561,28 @@ template<typename _Tp> inline const _Tp& Mat::at(Point pt) const
template<typename _Tp> inline _Tp& Mat::at(int i0)
{
CV_DbgAssert( dims <= 2 && data && (size.p[0] == 1 || size.p[1] == 1) &&
(unsigned)i0 < (unsigned)(size.p[0] + size.p[1] - 1) &&
CV_DbgAssert( dims <= 2 && data &&
(unsigned)i0 < (unsigned)(size.p[0]*size.p[1]) &&
elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
return *(_Tp*)(data + step.p[size.p[0]==1]*i0);
if( isContinuous() || size.p[0] == 1 )
return ((_Tp*)data)[i0];
if( size.p[1] == 1 )
return *(_Tp*)(data + step.p[0]*i0);
int i = i0/cols, j = i0 - i*cols;
return ((_Tp*)(data + step.p[0]*i))[j];
}
template<typename _Tp> inline const _Tp& Mat::at(int i0) const
{
CV_DbgAssert( dims <= 2 && data && (size.p[0] == 1 || size.p[1] == 1) &&
(unsigned)i0 < (unsigned)(size.p[0] + size.p[1] - 1) &&
CV_DbgAssert( dims <= 2 && data &&
(unsigned)i0 < (unsigned)(size.p[0]*size.p[1]) &&
elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
return *(_Tp*)(data + step.p[size.p[0]==1]*i0);
if( isContinuous() || size.p[0] == 1 )
return ((const _Tp*)data)[i0];
if( size.p[1] == 1 )
return *(const _Tp*)(data + step.p[0]*i0);
int i = i0/cols, j = i0 - i*cols;
return ((const _Tp*)(data + step.p[0]*i))[j];
}
template<typename _Tp> inline _Tp& Mat::at(int i0, int i1, int i2)

View File

@@ -52,7 +52,7 @@
#ifdef __cplusplus
/////// exchange-add operation for atomic operations on reference counters ///////
#ifdef __INTEL_COMPILER // atomic increment on the Intel(tm) compiler
#if defined __INTEL_COMPILER && !(defined WIN32 || defined _WIN32) // atomic increment on the linux version of the Intel(tm) compiler
#define CV_XADD(addr,delta) _InterlockedExchangeAdd(const_cast<void*>(reinterpret_cast<volatile void*>(addr)), delta)
#elif defined __GNUC__
@@ -638,6 +638,14 @@ Matx<_Tp, m, n> operator * (const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b)
}
template<typename _Tp, int m, int n> static inline
Vec<_Tp, m> operator * (const Matx<_Tp, m, n>& a, const Vec<_Tp, n>& b)
{
Matx<_Tp, m, 1> c(a, b, Matx_MatMulOp());
return reinterpret_cast<const Vec<_Tp, m>&>(c);
}
template<typename _Tp> static inline
Point_<_Tp> operator * (const Matx<_Tp, 2, 2>& a, const Point_<_Tp>& b)
{
@@ -668,14 +676,23 @@ Matx<_Tp, 4, 1> operator * (const Matx<_Tp, 4, 4>& a, const Point3_<_Tp>& b)
return a*Matx<_Tp, 4, 1>(b.x, b.y, b.z, 1);
}
template<typename _Tp> static inline
Scalar operator * (const Matx<_Tp, 4, 4>& a, const Scalar& b)
{
return Scalar(a*Matx<_Tp, 4, 1>(b[0],b[1],b[2],b[3]));
}
Matx<double, 4, 1> c(Matx<double, 4, 4>(a), b, Matx_MatMulOp());
return reinterpret_cast<const Scalar&>(c);
}
static inline
Scalar operator * (const Matx<double, 4, 4>& a, const Scalar& b)
{
Matx<double, 4, 1> c(a, b, Matx_MatMulOp());
return reinterpret_cast<const Scalar&>(c);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n> Matx<_Tp, m, n>::mul(const Matx<_Tp, m, n>& a) const
{

View File

@@ -317,16 +317,19 @@ CV_INLINE int cvRound( double value )
#endif
}
#if defined __SSE2__ || (defined _M_IX86_FP && 2 == _M_IX86_FP)
#include "emmintrin.h"
#endif
CV_INLINE int cvFloor( double value )
{
#ifdef __GNUC__
int i = (int)value;
return i - (i > value);
#elif defined _MSC_VER && defined _M_X64
#if defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)
__m128d t = _mm_set_sd( value );
int i = _mm_cvtsd_si32(t);
return i - _mm_movemask_pd(_mm_cmplt_sd(t, _mm_cvtsi32_sd(t,i)));
#elif defined __GNUC__
int i = (int)value;
return i - (i > value);
#else
int i = cvRound(value);
Cv32suf diff;
@@ -338,13 +341,13 @@ CV_INLINE int cvFloor( double value )
CV_INLINE int cvCeil( double value )
{
#ifdef __GNUC__
int i = (int)value;
return i + (i < value);
#elif defined _MSC_VER && defined _M_X64
#if defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)
__m128d t = _mm_set_sd( value );
int i = _mm_cvtsd_si32(t);
return i + _mm_movemask_pd(_mm_cmplt_sd(_mm_cvtsi32_sd(t,i), t));
#elif defined __GNUC__
int i = (int)value;
return i + (i < value);
#else
int i = cvRound(value);
Cv32suf diff;