Move cv::Matx and cv::Vec to separate header

This commit is contained in:
Andrey Kamaev
2013-03-27 15:54:04 +04:00
parent 5e7ab8baf3
commit d2192c0759
6 changed files with 556 additions and 381 deletions

View File

@@ -53,6 +53,9 @@
#ifdef __cplusplus
#include "opencv2/core/cvstd.hpp"
#include "opencv2/core/base.hpp"
#include "opencv2/core/traits.hpp"
#include "opencv2/core/matx.hpp"
#include "opencv2/core/types.hpp"
#ifndef SKIP_INCLUDES
@@ -72,45 +75,13 @@
*/
namespace cv {
template<typename _Tp> class CV_EXPORTS Size_;
template<typename _Tp> class CV_EXPORTS Point_;
template<typename _Tp> class CV_EXPORTS Rect_;
template<typename _Tp, int cn> class CV_EXPORTS Vec;
template<typename _Tp, int m, int n> class CV_EXPORTS Matx;
class Mat;
class SparseMat;
typedef Mat MatND;
namespace ogl {
class Buffer;
class Texture2D;
class Arrays;
}
namespace gpu {
class GpuMat;
}
class CV_EXPORTS MatExpr;
class CV_EXPORTS MatOp_Base;
class CV_EXPORTS MatArg;
class CV_EXPORTS MatConstIterator;
template<typename _Tp> class CV_EXPORTS Mat_;
template<typename _Tp> class CV_EXPORTS MatIterator_;
template<typename _Tp> class CV_EXPORTS MatConstIterator_;
template<typename _Tp> class CV_EXPORTS MatCommaInitializer_;
// matrix decomposition types
enum { DECOMP_LU=0, DECOMP_SVD=1, DECOMP_EIG=2, DECOMP_CHOLESKY=3, DECOMP_QR=4, DECOMP_NORMAL=16 };
enum { NORM_INF=1, NORM_L1=2, NORM_L2=4, NORM_L2SQR=5, NORM_HAMMING=6, NORM_HAMMING2=7, NORM_TYPE_MASK=7, NORM_RELATIVE=8, NORM_MINMAX=32 };
enum { CMP_EQ=0, CMP_GT=1, CMP_GE=2, CMP_LT=3, CMP_LE=4, CMP_NE=5 };
enum { GEMM_1_T=1, GEMM_2_T=2, GEMM_3_T=4 };
enum { DFT_INVERSE=1, DFT_SCALE=2, DFT_ROWS=4, DFT_COMPLEX_OUTPUT=16, DFT_REAL_OUTPUT=32,
DCT_INVERSE = DFT_INVERSE, DCT_ROWS=DFT_ROWS };
/*!
The standard OpenCV exception class.
Instances of the class are thrown by various functions and methods in the case of critical errors.
@@ -239,298 +210,9 @@ public:
void destroy(pointer p) { p->~_Tp(); }
};
/////////////////////// Vec (used as element of multi-channel images /////////////////////
////////////////////////////// Small Matrix ///////////////////////////
/*!
A short numerical vector.
This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements)
on which you can perform basic arithmetical operations, access individual elements using [] operator etc.
The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc.,
which elements are dynamically allocated in the heap.
The template takes 2 parameters:
-# _Tp element type
-# cn the number of elements
In addition to the universal notation like Vec<float, 3>, you can use shorter aliases
for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>.
*/
struct CV_EXPORTS Matx_AddOp {};
struct CV_EXPORTS Matx_SubOp {};
struct CV_EXPORTS Matx_ScaleOp {};
struct CV_EXPORTS Matx_MulOp {};
struct CV_EXPORTS Matx_MatMulOp {};
struct CV_EXPORTS Matx_TOp {};
template<typename _Tp, int m, int n> class CV_EXPORTS Matx
{
public:
typedef _Tp value_type;
typedef Matx<_Tp, (m < n ? m : n), 1> diag_type;
typedef Matx<_Tp, m, n> mat_type;
enum { depth = DataDepth<_Tp>::value, rows = m, cols = n, channels = rows*cols,
type = CV_MAKETYPE(depth, channels) };
//! default constructor
Matx();
Matx(_Tp v0); //!< 1x1 matrix
Matx(_Tp v0, _Tp v1); //!< 1x2 or 2x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2); //!< 1x3 or 3x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 1x4, 2x2 or 4x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 1x5 or 5x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 1x6, 2x3, 3x2 or 6x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 1x7 or 7x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 1x8, 2x4, 4x2 or 8x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 1x9, 3x3 or 9x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 1x10, 2x5 or 5x2 or 10x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3,
_Tp v4, _Tp v5, _Tp v6, _Tp v7,
_Tp v8, _Tp v9, _Tp v10, _Tp v11); //!< 1x12, 2x6, 3x4, 4x3, 6x2 or 12x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3,
_Tp v4, _Tp v5, _Tp v6, _Tp v7,
_Tp v8, _Tp v9, _Tp v10, _Tp v11,
_Tp v12, _Tp v13, _Tp v14, _Tp v15); //!< 1x16, 4x4 or 16x1 matrix
explicit Matx(const _Tp* vals); //!< initialize from a plain array
static Matx all(_Tp alpha);
static Matx zeros();
static Matx ones();
static Matx eye();
static Matx diag(const diag_type& d);
static Matx randu(_Tp a, _Tp b);
static Matx randn(_Tp a, _Tp b);
//! dot product computed with the default precision
_Tp dot(const Matx<_Tp, m, n>& v) const;
//! dot product computed in double-precision arithmetics
double ddot(const Matx<_Tp, m, n>& v) const;
//! convertion to another data type
template<typename T2> operator Matx<T2, m, n>() const;
//! change the matrix shape
template<int m1, int n1> Matx<_Tp, m1, n1> reshape() const;
//! extract part of the matrix
template<int m1, int n1> Matx<_Tp, m1, n1> get_minor(int i, int j) const;
//! extract the matrix row
Matx<_Tp, 1, n> row(int i) const;
//! extract the matrix column
Matx<_Tp, m, 1> col(int i) const;
//! extract the matrix diagonal
diag_type diag() const;
//! transpose the matrix
Matx<_Tp, n, m> t() const;
//! invert matrix the matrix
Matx<_Tp, n, m> inv(int method=DECOMP_LU) const;
//! solve linear system
template<int l> Matx<_Tp, n, l> solve(const Matx<_Tp, m, l>& rhs, int flags=DECOMP_LU) const;
Vec<_Tp, n> solve(const Vec<_Tp, m>& rhs, int method) const;
//! multiply two matrices element-wise
Matx<_Tp, m, n> mul(const Matx<_Tp, m, n>& a) const;
//! element access
const _Tp& operator ()(int i, int j) const;
_Tp& operator ()(int i, int j);
//! 1D element access
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp);
template<typename _T2> Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp);
template<int l> Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp);
Matx(const Matx<_Tp, n, m>& a, Matx_TOp);
_Tp val[m*n]; //< matrix elements
};
typedef Matx<float, 1, 2> Matx12f;
typedef Matx<double, 1, 2> Matx12d;
typedef Matx<float, 1, 3> Matx13f;
typedef Matx<double, 1, 3> Matx13d;
typedef Matx<float, 1, 4> Matx14f;
typedef Matx<double, 1, 4> Matx14d;
typedef Matx<float, 1, 6> Matx16f;
typedef Matx<double, 1, 6> Matx16d;
typedef Matx<float, 2, 1> Matx21f;
typedef Matx<double, 2, 1> Matx21d;
typedef Matx<float, 3, 1> Matx31f;
typedef Matx<double, 3, 1> Matx31d;
typedef Matx<float, 4, 1> Matx41f;
typedef Matx<double, 4, 1> Matx41d;
typedef Matx<float, 6, 1> Matx61f;
typedef Matx<double, 6, 1> Matx61d;
typedef Matx<float, 2, 2> Matx22f;
typedef Matx<double, 2, 2> Matx22d;
typedef Matx<float, 2, 3> Matx23f;
typedef Matx<double, 2, 3> Matx23d;
typedef Matx<float, 3, 2> Matx32f;
typedef Matx<double, 3, 2> Matx32d;
typedef Matx<float, 3, 3> Matx33f;
typedef Matx<double, 3, 3> Matx33d;
typedef Matx<float, 3, 4> Matx34f;
typedef Matx<double, 3, 4> Matx34d;
typedef Matx<float, 4, 3> Matx43f;
typedef Matx<double, 4, 3> Matx43d;
typedef Matx<float, 4, 4> Matx44f;
typedef Matx<double, 4, 4> Matx44d;
typedef Matx<float, 6, 6> Matx66f;
typedef Matx<double, 6, 6> Matx66d;
/*!
A short numerical vector.
This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements)
on which you can perform basic arithmetical operations, access individual elements using [] operator etc.
The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc.,
which elements are dynamically allocated in the heap.
The template takes 2 parameters:
-# _Tp element type
-# cn the number of elements
In addition to the universal notation like Vec<float, 3>, you can use shorter aliases
for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>.
*/
template<typename _Tp, int cn> class CV_EXPORTS Vec : public Matx<_Tp, cn, 1>
{
public:
typedef _Tp value_type;
enum { depth = DataDepth<_Tp>::value, channels = cn, type = CV_MAKETYPE(depth, channels) };
//! default constructor
Vec();
Vec(_Tp v0); //!< 1-element vector constructor
Vec(_Tp v0, _Tp v1); //!< 2-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2); //!< 3-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 4-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 5-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 6-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 7-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 8-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 9-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 10-element vector constructor
explicit Vec(const _Tp* values);
Vec(const Vec<_Tp, cn>& v);
static Vec all(_Tp alpha);
//! per-element multiplication
Vec mul(const Vec<_Tp, cn>& v) const;
//! conjugation (makes sense for complex numbers and quaternions)
Vec conj() const;
/*!
cross product of the two 3D vectors.
For other dimensionalities the exception is raised
*/
Vec cross(const Vec& v) const;
//! convertion to another data type
template<typename T2> operator Vec<T2, cn>() const;
/*! element access */
const _Tp& operator [](int i) const;
_Tp& operator[](int i);
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp);
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp);
template<typename _T2> Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp);
};
/* \typedef
Shorter aliases for the most popular specializations of Vec<T,n>
*/
typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;
typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;
typedef Vec<ushort, 2> Vec2w;
typedef Vec<ushort, 3> Vec3w;
typedef Vec<ushort, 4> Vec4w;
typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<int, 6> Vec6i;
typedef Vec<int, 8> Vec8i;
typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;
typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;
CV_EXPORTS void scalarToRawData(const Scalar& s, void* buf, int type, int unroll_to=0);
/////////////////////////////// DataType ////////////////////////////////
template<typename _Tp, int m, int n> class DataType<Matx<_Tp, m, n> >
{
public:
typedef Matx<_Tp, m, n> value_type;
typedef Matx<typename DataType<_Tp>::work_type, m, n> work_type;
typedef _Tp channel_type;
typedef value_type vec_type;
enum { generic_type = 0, depth = DataDepth<channel_type>::value, channels = m*n,
fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
type = CV_MAKETYPE(depth, channels) };
};
template<typename _Tp, int cn> class DataType<Vec<_Tp, cn> >
{
public:
typedef Vec<_Tp, cn> value_type;
typedef Vec<typename DataType<_Tp>::work_type, cn> work_type;
typedef _Tp channel_type;
typedef value_type vec_type;
enum { generic_type = 0, depth = DataDepth<channel_type>::value, channels = cn,
fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
type = CV_MAKETYPE(depth, channels) };
};
//////////////////// generic_type ref-counting pointer class for C/C++ objects ////////////////////////
/*!