Removed Sphinx documentation files
This commit is contained in:
@@ -1,168 +0,0 @@
|
||||
Arithm Operations on Matrices
|
||||
=============================
|
||||
|
||||
.. highlight:: cpp
|
||||
|
||||
|
||||
|
||||
cuda::gemm
|
||||
----------
|
||||
Performs generalized matrix multiplication.
|
||||
|
||||
.. ocv:function:: void cuda::gemm(InputArray src1, InputArray src2, double alpha, InputArray src3, double beta, OutputArray dst, int flags = 0, Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First multiplied input matrix that should have ``CV_32FC1`` , ``CV_64FC1`` , ``CV_32FC2`` , or ``CV_64FC2`` type.
|
||||
|
||||
:param src2: Second multiplied input matrix of the same type as ``src1`` .
|
||||
|
||||
:param alpha: Weight of the matrix product.
|
||||
|
||||
:param src3: Third optional delta matrix added to the matrix product. It should have the same type as ``src1`` and ``src2`` .
|
||||
|
||||
:param beta: Weight of ``src3`` .
|
||||
|
||||
:param dst: Destination matrix. It has the proper size and the same type as input matrices.
|
||||
|
||||
:param flags: Operation flags:
|
||||
|
||||
* **GEMM_1_T** transpose ``src1``
|
||||
* **GEMM_2_T** transpose ``src2``
|
||||
* **GEMM_3_T** transpose ``src3``
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
The function performs generalized matrix multiplication similar to the ``gemm`` functions in BLAS level 3. For example, ``gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`` corresponds to
|
||||
|
||||
.. math::
|
||||
|
||||
\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T
|
||||
|
||||
.. note:: Transposition operation doesn't support ``CV_64FC2`` input type.
|
||||
|
||||
.. seealso:: :ocv:func:`gemm`
|
||||
|
||||
|
||||
|
||||
cuda::mulSpectrums
|
||||
------------------
|
||||
Performs a per-element multiplication of two Fourier spectrums.
|
||||
|
||||
.. ocv:function:: void cuda::mulSpectrums(InputArray src1, InputArray src2, OutputArray dst, int flags, bool conjB=false, Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First spectrum.
|
||||
|
||||
:param src2: Second spectrum with the same size and type as ``a`` .
|
||||
|
||||
:param dst: Destination spectrum.
|
||||
|
||||
:param flags: Mock parameter used for CPU/CUDA interfaces similarity, simply add a `0` value.
|
||||
|
||||
:param conjB: Optional flag to specify if the second spectrum needs to be conjugated before the multiplication.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
Only full (not packed) ``CV_32FC2`` complex spectrums in the interleaved format are supported for now.
|
||||
|
||||
.. seealso:: :ocv:func:`mulSpectrums`
|
||||
|
||||
|
||||
|
||||
cuda::mulAndScaleSpectrums
|
||||
--------------------------
|
||||
Performs a per-element multiplication of two Fourier spectrums and scales the result.
|
||||
|
||||
.. ocv:function:: void cuda::mulAndScaleSpectrums(InputArray src1, InputArray src2, OutputArray dst, int flags, float scale, bool conjB=false, Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First spectrum.
|
||||
|
||||
:param src2: Second spectrum with the same size and type as ``a`` .
|
||||
|
||||
:param dst: Destination spectrum.
|
||||
|
||||
:param flags: Mock parameter used for CPU/CUDA interfaces similarity.
|
||||
|
||||
:param scale: Scale constant.
|
||||
|
||||
:param conjB: Optional flag to specify if the second spectrum needs to be conjugated before the multiplication.
|
||||
|
||||
Only full (not packed) ``CV_32FC2`` complex spectrums in the interleaved format are supported for now.
|
||||
|
||||
.. seealso:: :ocv:func:`mulSpectrums`
|
||||
|
||||
|
||||
|
||||
cuda::dft
|
||||
---------
|
||||
Performs a forward or inverse discrete Fourier transform (1D or 2D) of the floating point matrix.
|
||||
|
||||
.. ocv:function:: void cuda::dft(InputArray src, OutputArray dst, Size dft_size, int flags=0, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source matrix (real or complex).
|
||||
|
||||
:param dst: Destination matrix (real or complex).
|
||||
|
||||
:param dft_size: Size of a discrete Fourier transform.
|
||||
|
||||
:param flags: Optional flags:
|
||||
|
||||
* **DFT_ROWS** transforms each individual row of the source matrix.
|
||||
|
||||
* **DFT_SCALE** scales the result: divide it by the number of elements in the transform (obtained from ``dft_size`` ).
|
||||
|
||||
* **DFT_INVERSE** inverts DFT. Use for complex-complex cases (real-complex and complex-real cases are always forward and inverse, respectively).
|
||||
|
||||
* **DFT_REAL_OUTPUT** specifies the output as real. The source matrix is the result of real-complex transform, so the destination matrix must be real.
|
||||
|
||||
Use to handle real matrices ( ``CV32FC1`` ) and complex matrices in the interleaved format ( ``CV32FC2`` ).
|
||||
|
||||
The source matrix should be continuous, otherwise reallocation and data copying is performed. The function chooses an operation mode depending on the flags, size, and channel count of the source matrix:
|
||||
|
||||
* If the source matrix is complex and the output is not specified as real, the destination matrix is complex and has the ``dft_size`` size and ``CV_32FC2`` type. The destination matrix contains a full result of the DFT (forward or inverse).
|
||||
|
||||
* If the source matrix is complex and the output is specified as real, the function assumes that its input is the result of the forward transform (see the next item). The destination matrix has the ``dft_size`` size and ``CV_32FC1`` type. It contains the result of the inverse DFT.
|
||||
|
||||
* If the source matrix is real (its type is ``CV_32FC1`` ), forward DFT is performed. The result of the DFT is packed into complex ( ``CV_32FC2`` ) matrix. So, the width of the destination matrix is ``dft_size.width / 2 + 1`` . But if the source is a single column, the height is reduced instead of the width.
|
||||
|
||||
.. seealso:: :ocv:func:`dft`
|
||||
|
||||
|
||||
|
||||
cuda::Convolution
|
||||
-----------------
|
||||
.. ocv:class:: cuda::Convolution : public Algorithm
|
||||
|
||||
Base class for convolution (or cross-correlation) operator. ::
|
||||
|
||||
class CV_EXPORTS Convolution : public Algorithm
|
||||
{
|
||||
public:
|
||||
virtual void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null()) = 0;
|
||||
};
|
||||
|
||||
|
||||
|
||||
cuda::Convolution::convolve
|
||||
---------------------------
|
||||
Computes a convolution (or cross-correlation) of two images.
|
||||
|
||||
.. ocv:function:: void cuda::Convolution::convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null())
|
||||
|
||||
:param image: Source image. Only ``CV_32FC1`` images are supported for now.
|
||||
|
||||
:param templ: Template image. The size is not greater than the ``image`` size. The type is the same as ``image`` .
|
||||
|
||||
:param result: Result image. If ``image`` is *W x H* and ``templ`` is *w x h*, then ``result`` must be *W-w+1 x H-h+1*.
|
||||
|
||||
:param ccorr: Flags to evaluate cross-correlation instead of convolution.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
|
||||
|
||||
cuda::createConvolution
|
||||
-----------------------
|
||||
Creates implementation for :ocv:class:`cuda::Convolution` .
|
||||
|
||||
.. ocv:function:: Ptr<Convolution> createConvolution(Size user_block_size = Size())
|
||||
|
||||
:param user_block_size: Block size. If you leave default value `Size(0,0)` then automatic estimation of block size will be used (which is optimized for speed). By varying `user_block_size` you can reduce memory requirements at the cost of speed.
|
@@ -1,150 +0,0 @@
|
||||
Core Operations on Matrices
|
||||
===========================
|
||||
|
||||
.. highlight:: cpp
|
||||
|
||||
|
||||
|
||||
cuda::merge
|
||||
-----------
|
||||
Makes a multi-channel matrix out of several single-channel matrices.
|
||||
|
||||
.. ocv:function:: void cuda::merge(const GpuMat* src, size_t n, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
.. ocv:function:: void cuda::merge(const std::vector<GpuMat>& src, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Array/vector of source matrices.
|
||||
|
||||
:param n: Number of source matrices.
|
||||
|
||||
:param dst: Destination matrix.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`merge`
|
||||
|
||||
|
||||
|
||||
cuda::split
|
||||
-----------
|
||||
Copies each plane of a multi-channel matrix into an array.
|
||||
|
||||
.. ocv:function:: void cuda::split(InputArray src, GpuMat* dst, Stream& stream = Stream::Null())
|
||||
|
||||
.. ocv:function:: void cuda::split(InputArray src, vector<GpuMat>& dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source matrix.
|
||||
|
||||
:param dst: Destination array/vector of single-channel matrices.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`split`
|
||||
|
||||
|
||||
|
||||
cuda::transpose
|
||||
---------------
|
||||
Transposes a matrix.
|
||||
|
||||
.. ocv:function:: void cuda::transpose(InputArray src1, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: Source matrix. 1-, 4-, 8-byte element sizes are supported for now.
|
||||
|
||||
:param dst: Destination matrix.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`transpose`
|
||||
|
||||
|
||||
|
||||
cuda::flip
|
||||
----------
|
||||
Flips a 2D matrix around vertical, horizontal, or both axes.
|
||||
|
||||
.. ocv:function:: void cuda::flip(InputArray src, OutputArray dst, int flipCode, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source matrix. Supports 1, 3 and 4 channels images with ``CV_8U``, ``CV_16U``, ``CV_32S`` or ``CV_32F`` depth.
|
||||
|
||||
:param dst: Destination matrix.
|
||||
|
||||
:param flipCode: Flip mode for the source:
|
||||
|
||||
* ``0`` Flips around x-axis.
|
||||
|
||||
* ``> 0`` Flips around y-axis.
|
||||
|
||||
* ``< 0`` Flips around both axes.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`flip`
|
||||
|
||||
|
||||
|
||||
cuda::LookUpTable
|
||||
-----------------
|
||||
.. ocv:class:: cuda::LookUpTable : public Algorithm
|
||||
|
||||
Base class for transform using lookup table. ::
|
||||
|
||||
class CV_EXPORTS LookUpTable : public Algorithm
|
||||
{
|
||||
public:
|
||||
virtual void transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
|
||||
};
|
||||
|
||||
.. seealso:: :ocv:func:`LUT`
|
||||
|
||||
|
||||
|
||||
cuda::LookUpTable::transform
|
||||
----------------------------
|
||||
Transforms the source matrix into the destination matrix using the given look-up table: ``dst(I) = lut(src(I))`` .
|
||||
|
||||
.. ocv:function:: void cuda::LookUpTable::transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source matrix. ``CV_8UC1`` and ``CV_8UC3`` matrices are supported for now.
|
||||
|
||||
:param dst: Destination matrix.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
|
||||
|
||||
cuda::createLookUpTable
|
||||
-----------------------
|
||||
Creates implementation for :ocv:class:`cuda::LookUpTable` .
|
||||
|
||||
.. ocv:function:: Ptr<LookUpTable> createLookUpTable(InputArray lut)
|
||||
|
||||
:param lut: Look-up table of 256 elements. It is a continuous ``CV_8U`` matrix.
|
||||
|
||||
|
||||
|
||||
cuda::copyMakeBorder
|
||||
--------------------
|
||||
Forms a border around an image.
|
||||
|
||||
.. ocv:function:: void cuda::copyMakeBorder(InputArray src, OutputArray dst, int top, int bottom, int left, int right, int borderType, Scalar value = Scalar(), Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source image. ``CV_8UC1`` , ``CV_8UC4`` , ``CV_32SC1`` , and ``CV_32FC1`` types are supported.
|
||||
|
||||
:param dst: Destination image with the same type as ``src``. The size is ``Size(src.cols+left+right, src.rows+top+bottom)`` .
|
||||
|
||||
:param top:
|
||||
|
||||
:param bottom:
|
||||
|
||||
:param left:
|
||||
|
||||
:param right: Number of pixels in each direction from the source image rectangle to extrapolate. For example: ``top=1, bottom=1, left=1, right=1`` mean that 1 pixel-wide border needs to be built.
|
||||
|
||||
:param borderType: Border type. See :ocv:func:`borderInterpolate` for details. ``BORDER_REFLECT101`` , ``BORDER_REPLICATE`` , ``BORDER_CONSTANT`` , ``BORDER_REFLECT`` and ``BORDER_WRAP`` are supported for now.
|
||||
|
||||
:param value: Border value.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`copyMakeBorder`
|
@@ -1,11 +0,0 @@
|
||||
***************************************************
|
||||
cudaarithm. CUDA-accelerated Operations on Matrices
|
||||
***************************************************
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
core
|
||||
element_operations
|
||||
reductions
|
||||
arithm
|
@@ -1,543 +0,0 @@
|
||||
Per-element Operations
|
||||
======================
|
||||
|
||||
.. highlight:: cpp
|
||||
|
||||
|
||||
|
||||
cuda::add
|
||||
---------
|
||||
Computes a matrix-matrix or matrix-scalar sum.
|
||||
|
||||
.. ocv:function:: void cuda::add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First source matrix or scalar.
|
||||
|
||||
:param src2: Second source matrix or scalar. Matrix should have the same size and type as ``src1`` .
|
||||
|
||||
:param dst: Destination matrix that has the same size and number of channels as the input array(s). The depth is defined by ``dtype`` or ``src1`` depth.
|
||||
|
||||
:param mask: Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.
|
||||
|
||||
:param dtype: Optional depth of the output array.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`add`
|
||||
|
||||
|
||||
|
||||
cuda::subtract
|
||||
--------------
|
||||
Computes a matrix-matrix or matrix-scalar difference.
|
||||
|
||||
.. ocv:function:: void cuda::subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First source matrix or scalar.
|
||||
|
||||
:param src2: Second source matrix or scalar. Matrix should have the same size and type as ``src1`` .
|
||||
|
||||
:param dst: Destination matrix that has the same size and number of channels as the input array(s). The depth is defined by ``dtype`` or ``src1`` depth.
|
||||
|
||||
:param mask: Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.
|
||||
|
||||
:param dtype: Optional depth of the output array.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`subtract`
|
||||
|
||||
|
||||
|
||||
cuda::multiply
|
||||
--------------
|
||||
Computes a matrix-matrix or matrix-scalar per-element product.
|
||||
|
||||
.. ocv:function:: void cuda::multiply(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First source matrix or scalar.
|
||||
|
||||
:param src2: Second source matrix or scalar.
|
||||
|
||||
:param dst: Destination matrix that has the same size and number of channels as the input array(s). The depth is defined by ``dtype`` or ``src1`` depth.
|
||||
|
||||
:param scale: Optional scale factor.
|
||||
|
||||
:param dtype: Optional depth of the output array.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`multiply`
|
||||
|
||||
|
||||
|
||||
cuda::divide
|
||||
------------
|
||||
Computes a matrix-matrix or matrix-scalar division.
|
||||
|
||||
.. ocv:function:: void cuda::divide(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null())
|
||||
|
||||
.. ocv:function:: void cuda::divide(double src1, InputArray src2, OutputArray dst, int dtype = -1, Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First source matrix or a scalar.
|
||||
|
||||
:param src2: Second source matrix or scalar.
|
||||
|
||||
:param dst: Destination matrix that has the same size and number of channels as the input array(s). The depth is defined by ``dtype`` or ``src1`` depth.
|
||||
|
||||
:param scale: Optional scale factor.
|
||||
|
||||
:param dtype: Optional depth of the output array.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
This function, in contrast to :ocv:func:`divide`, uses a round-down rounding mode.
|
||||
|
||||
.. seealso:: :ocv:func:`divide`
|
||||
|
||||
|
||||
|
||||
cuda::absdiff
|
||||
-------------
|
||||
Computes per-element absolute difference of two matrices (or of a matrix and scalar).
|
||||
|
||||
.. ocv:function:: void cuda::absdiff(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First source matrix or scalar.
|
||||
|
||||
:param src2: Second source matrix or scalar.
|
||||
|
||||
:param dst: Destination matrix that has the same size and type as the input array(s).
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`absdiff`
|
||||
|
||||
|
||||
|
||||
cuda::abs
|
||||
---------
|
||||
Computes an absolute value of each matrix element.
|
||||
|
||||
.. ocv:function:: void cuda::abs(InputArray src, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source matrix.
|
||||
|
||||
:param dst: Destination matrix with the same size and type as ``src`` .
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`abs`
|
||||
|
||||
|
||||
|
||||
cuda::sqr
|
||||
---------
|
||||
Computes a square value of each matrix element.
|
||||
|
||||
.. ocv:function:: void cuda::sqr(InputArray src, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source matrix.
|
||||
|
||||
:param dst: Destination matrix with the same size and type as ``src`` .
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
|
||||
|
||||
cuda::sqrt
|
||||
----------
|
||||
Computes a square root of each matrix element.
|
||||
|
||||
.. ocv:function:: void cuda::sqrt(InputArray src, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source matrix.
|
||||
|
||||
:param dst: Destination matrix with the same size and type as ``src`` .
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`sqrt`
|
||||
|
||||
|
||||
|
||||
cuda::exp
|
||||
---------
|
||||
Computes an exponent of each matrix element.
|
||||
|
||||
.. ocv:function:: void cuda::exp(InputArray src, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source matrix.
|
||||
|
||||
:param dst: Destination matrix with the same size and type as ``src`` .
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`exp`
|
||||
|
||||
|
||||
|
||||
cuda::log
|
||||
---------
|
||||
Computes a natural logarithm of absolute value of each matrix element.
|
||||
|
||||
.. ocv:function:: void cuda::log(InputArray src, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source matrix.
|
||||
|
||||
:param dst: Destination matrix with the same size and type as ``src`` .
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`log`
|
||||
|
||||
|
||||
|
||||
cuda::pow
|
||||
---------
|
||||
Raises every matrix element to a power.
|
||||
|
||||
.. ocv:function:: void cuda::pow(InputArray src, double power, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source matrix.
|
||||
|
||||
:param power: Exponent of power.
|
||||
|
||||
:param dst: Destination matrix with the same size and type as ``src`` .
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
The function ``pow`` raises every element of the input matrix to ``power`` :
|
||||
|
||||
.. math::
|
||||
|
||||
\texttt{dst} (I) = \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}
|
||||
|
||||
.. seealso:: :ocv:func:`pow`
|
||||
|
||||
|
||||
|
||||
cuda::compare
|
||||
-------------
|
||||
Compares elements of two matrices (or of a matrix and scalar).
|
||||
|
||||
.. ocv:function:: void cuda::compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop, Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First source matrix or scalar.
|
||||
|
||||
:param src2: Second source matrix or scalar.
|
||||
|
||||
:param dst: Destination matrix that has the same size and type as the input array(s).
|
||||
|
||||
:param cmpop: Flag specifying the relation between the elements to be checked:
|
||||
|
||||
* **CMP_EQ:** ``a(.) == b(.)``
|
||||
* **CMP_GT:** ``a(.) < b(.)``
|
||||
* **CMP_GE:** ``a(.) <= b(.)``
|
||||
* **CMP_LT:** ``a(.) < b(.)``
|
||||
* **CMP_LE:** ``a(.) <= b(.)``
|
||||
* **CMP_NE:** ``a(.) != b(.)``
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`compare`
|
||||
|
||||
|
||||
|
||||
cuda::bitwise_not
|
||||
-----------------
|
||||
Performs a per-element bitwise inversion.
|
||||
|
||||
.. ocv:function:: void cuda::bitwise_not(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source matrix.
|
||||
|
||||
:param dst: Destination matrix with the same size and type as ``src`` .
|
||||
|
||||
:param mask: Optional operation mask. 8-bit single channel image.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
|
||||
|
||||
cuda::bitwise_or
|
||||
----------------
|
||||
Performs a per-element bitwise disjunction of two matrices (or of matrix and scalar).
|
||||
|
||||
.. ocv:function:: void cuda::bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First source matrix or scalar.
|
||||
|
||||
:param src2: Second source matrix or scalar.
|
||||
|
||||
:param dst: Destination matrix that has the same size and type as the input array(s).
|
||||
|
||||
:param mask: Optional operation mask. 8-bit single channel image.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
|
||||
|
||||
cuda::bitwise_and
|
||||
-----------------
|
||||
Performs a per-element bitwise conjunction of two matrices (or of matrix and scalar).
|
||||
|
||||
.. ocv:function:: void cuda::bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First source matrix or scalar.
|
||||
|
||||
:param src2: Second source matrix or scalar.
|
||||
|
||||
:param dst: Destination matrix that has the same size and type as the input array(s).
|
||||
|
||||
:param mask: Optional operation mask. 8-bit single channel image.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
|
||||
|
||||
cuda::bitwise_xor
|
||||
-----------------
|
||||
Performs a per-element bitwise ``exclusive or`` operation of two matrices (or of matrix and scalar).
|
||||
|
||||
.. ocv:function:: void cuda::bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First source matrix or scalar.
|
||||
|
||||
:param src2: Second source matrix or scalar.
|
||||
|
||||
:param dst: Destination matrix that has the same size and type as the input array(s).
|
||||
|
||||
:param mask: Optional operation mask. 8-bit single channel image.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
|
||||
|
||||
cuda::rshift
|
||||
------------
|
||||
Performs pixel by pixel right shift of an image by a constant value.
|
||||
|
||||
.. ocv:function:: void cuda::rshift(InputArray src, Scalar_<int> val, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source matrix. Supports 1, 3 and 4 channels images with integers elements.
|
||||
|
||||
:param val: Constant values, one per channel.
|
||||
|
||||
:param dst: Destination matrix with the same size and type as ``src`` .
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
|
||||
|
||||
cuda::lshift
|
||||
------------
|
||||
Performs pixel by pixel right left of an image by a constant value.
|
||||
|
||||
.. ocv:function:: void cuda::lshift(InputArray src, Scalar_<int> val, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source matrix. Supports 1, 3 and 4 channels images with ``CV_8U`` , ``CV_16U`` or ``CV_32S`` depth.
|
||||
|
||||
:param val: Constant values, one per channel.
|
||||
|
||||
:param dst: Destination matrix with the same size and type as ``src`` .
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
|
||||
|
||||
cuda::min
|
||||
---------
|
||||
Computes the per-element minimum of two matrices (or a matrix and a scalar).
|
||||
|
||||
.. ocv:function:: void cuda::min(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First source matrix or scalar.
|
||||
|
||||
:param src2: Second source matrix or scalar.
|
||||
|
||||
:param dst: Destination matrix that has the same size and type as the input array(s).
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`min`
|
||||
|
||||
|
||||
|
||||
cuda::max
|
||||
---------
|
||||
Computes the per-element maximum of two matrices (or a matrix and a scalar).
|
||||
|
||||
.. ocv:function:: void cuda::max(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First source matrix or scalar.
|
||||
|
||||
:param src2: Second source matrix or scalar.
|
||||
|
||||
:param dst: Destination matrix that has the same size and type as the input array(s).
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`max`
|
||||
|
||||
|
||||
|
||||
cuda::addWeighted
|
||||
-----------------
|
||||
Computes the weighted sum of two arrays.
|
||||
|
||||
.. ocv:function:: void cuda::addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, int dtype = -1, Stream& stream = Stream::Null())
|
||||
|
||||
:param src1: First source array.
|
||||
|
||||
:param alpha: Weight for the first array elements.
|
||||
|
||||
:param src2: Second source array of the same size and channel number as ``src1`` .
|
||||
|
||||
:param beta: Weight for the second array elements.
|
||||
|
||||
:param dst: Destination array that has the same size and number of channels as the input arrays.
|
||||
|
||||
:param gamma: Scalar added to each sum.
|
||||
|
||||
:param dtype: Optional depth of the destination array. When both input arrays have the same depth, ``dtype`` can be set to ``-1``, which will be equivalent to ``src1.depth()``.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
The function ``addWeighted`` calculates the weighted sum of two arrays as follows:
|
||||
|
||||
.. math::
|
||||
|
||||
\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )
|
||||
|
||||
where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
|
||||
|
||||
.. seealso:: :ocv:func:`addWeighted`
|
||||
|
||||
|
||||
|
||||
cuda::threshold
|
||||
---------------
|
||||
Applies a fixed-level threshold to each array element.
|
||||
|
||||
.. ocv:function:: double cuda::threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source array (single-channel).
|
||||
|
||||
:param dst: Destination array with the same size and type as ``src`` .
|
||||
|
||||
:param thresh: Threshold value.
|
||||
|
||||
:param maxval: Maximum value to use with ``THRESH_BINARY`` and ``THRESH_BINARY_INV`` threshold types.
|
||||
|
||||
:param type: Threshold type. For details, see :ocv:func:`threshold` . The ``THRESH_OTSU`` and ``THRESH_TRIANGLE`` threshold types are not supported.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`threshold`
|
||||
|
||||
|
||||
|
||||
cuda::magnitude
|
||||
---------------
|
||||
Computes magnitudes of complex matrix elements.
|
||||
|
||||
.. ocv:function:: void cuda::magnitude(InputArray xy, OutputArray magnitude, Stream& stream = Stream::Null())
|
||||
|
||||
.. ocv:function:: void cuda::magnitude(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null())
|
||||
|
||||
:param xy: Source complex matrix in the interleaved format ( ``CV_32FC2`` ).
|
||||
|
||||
:param x: Source matrix containing real components ( ``CV_32FC1`` ).
|
||||
|
||||
:param y: Source matrix containing imaginary components ( ``CV_32FC1`` ).
|
||||
|
||||
:param magnitude: Destination matrix of float magnitudes ( ``CV_32FC1`` ).
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`magnitude`
|
||||
|
||||
|
||||
|
||||
cuda::magnitudeSqr
|
||||
------------------
|
||||
Computes squared magnitudes of complex matrix elements.
|
||||
|
||||
.. ocv:function:: void cuda::magnitudeSqr(InputArray xy, OutputArray magnitude, Stream& stream=Stream::Null() )
|
||||
|
||||
.. ocv:function:: void cuda::magnitudeSqr(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null())
|
||||
|
||||
:param xy: Source complex matrix in the interleaved format ( ``CV_32FC2`` ).
|
||||
|
||||
:param x: Source matrix containing real components ( ``CV_32FC1`` ).
|
||||
|
||||
:param y: Source matrix containing imaginary components ( ``CV_32FC1`` ).
|
||||
|
||||
:param magnitude: Destination matrix of float magnitude squares ( ``CV_32FC1`` ).
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
|
||||
|
||||
cuda::phase
|
||||
-----------
|
||||
Computes polar angles of complex matrix elements.
|
||||
|
||||
.. ocv:function:: void cuda::phase(InputArray x, InputArray y, OutputArray angle, bool angleInDegrees = false, Stream& stream = Stream::Null())
|
||||
|
||||
:param x: Source matrix containing real components ( ``CV_32FC1`` ).
|
||||
|
||||
:param y: Source matrix containing imaginary components ( ``CV_32FC1`` ).
|
||||
|
||||
:param angle: Destination matrix of angles ( ``CV_32FC1`` ).
|
||||
|
||||
:param angleInDegrees: Flag for angles that must be evaluated in degrees.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`phase`
|
||||
|
||||
|
||||
|
||||
cuda::cartToPolar
|
||||
-----------------
|
||||
Converts Cartesian coordinates into polar.
|
||||
|
||||
.. ocv:function:: void cuda::cartToPolar(InputArray x, InputArray y, OutputArray magnitude, OutputArray angle, bool angleInDegrees = false, Stream& stream = Stream::Null())
|
||||
|
||||
:param x: Source matrix containing real components ( ``CV_32FC1`` ).
|
||||
|
||||
:param y: Source matrix containing imaginary components ( ``CV_32FC1`` ).
|
||||
|
||||
:param magnitude: Destination matrix of float magnitudes ( ``CV_32FC1`` ).
|
||||
|
||||
:param angle: Destination matrix of angles ( ``CV_32FC1`` ).
|
||||
|
||||
:param angleInDegrees: Flag for angles that must be evaluated in degrees.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`cartToPolar`
|
||||
|
||||
|
||||
|
||||
cuda::polarToCart
|
||||
-----------------
|
||||
Converts polar coordinates into Cartesian.
|
||||
|
||||
.. ocv:function:: void cuda::polarToCart(InputArray magnitude, InputArray angle, OutputArray x, OutputArray y, bool angleInDegrees = false, Stream& stream = Stream::Null())
|
||||
|
||||
:param magnitude: Source matrix containing magnitudes ( ``CV_32FC1`` ).
|
||||
|
||||
:param angle: Source matrix containing angles ( ``CV_32FC1`` ).
|
||||
|
||||
:param x: Destination matrix of real components ( ``CV_32FC1`` ).
|
||||
|
||||
:param y: Destination matrix of imaginary components ( ``CV_32FC1`` ).
|
||||
|
||||
:param angleInDegrees: Flag that indicates angles in degrees.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`polarToCart`
|
@@ -1,295 +0,0 @@
|
||||
Matrix Reductions
|
||||
=================
|
||||
|
||||
.. highlight:: cpp
|
||||
|
||||
|
||||
|
||||
cuda::norm
|
||||
----------
|
||||
Returns the norm of a matrix (or difference of two matrices).
|
||||
|
||||
.. ocv:function:: double cuda::norm(InputArray src1, int normType)
|
||||
|
||||
.. ocv:function:: double cuda::norm(InputArray src1, int normType, GpuMat& buf)
|
||||
|
||||
.. ocv:function:: double cuda::norm(InputArray src1, int normType, InputArray mask, GpuMat& buf)
|
||||
|
||||
.. ocv:function:: double cuda::norm(InputArray src1, InputArray src2, int normType=NORM_L2)
|
||||
|
||||
:param src1: Source matrix. Any matrices except 64F are supported.
|
||||
|
||||
:param src2: Second source matrix (if any) with the same size and type as ``src1``.
|
||||
|
||||
:param normType: Norm type. ``NORM_L1`` , ``NORM_L2`` , and ``NORM_INF`` are supported for now.
|
||||
|
||||
:param mask: optional operation mask; it must have the same size as ``src1`` and ``CV_8UC1`` type.
|
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
.. seealso:: :ocv:func:`norm`
|
||||
|
||||
|
||||
|
||||
cuda::sum
|
||||
---------
|
||||
Returns the sum of matrix elements.
|
||||
|
||||
.. ocv:function:: Scalar cuda::sum(InputArray src)
|
||||
|
||||
.. ocv:function:: Scalar cuda::sum(InputArray src, GpuMat& buf)
|
||||
|
||||
.. ocv:function:: Scalar cuda::sum(InputArray src, InputArray mask, GpuMat& buf)
|
||||
|
||||
:param src: Source image of any depth except for ``CV_64F`` .
|
||||
|
||||
:param mask: optional operation mask; it must have the same size as ``src1`` and ``CV_8UC1`` type.
|
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
.. seealso:: :ocv:func:`sum`
|
||||
|
||||
|
||||
|
||||
cuda::absSum
|
||||
------------
|
||||
Returns the sum of absolute values for matrix elements.
|
||||
|
||||
.. ocv:function:: Scalar cuda::absSum(InputArray src)
|
||||
|
||||
.. ocv:function:: Scalar cuda::absSum(InputArray src, GpuMat& buf)
|
||||
|
||||
.. ocv:function:: Scalar cuda::absSum(InputArray src, InputArray mask, GpuMat& buf)
|
||||
|
||||
:param src: Source image of any depth except for ``CV_64F`` .
|
||||
|
||||
:param mask: optional operation mask; it must have the same size as ``src1`` and ``CV_8UC1`` type.
|
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
|
||||
|
||||
cuda::sqrSum
|
||||
------------
|
||||
Returns the squared sum of matrix elements.
|
||||
|
||||
.. ocv:function:: Scalar cuda::sqrSum(InputArray src)
|
||||
|
||||
.. ocv:function:: Scalar cuda::sqrSum(InputArray src, GpuMat& buf)
|
||||
|
||||
.. ocv:function:: Scalar cuda::sqrSum(InputArray src, InputArray mask, GpuMat& buf)
|
||||
|
||||
:param src: Source image of any depth except for ``CV_64F`` .
|
||||
|
||||
:param mask: optional operation mask; it must have the same size as ``src1`` and ``CV_8UC1`` type.
|
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
|
||||
|
||||
cuda::minMax
|
||||
------------
|
||||
Finds global minimum and maximum matrix elements and returns their values.
|
||||
|
||||
.. ocv:function:: void cuda::minMax(InputArray src, double* minVal, double* maxVal=0, InputArray mask=noArray())
|
||||
|
||||
.. ocv:function:: void cuda::minMax(InputArray src, double* minVal, double* maxVal, InputArray mask, GpuMat& buf)
|
||||
|
||||
:param src: Single-channel source image.
|
||||
|
||||
:param minVal: Pointer to the returned minimum value. Use ``NULL`` if not required.
|
||||
|
||||
:param maxVal: Pointer to the returned maximum value. Use ``NULL`` if not required.
|
||||
|
||||
:param mask: Optional mask to select a sub-matrix.
|
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
The function does not work with ``CV_64F`` images on GPUs with the compute capability < 1.3.
|
||||
|
||||
.. seealso:: :ocv:func:`minMaxLoc`
|
||||
|
||||
|
||||
|
||||
cuda::minMaxLoc
|
||||
---------------
|
||||
Finds global minimum and maximum matrix elements and returns their values with locations.
|
||||
|
||||
.. ocv:function:: void cuda::minMaxLoc(InputArray src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, InputArray mask=noArray())
|
||||
|
||||
.. ocv:function:: void cuda::minMaxLoc(InputArray src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, InputArray mask, GpuMat& valbuf, GpuMat& locbuf)
|
||||
|
||||
:param src: Single-channel source image.
|
||||
|
||||
:param minVal: Pointer to the returned minimum value. Use ``NULL`` if not required.
|
||||
|
||||
:param maxVal: Pointer to the returned maximum value. Use ``NULL`` if not required.
|
||||
|
||||
:param minLoc: Pointer to the returned minimum location. Use ``NULL`` if not required.
|
||||
|
||||
:param maxLoc: Pointer to the returned maximum location. Use ``NULL`` if not required.
|
||||
|
||||
:param mask: Optional mask to select a sub-matrix.
|
||||
|
||||
:param valbuf: Optional values buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
:param locbuf: Optional locations buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
The function does not work with ``CV_64F`` images on GPU with the compute capability < 1.3.
|
||||
|
||||
.. seealso:: :ocv:func:`minMaxLoc`
|
||||
|
||||
|
||||
|
||||
cuda::countNonZero
|
||||
------------------
|
||||
Counts non-zero matrix elements.
|
||||
|
||||
.. ocv:function:: int cuda::countNonZero(InputArray src)
|
||||
|
||||
.. ocv:function:: int cuda::countNonZero(InputArray src, GpuMat& buf)
|
||||
|
||||
:param src: Single-channel source image.
|
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
The function does not work with ``CV_64F`` images on GPUs with the compute capability < 1.3.
|
||||
|
||||
.. seealso:: :ocv:func:`countNonZero`
|
||||
|
||||
|
||||
|
||||
cuda::reduce
|
||||
------------
|
||||
Reduces a matrix to a vector.
|
||||
|
||||
.. ocv:function:: void cuda::reduce(InputArray mtx, OutputArray vec, int dim, int reduceOp, int dtype = -1, Stream& stream = Stream::Null())
|
||||
|
||||
:param mtx: Source 2D matrix.
|
||||
|
||||
:param vec: Destination vector. Its size and type is defined by ``dim`` and ``dtype`` parameters.
|
||||
|
||||
:param dim: Dimension index along which the matrix is reduced. 0 means that the matrix is reduced to a single row. 1 means that the matrix is reduced to a single column.
|
||||
|
||||
:param reduceOp: Reduction operation that could be one of the following:
|
||||
|
||||
* **CV_REDUCE_SUM** The output is the sum of all rows/columns of the matrix.
|
||||
|
||||
* **CV_REDUCE_AVG** The output is the mean vector of all rows/columns of the matrix.
|
||||
|
||||
* **CV_REDUCE_MAX** The output is the maximum (column/row-wise) of all rows/columns of the matrix.
|
||||
|
||||
* **CV_REDUCE_MIN** The output is the minimum (column/row-wise) of all rows/columns of the matrix.
|
||||
|
||||
:param dtype: When it is negative, the destination vector will have the same type as the source matrix. Otherwise, its type will be ``CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), mtx.channels())`` .
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
The function ``reduce`` reduces the matrix to a vector by treating the matrix rows/columns as a set of 1D vectors and performing the specified operation on the vectors until a single row/column is obtained. For example, the function can be used to compute horizontal and vertical projections of a raster image. In case of ``CV_REDUCE_SUM`` and ``CV_REDUCE_AVG`` , the output may have a larger element bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction modes.
|
||||
|
||||
.. seealso:: :ocv:func:`reduce`
|
||||
|
||||
|
||||
|
||||
cuda::meanStdDev
|
||||
----------------
|
||||
Computes a mean value and a standard deviation of matrix elements.
|
||||
|
||||
.. ocv:function:: void cuda::meanStdDev(InputArray mtx, Scalar& mean, Scalar& stddev)
|
||||
.. ocv:function:: void cuda::meanStdDev(InputArray mtx, Scalar& mean, Scalar& stddev, GpuMat& buf)
|
||||
|
||||
:param mtx: Source matrix. ``CV_8UC1`` matrices are supported for now.
|
||||
|
||||
:param mean: Mean value.
|
||||
|
||||
:param stddev: Standard deviation value.
|
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
.. seealso:: :ocv:func:`meanStdDev`
|
||||
|
||||
|
||||
|
||||
cuda::rectStdDev
|
||||
----------------
|
||||
Computes a standard deviation of integral images.
|
||||
|
||||
.. ocv:function:: void cuda::rectStdDev(InputArray src, InputArray sqr, OutputArray dst, Rect rect, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source image. Only the ``CV_32SC1`` type is supported.
|
||||
|
||||
:param sqr: Squared source image. Only the ``CV_32FC1`` type is supported.
|
||||
|
||||
:param dst: Destination image with the same type and size as ``src`` .
|
||||
|
||||
:param rect: Rectangular window.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
|
||||
|
||||
cuda::normalize
|
||||
---------------
|
||||
Normalizes the norm or value range of an array.
|
||||
|
||||
.. ocv:function:: void cuda::normalize(InputArray src, OutputArray dst, double alpha = 1, double beta = 0, int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray())
|
||||
|
||||
.. ocv:function:: void cuda::normalize(InputArray src, OutputArray dst, double alpha, double beta, int norm_type, int dtype, InputArray mask, GpuMat& norm_buf, GpuMat& cvt_buf)
|
||||
|
||||
:param src: Input array.
|
||||
|
||||
:param dst: Output array of the same size as ``src`` .
|
||||
|
||||
:param alpha: Norm value to normalize to or the lower range boundary in case of the range normalization.
|
||||
|
||||
:param beta: Upper range boundary in case of the range normalization; it is not used for the norm normalization.
|
||||
|
||||
:param normType: Normalization type ( ``NORM_MINMAX`` , ``NORM_L2`` , ``NORM_L1`` or ``NORM_INF`` ).
|
||||
|
||||
:param dtype: When negative, the output array has the same type as ``src``; otherwise, it has the same number of channels as ``src`` and the depth ``=CV_MAT_DEPTH(dtype)``.
|
||||
|
||||
:param mask: Optional operation mask.
|
||||
|
||||
:param norm_buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
:param cvt_buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
.. seealso:: :ocv:func:`normalize`
|
||||
|
||||
|
||||
|
||||
cuda::integral
|
||||
--------------
|
||||
Computes an integral image.
|
||||
|
||||
.. ocv:function:: void cuda::integral(InputArray src, OutputArray sum, Stream& stream = Stream::Null())
|
||||
|
||||
.. ocv:function:: void cuda::integral(InputArray src, OutputArray sum, GpuMat& buffer, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source image. Only ``CV_8UC1`` images are supported for now.
|
||||
|
||||
:param sum: Integral image containing 32-bit unsigned integer values packed into ``CV_32SC1`` .
|
||||
|
||||
:param buffer: Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
||||
|
||||
.. seealso:: :ocv:func:`integral`
|
||||
|
||||
|
||||
|
||||
cuda::sqrIntegral
|
||||
-----------------
|
||||
Computes a squared integral image.
|
||||
|
||||
.. ocv:function:: void cuda::sqrIntegral(InputArray src, OutputArray sqsum, Stream& stream = Stream::Null())
|
||||
|
||||
.. ocv:function:: void cuda::sqrIntegral(InputArray src, OutputArray sqsum, GpuMat& buf, Stream& stream = Stream::Null())
|
||||
|
||||
:param src: Source image. Only ``CV_8UC1`` images are supported for now.
|
||||
|
||||
:param sqsum: Squared integral image containing 64-bit unsigned integer values packed into ``CV_64FC1`` .
|
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
:param stream: Stream for the asynchronous version.
|
Reference in New Issue
Block a user