Deleted functions makeTrainData() and makeTestData() in test_svmsgd.cpp.
Added function makeData() in test_svmsgd.cpp.
This commit is contained in:
@@ -1626,10 +1626,10 @@ public:
|
||||
* stepDecreasingPower = 1;
|
||||
* termCrit.maxCount = 100000;
|
||||
* termCrit.epsilon = 0.00001;
|
||||
* @param svmsgdType is the type of SVMSGD classifier. Legal values are SvmsgdType::SGD and SvmsgdType::ASGD.
|
||||
* Recommended value is SvmsgdType::ASGD (by default).
|
||||
* @param marginType is the type of margin constraint. Legal values are MarginType::SOFT_MARGIN and MarginType::HARD_MARGIN.
|
||||
* Default value is MarginType::SOFT_MARGIN.
|
||||
* @param svmsgdType is the type of SVMSGD classifier. Legal values are SVMSGD::SvmsgdType::SGD and SVMSGD::SvmsgdType::ASGD.
|
||||
* Recommended value is SVMSGD::SvmsgdType::ASGD (by default).
|
||||
* @param marginType is the type of margin constraint. Legal values are SVMSGD::MarginType::SOFT_MARGIN and SVMSGD::MarginType::HARD_MARGIN.
|
||||
* Default value is SVMSGD::MarginType::SOFT_MARGIN.
|
||||
*/
|
||||
CV_WRAP virtual void setOptimalParameters(int svmsgdType = SVMSGD::ASGD, int marginType = SVMSGD::SOFT_MARGIN) = 0;
|
||||
|
||||
|
||||
@@ -142,6 +142,7 @@ void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &average, float &multiplier)
|
||||
int samplesCount = samples.rows;
|
||||
|
||||
average = Mat(1, featuresCount, samples.type());
|
||||
CV_Assert(average.type() == CV_32FC1);
|
||||
for (int featureIndex = 0; featureIndex < featuresCount; featureIndex++)
|
||||
{
|
||||
average.at<float>(featureIndex) = static_cast<float>(mean(samples.col(featureIndex))[0]);
|
||||
@@ -170,11 +171,11 @@ void SVMSGDImpl::makeExtendedTrainSamples(const Mat &trainSamples, Mat &extended
|
||||
cv::hconcat(normalizedTrainSamples, onesCol, extendedTrainSamples);
|
||||
}
|
||||
|
||||
void SVMSGDImpl::updateWeights(InputArray _sample, bool firstClass, float stepSize, Mat& weights)
|
||||
void SVMSGDImpl::updateWeights(InputArray _sample, bool positive, float stepSize, Mat& weights)
|
||||
{
|
||||
Mat sample = _sample.getMat();
|
||||
|
||||
int response = firstClass ? 1 : -1; // ensure that trainResponses are -1 or 1
|
||||
int response = positive ? 1 : -1; // ensure that trainResponses are -1 or 1
|
||||
|
||||
if ( sample.dot(weights) * response > 1)
|
||||
{
|
||||
@@ -197,6 +198,7 @@ float SVMSGDImpl::calcShift(InputArray _samples, InputArray _responses) const
|
||||
|
||||
Mat trainResponses = _responses.getMat();
|
||||
|
||||
CV_Assert(trainResponses.type() == CV_32FC1);
|
||||
for (int samplesIndex = 0; samplesIndex < trainSamplesCount; samplesIndex++)
|
||||
{
|
||||
Mat currentSample = trainSamples.row(samplesIndex);
|
||||
@@ -261,7 +263,7 @@ bool SVMSGDImpl::train(const Ptr<TrainData>& data, int)
|
||||
|
||||
RNG rng(0);
|
||||
|
||||
CV_Assert (params.termCrit.type & TermCriteria::COUNT || params.termCrit.type & TermCriteria::EPS);
|
||||
CV_Assert ((params.termCrit.type & TermCriteria::COUNT || params.termCrit.type & TermCriteria::EPS) && (trainResponses.type() == CV_32FC1));
|
||||
int maxCount = (params.termCrit.type & TermCriteria::COUNT) ? params.termCrit.maxCount : INT_MAX;
|
||||
double epsilon = (params.termCrit.type & TermCriteria::EPS) ? params.termCrit.epsilon : 0;
|
||||
|
||||
@@ -300,7 +302,7 @@ bool SVMSGDImpl::train(const Ptr<TrainData>& data, int)
|
||||
weights_ = extendedWeights(roi);
|
||||
weights_ *= multiplier;
|
||||
|
||||
CV_Assert(params.marginType == SOFT_MARGIN || params.marginType == HARD_MARGIN);
|
||||
CV_Assert((params.marginType == SOFT_MARGIN || params.marginType == HARD_MARGIN) && (extendedWeights.type() == CV_32FC1));
|
||||
|
||||
if (params.marginType == SOFT_MARGIN)
|
||||
{
|
||||
@@ -332,7 +334,7 @@ float SVMSGDImpl::predict( InputArray _samples, OutputArray _results, int ) cons
|
||||
else
|
||||
{
|
||||
CV_Assert( nSamples == 1 );
|
||||
results = Mat(1, 1, CV_32F, &result);
|
||||
results = Mat(1, 1, CV_32FC1, &result);
|
||||
}
|
||||
|
||||
for (int sampleIndex = 0; sampleIndex < nSamples; sampleIndex++)
|
||||
|
||||
@@ -62,8 +62,7 @@ public:
|
||||
private:
|
||||
virtual void run( int start_from );
|
||||
static float decisionFunction(const Mat &sample, const Mat &weights, float shift);
|
||||
void makeTrainData(Mat weights, float shift);
|
||||
void makeTestData(Mat weights, float shift);
|
||||
void makeData(int samplesCount, Mat weights, float shift, RNG rng, Mat &samples, Mat & responses);
|
||||
void generateSameBorders(int featureCount);
|
||||
void generateDifferentBorders(int featureCount);
|
||||
|
||||
@@ -108,46 +107,28 @@ void CV_SVMSGDTrainTest::generateDifferentBorders(int featureCount)
|
||||
}
|
||||
}
|
||||
|
||||
void CV_SVMSGDTrainTest::makeTrainData(Mat weights, float shift)
|
||||
float CV_SVMSGDTrainTest::decisionFunction(const Mat &sample, const Mat &weights, float shift)
|
||||
{
|
||||
return static_cast<float>(sample.dot(weights)) + shift;
|
||||
}
|
||||
|
||||
void CV_SVMSGDTrainTest::makeData(int samplesCount, Mat weights, float shift, RNG rng, Mat &samples, Mat & responses)
|
||||
{
|
||||
int datasize = 100000;
|
||||
int featureCount = weights.cols;
|
||||
RNG rng(0);
|
||||
|
||||
cv::Mat samples = cv::Mat::zeros(datasize, featureCount, CV_32FC1);
|
||||
|
||||
samples.create(samplesCount, featureCount, CV_32FC1);
|
||||
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
|
||||
{
|
||||
rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second);
|
||||
}
|
||||
|
||||
cv::Mat responses = cv::Mat::zeros(datasize, 1, CV_32FC1);
|
||||
for (int sampleIndex = 0; sampleIndex < datasize; sampleIndex++)
|
||||
responses.create(samplesCount, 1, CV_32FC1);
|
||||
|
||||
for (int i = 0 ; i < samplesCount; i++)
|
||||
{
|
||||
responses.at<float>(sampleIndex) = decisionFunction(samples.row(sampleIndex), weights, shift) > 0 ? 1.f : -1.f;
|
||||
responses.at<float>(i) = decisionFunction(samples.row(i), weights, shift) > 0 ? 1.f : -1.f;
|
||||
}
|
||||
|
||||
data = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
|
||||
}
|
||||
|
||||
void CV_SVMSGDTrainTest::makeTestData(Mat weights, float shift)
|
||||
{
|
||||
int testSamplesCount = 100000;
|
||||
int featureCount = weights.cols;
|
||||
cv::RNG rng(42);
|
||||
|
||||
testSamples.create(testSamplesCount, featureCount, CV_32FC1);
|
||||
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
|
||||
{
|
||||
rng.fill(testSamples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second);
|
||||
}
|
||||
|
||||
testResponses.create(testSamplesCount, 1, CV_32FC1);
|
||||
|
||||
for (int i = 0 ; i < testSamplesCount; i++)
|
||||
{
|
||||
testResponses.at<float>(i) = decisionFunction(testSamples.row(i), weights, shift) > 0 ? 1.f : -1.f;
|
||||
}
|
||||
}
|
||||
|
||||
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(const Mat &weights, float shift, TrainDataType _type, double _precision)
|
||||
@@ -169,13 +150,16 @@ CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(const Mat &weights, float shift, TrainDat
|
||||
CV_Error(CV_StsBadArg, "Unknown train data type");
|
||||
}
|
||||
|
||||
makeTrainData(weights, shift);
|
||||
makeTestData(weights, shift);
|
||||
}
|
||||
RNG rng(0);
|
||||
|
||||
float CV_SVMSGDTrainTest::decisionFunction(const Mat &sample, const Mat &weights, float shift)
|
||||
{
|
||||
return static_cast<float>(sample.dot(weights)) + shift;
|
||||
Mat trainSamples;
|
||||
Mat trainResponses;
|
||||
int trainSamplesCount = 10000;
|
||||
makeData(trainSamplesCount, weights, shift, rng, trainSamples, trainResponses);
|
||||
data = TrainData::create(trainSamples, cv::ml::ROW_SAMPLE, trainResponses);
|
||||
|
||||
int testSamplesCount = 100000;
|
||||
makeData(testSamplesCount, weights, shift, rng, testSamples, testResponses);
|
||||
}
|
||||
|
||||
void CV_SVMSGDTrainTest::run( int /*start_from*/ )
|
||||
@@ -205,7 +189,6 @@ void CV_SVMSGDTrainTest::run( int /*start_from*/ )
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void makeWeightsAndShift(int featureCount, Mat &weights, float &shift)
|
||||
{
|
||||
weights.create(1, featureCount, CV_32FC1);
|
||||
@@ -253,7 +236,7 @@ TEST(ML_SVMSGD, trainSameScale100)
|
||||
float shift = 0;
|
||||
makeWeightsAndShift(featureCount, weights, shift);
|
||||
|
||||
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE);
|
||||
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE, 0.02);
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user