moved mulSpectrums, dft and convolve to gpuarithm
This commit is contained in:
@@ -3607,6 +3607,278 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Normalize, testing::Combine(
|
||||
testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2), NormCode(cv::NORM_INF), NormCode(cv::NORM_MINMAX)),
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// MulSpectrums
|
||||
|
||||
CV_FLAGS(DftFlags, 0, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT)
|
||||
|
||||
PARAM_TEST_CASE(MulSpectrums, cv::gpu::DeviceInfo, cv::Size, DftFlags)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
cv::Size size;
|
||||
int flag;
|
||||
|
||||
cv::Mat a, b;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
size = GET_PARAM(1);
|
||||
flag = GET_PARAM(2);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
a = randomMat(size, CV_32FC2);
|
||||
b = randomMat(size, CV_32FC2);
|
||||
}
|
||||
};
|
||||
|
||||
GPU_TEST_P(MulSpectrums, Simple)
|
||||
{
|
||||
cv::gpu::GpuMat c;
|
||||
cv::gpu::mulSpectrums(loadMat(a), loadMat(b), c, flag, false);
|
||||
|
||||
cv::Mat c_gold;
|
||||
cv::mulSpectrums(a, b, c_gold, flag, false);
|
||||
|
||||
EXPECT_MAT_NEAR(c_gold, c, 1e-2);
|
||||
}
|
||||
|
||||
GPU_TEST_P(MulSpectrums, Scaled)
|
||||
{
|
||||
float scale = 1.f / size.area();
|
||||
|
||||
cv::gpu::GpuMat c;
|
||||
cv::gpu::mulAndScaleSpectrums(loadMat(a), loadMat(b), c, flag, scale, false);
|
||||
|
||||
cv::Mat c_gold;
|
||||
cv::mulSpectrums(a, b, c_gold, flag, false);
|
||||
c_gold.convertTo(c_gold, c_gold.type(), scale);
|
||||
|
||||
EXPECT_MAT_NEAR(c_gold, c, 1e-2);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MulSpectrums, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
testing::Values(DftFlags(0), DftFlags(cv::DFT_ROWS))));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Dft
|
||||
|
||||
struct Dft : testing::TestWithParam<cv::gpu::DeviceInfo>
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GetParam();
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
namespace
|
||||
{
|
||||
void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace)
|
||||
{
|
||||
SCOPED_TRACE(hint);
|
||||
|
||||
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0);
|
||||
|
||||
cv::Mat b_gold;
|
||||
cv::dft(a, b_gold, flags);
|
||||
|
||||
cv::gpu::GpuMat d_b;
|
||||
cv::gpu::GpuMat d_b_data;
|
||||
if (inplace)
|
||||
{
|
||||
d_b_data.create(1, a.size().area(), CV_32FC2);
|
||||
d_b = cv::gpu::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
|
||||
}
|
||||
cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), flags);
|
||||
|
||||
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
|
||||
ASSERT_EQ(CV_32F, d_b.depth());
|
||||
ASSERT_EQ(2, d_b.channels());
|
||||
EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4);
|
||||
}
|
||||
}
|
||||
|
||||
GPU_TEST_P(Dft, C2C)
|
||||
{
|
||||
int cols = randomInt(2, 100);
|
||||
int rows = randomInt(2, 100);
|
||||
|
||||
for (int i = 0; i < 2; ++i)
|
||||
{
|
||||
bool inplace = i != 0;
|
||||
|
||||
testC2C("no flags", cols, rows, 0, inplace);
|
||||
testC2C("no flags 0 1", cols, rows + 1, 0, inplace);
|
||||
testC2C("no flags 1 0", cols, rows + 1, 0, inplace);
|
||||
testC2C("no flags 1 1", cols + 1, rows, 0, inplace);
|
||||
testC2C("DFT_INVERSE", cols, rows, cv::DFT_INVERSE, inplace);
|
||||
testC2C("DFT_ROWS", cols, rows, cv::DFT_ROWS, inplace);
|
||||
testC2C("single col", 1, rows, 0, inplace);
|
||||
testC2C("single row", cols, 1, 0, inplace);
|
||||
testC2C("single col inversed", 1, rows, cv::DFT_INVERSE, inplace);
|
||||
testC2C("single row inversed", cols, 1, cv::DFT_INVERSE, inplace);
|
||||
testC2C("single row DFT_ROWS", cols, 1, cv::DFT_ROWS, inplace);
|
||||
testC2C("size 1 2", 1, 2, 0, inplace);
|
||||
testC2C("size 2 1", 2, 1, 0, inplace);
|
||||
}
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
|
||||
{
|
||||
SCOPED_TRACE(hint);
|
||||
|
||||
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC1, 0.0, 10.0);
|
||||
|
||||
cv::gpu::GpuMat d_b, d_c;
|
||||
cv::gpu::GpuMat d_b_data, d_c_data;
|
||||
if (inplace)
|
||||
{
|
||||
if (a.cols == 1)
|
||||
{
|
||||
d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
|
||||
d_b = cv::gpu::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
|
||||
}
|
||||
else
|
||||
{
|
||||
d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
|
||||
d_b = cv::gpu::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
|
||||
}
|
||||
d_c_data.create(1, a.size().area(), CV_32F);
|
||||
d_c = cv::gpu::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
|
||||
}
|
||||
|
||||
cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), 0);
|
||||
cv::gpu::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
|
||||
|
||||
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
|
||||
EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
|
||||
ASSERT_EQ(CV_32F, d_c.depth());
|
||||
ASSERT_EQ(1, d_c.channels());
|
||||
|
||||
cv::Mat c(d_c);
|
||||
EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5);
|
||||
}
|
||||
}
|
||||
|
||||
GPU_TEST_P(Dft, R2CThenC2R)
|
||||
{
|
||||
int cols = randomInt(2, 100);
|
||||
int rows = randomInt(2, 100);
|
||||
|
||||
testR2CThenC2R("sanity", cols, rows, false);
|
||||
testR2CThenC2R("sanity 0 1", cols, rows + 1, false);
|
||||
testR2CThenC2R("sanity 1 0", cols + 1, rows, false);
|
||||
testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, false);
|
||||
testR2CThenC2R("single col", 1, rows, false);
|
||||
testR2CThenC2R("single col 1", 1, rows + 1, false);
|
||||
testR2CThenC2R("single row", cols, 1, false);
|
||||
testR2CThenC2R("single row 1", cols + 1, 1, false);
|
||||
|
||||
testR2CThenC2R("sanity", cols, rows, true);
|
||||
testR2CThenC2R("sanity 0 1", cols, rows + 1, true);
|
||||
testR2CThenC2R("sanity 1 0", cols + 1, rows, true);
|
||||
testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, true);
|
||||
testR2CThenC2R("single row", cols, 1, true);
|
||||
testR2CThenC2R("single row 1", cols + 1, 1, true);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Dft, ALL_DEVICES);
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Convolve
|
||||
|
||||
namespace
|
||||
{
|
||||
void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
|
||||
{
|
||||
// reallocate the output array if needed
|
||||
C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
|
||||
cv::Size dftSize;
|
||||
|
||||
// compute the size of DFT transform
|
||||
dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
|
||||
dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
|
||||
|
||||
// allocate temporary buffers and initialize them with 0s
|
||||
cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
|
||||
cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
|
||||
|
||||
// copy A and B to the top-left corners of tempA and tempB, respectively
|
||||
cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
|
||||
A.copyTo(roiA);
|
||||
cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
|
||||
B.copyTo(roiB);
|
||||
|
||||
// now transform the padded A & B in-place;
|
||||
// use "nonzeroRows" hint for faster processing
|
||||
cv::dft(tempA, tempA, 0, A.rows);
|
||||
cv::dft(tempB, tempB, 0, B.rows);
|
||||
|
||||
// multiply the spectrums;
|
||||
// the function handles packed spectrum representations well
|
||||
cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
|
||||
|
||||
// transform the product back from the frequency domain.
|
||||
// Even though all the result rows will be non-zero,
|
||||
// you need only the first C.rows of them, and thus you
|
||||
// pass nonzeroRows == C.rows
|
||||
cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
|
||||
|
||||
// now copy the result back to C.
|
||||
tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
|
||||
}
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(KSize, int)
|
||||
IMPLEMENT_PARAM_CLASS(Ccorr, bool)
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, cv::Size, KSize, Ccorr)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
cv::Size size;
|
||||
int ksize;
|
||||
bool ccorr;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
size = GET_PARAM(1);
|
||||
ksize = GET_PARAM(2);
|
||||
ccorr = GET_PARAM(3);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
GPU_TEST_P(Convolve, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0);
|
||||
cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0);
|
||||
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::convolve(loadMat(src), loadMat(kernel), dst, ccorr);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
convolveDFT(src, kernel, dst_gold, ccorr);
|
||||
|
||||
EXPECT_MAT_NEAR(dst, dst_gold, 1e-1);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Convolve, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
testing::Values(KSize(3), KSize(7), KSize(11), KSize(17), KSize(19), KSize(23), KSize(45)),
|
||||
testing::Values(Ccorr(false), Ccorr(true))));
|
||||
|
||||
#ifdef HAVE_OPENCV_IMGPROC
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
Reference in New Issue
Block a user