Removed Sphinx documentation files

This commit is contained in:
Maksim Shabunin
2014-12-24 18:37:57 +03:00
parent 61991a3330
commit d01bedbc61
338 changed files with 0 additions and 73040 deletions

View File

@@ -1,245 +0,0 @@
.. _harris_detector:
Harris corner detector
**********************
Goal
=====
In this tutorial you will learn:
.. container:: enumeratevisibleitemswithsquare
* What features are and why they are important
* Use the function :corner_harris:`cornerHarris <>` to detect corners using the Harris-Stephens method.
Theory
======
What is a feature?
-------------------
.. container:: enumeratevisibleitemswithsquare
* In computer vision, usually we need to find matching points between different frames of an environment. Why? If we know how two images relate to each other, we can use *both* images to extract information of them.
* When we say **matching points** we are referring, in a general sense, to *characteristics* in the scene that we can recognize easily. We call these characteristics **features**.
* **So, what characteristics should a feature have?**
* It must be *uniquely recognizable*
Types of Image Features
------------------------
To mention a few:
.. container:: enumeratevisibleitemswithsquare
* Edges
* **Corners** (also known as interest points)
* Blobs (also known as regions of interest )
In this tutorial we will study the *corner* features, specifically.
Why is a corner so special?
----------------------------
.. container:: enumeratevisibleitemswithsquare
* Because, since it is the intersection of two edges, it represents a point in which the directions of these two edges *change*. Hence, the gradient of the image (in both directions) have a high variation, which can be used to detect it.
How does it work?
-----------------
.. container:: enumeratevisibleitemswithsquare
* Let's look for corners. Since corners represents a variation in the gradient in the image, we will look for this "variation".
* Consider a grayscale image :math:`I`. We are going to sweep a window :math:`w(x,y)` (with displacements :math:`u` in the x direction and :math:`v` in the right direction) :math:`I` and will calculate the variation of intensity.
.. math::
E(u,v) = \sum _{x,y} w(x,y)[ I(x+u,y+v) - I(x,y)]^{2}
where:
* :math:`w(x,y)` is the window at position :math:`(x,y)`
* :math:`I(x,y)` is the intensity at :math:`(x,y)`
* :math:`I(x+u,y+v)` is the intensity at the moved window :math:`(x+u,y+v)`
* Since we are looking for windows with corners, we are looking for windows with a large variation in intensity. Hence, we have to maximize the equation above, specifically the term:
.. math::
\sum _{x,y}[ I(x+u,y+v) - I(x,y)]^{2}
* Using *Taylor expansion*:
.. math::
E(u,v) \approx \sum _{x,y}[ I(x,y) + u I_{x} + vI_{y} - I(x,y)]^{2}
* Expanding the equation and cancelling properly:
.. math::
E(u,v) \approx \sum _{x,y} u^{2}I_{x}^{2} + 2uvI_{x}I_{y} + v^{2}I_{y}^{2}
* Which can be expressed in a matrix form as:
.. math::
E(u,v) \approx \begin{bmatrix}
u & v
\end{bmatrix}
\left (
\displaystyle \sum_{x,y}
w(x,y)
\begin{bmatrix}
I_x^{2} & I_{x}I_{y} \\
I_xI_{y} & I_{y}^{2}
\end{bmatrix}
\right )
\begin{bmatrix}
u \\
v
\end{bmatrix}
* Let's denote:
.. math::
M = \displaystyle \sum_{x,y}
w(x,y)
\begin{bmatrix}
I_x^{2} & I_{x}I_{y} \\
I_xI_{y} & I_{y}^{2}
\end{bmatrix}
* So, our equation now is:
.. math::
E(u,v) \approx \begin{bmatrix}
u & v
\end{bmatrix}
M
\begin{bmatrix}
u \\
v
\end{bmatrix}
* A score is calculated for each window, to determine if it can possibly contain a corner:
.. math::
R = det(M) - k(trace(M))^{2}
where:
* det(M) = :math:`\lambda_{1}\lambda_{2}`
* trace(M) = :math:`\lambda_{1}+\lambda_{2}`
a window with a score :math:`R` greater than a certain value is considered a "corner"
Code
====
This tutorial code's is shown lines below. You can also download it from `here <https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/TrackingMotion/cornerHarris_Demo.cpp>`_
.. code-block:: cpp
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
/// Global variables
Mat src, src_gray;
int thresh = 200;
int max_thresh = 255;
char* source_window = "Source image";
char* corners_window = "Corners detected";
/// Function header
void cornerHarris_demo( int, void* );
/* @function main */
int main( int argc, char** argv )
{
/// Load source image and convert it to gray
src = imread( argv[1], 1 );
cvtColor( src, src_gray, COLOR_BGR2GRAY );
/// Create a window and a trackbar
namedWindow( source_window, WINDOW_AUTOSIZE );
createTrackbar( "Threshold: ", source_window, &thresh, max_thresh, cornerHarris_demo );
imshow( source_window, src );
cornerHarris_demo( 0, 0 );
waitKey(0);
return(0);
}
/* @function cornerHarris_demo */
void cornerHarris_demo( int, void* )
{
Mat dst, dst_norm, dst_norm_scaled;
dst = Mat::zeros( src.size(), CV_32FC1 );
/// Detector parameters
int blockSize = 2;
int apertureSize = 3;
double k = 0.04;
/// Detecting corners
cornerHarris( src_gray, dst, blockSize, apertureSize, k, BORDER_DEFAULT );
/// Normalizing
normalize( dst, dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat() );
convertScaleAbs( dst_norm, dst_norm_scaled );
/// Drawing a circle around corners
for( int j = 0; j < dst_norm.rows ; j++ )
{ for( int i = 0; i < dst_norm.cols; i++ )
{
if( (int) dst_norm.at<float>(j,i) > thresh )
{
circle( dst_norm_scaled, Point( i, j ), 5, Scalar(0), 2, 8, 0 );
}
}
}
/// Showing the result
namedWindow( corners_window, WINDOW_AUTOSIZE );
imshow( corners_window, dst_norm_scaled );
}
Explanation
============
Result
======
The original image:
.. image:: images/Harris_Detector_Original_Image.jpg
:align: center
The detected corners are surrounded by a small black circle
.. image:: images/Harris_Detector_Result.jpg
:align: center