Removed Sphinx documentation files
This commit is contained in:
@@ -1,245 +0,0 @@
|
||||
.. _harris_detector:
|
||||
|
||||
Harris corner detector
|
||||
**********************
|
||||
|
||||
Goal
|
||||
=====
|
||||
|
||||
In this tutorial you will learn:
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
* What features are and why they are important
|
||||
* Use the function :corner_harris:`cornerHarris <>` to detect corners using the Harris-Stephens method.
|
||||
|
||||
Theory
|
||||
======
|
||||
|
||||
What is a feature?
|
||||
-------------------
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
* In computer vision, usually we need to find matching points between different frames of an environment. Why? If we know how two images relate to each other, we can use *both* images to extract information of them.
|
||||
|
||||
* When we say **matching points** we are referring, in a general sense, to *characteristics* in the scene that we can recognize easily. We call these characteristics **features**.
|
||||
|
||||
* **So, what characteristics should a feature have?**
|
||||
|
||||
* It must be *uniquely recognizable*
|
||||
|
||||
|
||||
Types of Image Features
|
||||
------------------------
|
||||
|
||||
To mention a few:
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
* Edges
|
||||
* **Corners** (also known as interest points)
|
||||
* Blobs (also known as regions of interest )
|
||||
|
||||
In this tutorial we will study the *corner* features, specifically.
|
||||
|
||||
Why is a corner so special?
|
||||
----------------------------
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
* Because, since it is the intersection of two edges, it represents a point in which the directions of these two edges *change*. Hence, the gradient of the image (in both directions) have a high variation, which can be used to detect it.
|
||||
|
||||
|
||||
How does it work?
|
||||
-----------------
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
* Let's look for corners. Since corners represents a variation in the gradient in the image, we will look for this "variation".
|
||||
|
||||
* Consider a grayscale image :math:`I`. We are going to sweep a window :math:`w(x,y)` (with displacements :math:`u` in the x direction and :math:`v` in the right direction) :math:`I` and will calculate the variation of intensity.
|
||||
|
||||
.. math::
|
||||
|
||||
E(u,v) = \sum _{x,y} w(x,y)[ I(x+u,y+v) - I(x,y)]^{2}
|
||||
|
||||
where:
|
||||
|
||||
* :math:`w(x,y)` is the window at position :math:`(x,y)`
|
||||
* :math:`I(x,y)` is the intensity at :math:`(x,y)`
|
||||
* :math:`I(x+u,y+v)` is the intensity at the moved window :math:`(x+u,y+v)`
|
||||
|
||||
* Since we are looking for windows with corners, we are looking for windows with a large variation in intensity. Hence, we have to maximize the equation above, specifically the term:
|
||||
|
||||
.. math::
|
||||
|
||||
\sum _{x,y}[ I(x+u,y+v) - I(x,y)]^{2}
|
||||
|
||||
|
||||
* Using *Taylor expansion*:
|
||||
|
||||
.. math::
|
||||
|
||||
E(u,v) \approx \sum _{x,y}[ I(x,y) + u I_{x} + vI_{y} - I(x,y)]^{2}
|
||||
|
||||
|
||||
* Expanding the equation and cancelling properly:
|
||||
|
||||
.. math::
|
||||
|
||||
E(u,v) \approx \sum _{x,y} u^{2}I_{x}^{2} + 2uvI_{x}I_{y} + v^{2}I_{y}^{2}
|
||||
|
||||
* Which can be expressed in a matrix form as:
|
||||
|
||||
.. math::
|
||||
|
||||
E(u,v) \approx \begin{bmatrix}
|
||||
u & v
|
||||
\end{bmatrix}
|
||||
\left (
|
||||
\displaystyle \sum_{x,y}
|
||||
w(x,y)
|
||||
\begin{bmatrix}
|
||||
I_x^{2} & I_{x}I_{y} \\
|
||||
I_xI_{y} & I_{y}^{2}
|
||||
\end{bmatrix}
|
||||
\right )
|
||||
\begin{bmatrix}
|
||||
u \\
|
||||
v
|
||||
\end{bmatrix}
|
||||
|
||||
* Let's denote:
|
||||
|
||||
.. math::
|
||||
|
||||
M = \displaystyle \sum_{x,y}
|
||||
w(x,y)
|
||||
\begin{bmatrix}
|
||||
I_x^{2} & I_{x}I_{y} \\
|
||||
I_xI_{y} & I_{y}^{2}
|
||||
\end{bmatrix}
|
||||
|
||||
* So, our equation now is:
|
||||
|
||||
.. math::
|
||||
|
||||
E(u,v) \approx \begin{bmatrix}
|
||||
u & v
|
||||
\end{bmatrix}
|
||||
M
|
||||
\begin{bmatrix}
|
||||
u \\
|
||||
v
|
||||
\end{bmatrix}
|
||||
|
||||
|
||||
* A score is calculated for each window, to determine if it can possibly contain a corner:
|
||||
|
||||
.. math::
|
||||
|
||||
R = det(M) - k(trace(M))^{2}
|
||||
|
||||
where:
|
||||
|
||||
* det(M) = :math:`\lambda_{1}\lambda_{2}`
|
||||
* trace(M) = :math:`\lambda_{1}+\lambda_{2}`
|
||||
|
||||
a window with a score :math:`R` greater than a certain value is considered a "corner"
|
||||
|
||||
Code
|
||||
====
|
||||
|
||||
This tutorial code's is shown lines below. You can also download it from `here <https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/TrackingMotion/cornerHarris_Demo.cpp>`_
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
/// Global variables
|
||||
Mat src, src_gray;
|
||||
int thresh = 200;
|
||||
int max_thresh = 255;
|
||||
|
||||
char* source_window = "Source image";
|
||||
char* corners_window = "Corners detected";
|
||||
|
||||
/// Function header
|
||||
void cornerHarris_demo( int, void* );
|
||||
|
||||
/* @function main */
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
/// Load source image and convert it to gray
|
||||
src = imread( argv[1], 1 );
|
||||
cvtColor( src, src_gray, COLOR_BGR2GRAY );
|
||||
|
||||
/// Create a window and a trackbar
|
||||
namedWindow( source_window, WINDOW_AUTOSIZE );
|
||||
createTrackbar( "Threshold: ", source_window, &thresh, max_thresh, cornerHarris_demo );
|
||||
imshow( source_window, src );
|
||||
|
||||
cornerHarris_demo( 0, 0 );
|
||||
|
||||
waitKey(0);
|
||||
return(0);
|
||||
}
|
||||
|
||||
/* @function cornerHarris_demo */
|
||||
void cornerHarris_demo( int, void* )
|
||||
{
|
||||
|
||||
Mat dst, dst_norm, dst_norm_scaled;
|
||||
dst = Mat::zeros( src.size(), CV_32FC1 );
|
||||
|
||||
/// Detector parameters
|
||||
int blockSize = 2;
|
||||
int apertureSize = 3;
|
||||
double k = 0.04;
|
||||
|
||||
/// Detecting corners
|
||||
cornerHarris( src_gray, dst, blockSize, apertureSize, k, BORDER_DEFAULT );
|
||||
|
||||
/// Normalizing
|
||||
normalize( dst, dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat() );
|
||||
convertScaleAbs( dst_norm, dst_norm_scaled );
|
||||
|
||||
/// Drawing a circle around corners
|
||||
for( int j = 0; j < dst_norm.rows ; j++ )
|
||||
{ for( int i = 0; i < dst_norm.cols; i++ )
|
||||
{
|
||||
if( (int) dst_norm.at<float>(j,i) > thresh )
|
||||
{
|
||||
circle( dst_norm_scaled, Point( i, j ), 5, Scalar(0), 2, 8, 0 );
|
||||
}
|
||||
}
|
||||
}
|
||||
/// Showing the result
|
||||
namedWindow( corners_window, WINDOW_AUTOSIZE );
|
||||
imshow( corners_window, dst_norm_scaled );
|
||||
}
|
||||
|
||||
|
||||
Explanation
|
||||
============
|
||||
|
||||
Result
|
||||
======
|
||||
|
||||
The original image:
|
||||
|
||||
.. image:: images/Harris_Detector_Original_Image.jpg
|
||||
:align: center
|
||||
|
||||
The detected corners are surrounded by a small black circle
|
||||
|
||||
.. image:: images/Harris_Detector_Result.jpg
|
||||
:align: center
|
Reference in New Issue
Block a user