Deleted functions makeTrainData() and makeTestData() in test_svmsgd.cpp.

Added function makeData() in test_svmsgd.cpp.
This commit is contained in:
Marina Noskova
2016-02-25 16:57:03 +03:00
parent 74c87a26a5
commit d484893839
3 changed files with 33 additions and 48 deletions

View File

@@ -62,8 +62,7 @@ public:
private:
virtual void run( int start_from );
static float decisionFunction(const Mat &sample, const Mat &weights, float shift);
void makeTrainData(Mat weights, float shift);
void makeTestData(Mat weights, float shift);
void makeData(int samplesCount, Mat weights, float shift, RNG rng, Mat &samples, Mat & responses);
void generateSameBorders(int featureCount);
void generateDifferentBorders(int featureCount);
@@ -108,46 +107,28 @@ void CV_SVMSGDTrainTest::generateDifferentBorders(int featureCount)
}
}
void CV_SVMSGDTrainTest::makeTrainData(Mat weights, float shift)
float CV_SVMSGDTrainTest::decisionFunction(const Mat &sample, const Mat &weights, float shift)
{
return static_cast<float>(sample.dot(weights)) + shift;
}
void CV_SVMSGDTrainTest::makeData(int samplesCount, Mat weights, float shift, RNG rng, Mat &samples, Mat & responses)
{
int datasize = 100000;
int featureCount = weights.cols;
RNG rng(0);
cv::Mat samples = cv::Mat::zeros(datasize, featureCount, CV_32FC1);
samples.create(samplesCount, featureCount, CV_32FC1);
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
{
rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second);
}
cv::Mat responses = cv::Mat::zeros(datasize, 1, CV_32FC1);
for (int sampleIndex = 0; sampleIndex < datasize; sampleIndex++)
responses.create(samplesCount, 1, CV_32FC1);
for (int i = 0 ; i < samplesCount; i++)
{
responses.at<float>(sampleIndex) = decisionFunction(samples.row(sampleIndex), weights, shift) > 0 ? 1.f : -1.f;
responses.at<float>(i) = decisionFunction(samples.row(i), weights, shift) > 0 ? 1.f : -1.f;
}
data = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
}
void CV_SVMSGDTrainTest::makeTestData(Mat weights, float shift)
{
int testSamplesCount = 100000;
int featureCount = weights.cols;
cv::RNG rng(42);
testSamples.create(testSamplesCount, featureCount, CV_32FC1);
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
{
rng.fill(testSamples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second);
}
testResponses.create(testSamplesCount, 1, CV_32FC1);
for (int i = 0 ; i < testSamplesCount; i++)
{
testResponses.at<float>(i) = decisionFunction(testSamples.row(i), weights, shift) > 0 ? 1.f : -1.f;
}
}
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(const Mat &weights, float shift, TrainDataType _type, double _precision)
@@ -169,13 +150,16 @@ CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(const Mat &weights, float shift, TrainDat
CV_Error(CV_StsBadArg, "Unknown train data type");
}
makeTrainData(weights, shift);
makeTestData(weights, shift);
}
RNG rng(0);
float CV_SVMSGDTrainTest::decisionFunction(const Mat &sample, const Mat &weights, float shift)
{
return static_cast<float>(sample.dot(weights)) + shift;
Mat trainSamples;
Mat trainResponses;
int trainSamplesCount = 10000;
makeData(trainSamplesCount, weights, shift, rng, trainSamples, trainResponses);
data = TrainData::create(trainSamples, cv::ml::ROW_SAMPLE, trainResponses);
int testSamplesCount = 100000;
makeData(testSamplesCount, weights, shift, rng, testSamples, testResponses);
}
void CV_SVMSGDTrainTest::run( int /*start_from*/ )
@@ -205,7 +189,6 @@ void CV_SVMSGDTrainTest::run( int /*start_from*/ )
}
}
void makeWeightsAndShift(int featureCount, Mat &weights, float &shift)
{
weights.create(1, featureCount, CV_32FC1);
@@ -253,7 +236,7 @@ TEST(ML_SVMSGD, trainSameScale100)
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE, 0.02);
test.safe_run();
}