Removed Sphinx documentation files
This commit is contained in:
@@ -1,444 +0,0 @@
|
||||
.. _cameraCalibrationOpenCV:
|
||||
|
||||
Camera calibration With OpenCV
|
||||
******************************
|
||||
|
||||
Cameras have been around for a long-long time. However, with the introduction of the cheap *pinhole* cameras in the late 20th century, they became a common occurrence in our everyday life. Unfortunately, this cheapness comes with its price: significant distortion. Luckily, these are constants and with a calibration and some remapping we can correct this. Furthermore, with calibration you may also determine the relation between the camera's natural units (pixels) and the real world units (for example millimeters).
|
||||
|
||||
Theory
|
||||
======
|
||||
|
||||
For the distortion OpenCV takes into account the radial and tangential factors. For the radial factor one uses the following formula:
|
||||
|
||||
.. math::
|
||||
|
||||
x_{corrected} = x( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6) \\
|
||||
y_{corrected} = y( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6)
|
||||
|
||||
So for an old pixel point at :math:`(x,y)` coordinates in the input image, its position on the corrected output image will be :math:`(x_{corrected} y_{corrected})`. The presence of the radial distortion manifests in form of the "barrel" or "fish-eye" effect.
|
||||
|
||||
Tangential distortion occurs because the image taking lenses are not perfectly parallel to the imaging plane. It can be corrected via the formulas:
|
||||
|
||||
.. math::
|
||||
|
||||
x_{corrected} = x + [ 2p_1xy + p_2(r^2+2x^2)] \\
|
||||
y_{corrected} = y + [ p_1(r^2+ 2y^2)+ 2p_2xy]
|
||||
|
||||
So we have five distortion parameters which in OpenCV are presented as one row matrix with 5 columns:
|
||||
|
||||
.. math::
|
||||
|
||||
Distortion_{coefficients}=(k_1 \hspace{10pt} k_2 \hspace{10pt} p_1 \hspace{10pt} p_2 \hspace{10pt} k_3)
|
||||
|
||||
Now for the unit conversion we use the following formula:
|
||||
|
||||
.. math::
|
||||
|
||||
\left [ \begin{matrix} x \\ y \\ w \end{matrix} \right ] = \left [ \begin{matrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} X \\ Y \\ Z \end{matrix} \right ]
|
||||
|
||||
Here the presence of :math:`w` is explained by the use of homography coordinate system (and :math:`w=Z`). The unknown parameters are :math:`f_x` and :math:`f_y` (camera focal lengths) and :math:`(c_x, c_y)` which are the optical centers expressed in pixels coordinates. If for both axes a common focal length is used with a given :math:`a` aspect ratio (usually 1), then :math:`f_y=f_x*a` and in the upper formula we will have a single focal length :math:`f`. The matrix containing these four parameters is referred to as the *camera matrix*. While the distortion coefficients are the same regardless of the camera resolutions used, these should be scaled along with the current resolution from the calibrated resolution.
|
||||
|
||||
The process of determining these two matrices is the calibration. Calculation of these parameters is done through basic geometrical equations. The equations used depend on the chosen calibrating objects. Currently OpenCV supports three types of objects for calibration:
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
+ Classical black-white chessboard
|
||||
+ Symmetrical circle pattern
|
||||
+ Asymmetrical circle pattern
|
||||
|
||||
Basically, you need to take snapshots of these patterns with your camera and let OpenCV find them. Each found pattern results in a new equation. To solve the equation you need at least a predetermined number of pattern snapshots to form a well-posed equation system. This number is higher for the chessboard pattern and less for the circle ones. For example, in theory the chessboard pattern requires at least two snapshots. However, in practice we have a good amount of noise present in our input images, so for good results you will probably need at least 10 good snapshots of the input pattern in different positions.
|
||||
|
||||
Goal
|
||||
====
|
||||
|
||||
The sample application will:
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
+ Determine the distortion matrix
|
||||
+ Determine the camera matrix
|
||||
+ Take input from Camera, Video and Image file list
|
||||
+ Read configuration from XML/YAML file
|
||||
+ Save the results into XML/YAML file
|
||||
+ Calculate re-projection error
|
||||
|
||||
Source code
|
||||
===========
|
||||
|
||||
You may also find the source code in the :file:`samples/cpp/tutorial_code/calib3d/camera_calibration/` folder of the OpenCV source library or :download:`download it from here <../../../../samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp>`. The program has a single argument: the name of its configuration file. If none is given then it will try to open the one named "default.xml". :download:`Here's a sample configuration file <../../../../samples/cpp/tutorial_code/calib3d/camera_calibration/in_VID5.xml>` in XML format. In the configuration file you may choose to use camera as an input, a video file or an image list. If you opt for the last one, you will need to create a configuration file where you enumerate the images to use. Here's :download:`an example of this <../../../../samples/cpp/tutorial_code/calib3d/camera_calibration/VID5.xml>`. The important part to remember is that the images need to be specified using the absolute path or the relative one from your application's working directory. You may find all this in the samples directory mentioned above.
|
||||
|
||||
The application starts up with reading the settings from the configuration file. Although, this is an important part of it, it has nothing to do with the subject of this tutorial: *camera calibration*. Therefore, I've chosen not to post the code for that part here. Technical background on how to do this you can find in the :ref:`fileInputOutputXMLYAML` tutorial.
|
||||
|
||||
Explanation
|
||||
===========
|
||||
|
||||
1. **Read the settings.**
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
Settings s;
|
||||
const string inputSettingsFile = argc > 1 ? argv[1] : "default.xml";
|
||||
FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settings
|
||||
if (!fs.isOpened())
|
||||
{
|
||||
cout << "Could not open the configuration file: \"" << inputSettingsFile << "\"" << endl;
|
||||
return -1;
|
||||
}
|
||||
fs["Settings"] >> s;
|
||||
fs.release(); // close Settings file
|
||||
|
||||
if (!s.goodInput)
|
||||
{
|
||||
cout << "Invalid input detected. Application stopping. " << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
For this I've used simple OpenCV class input operation. After reading the file I've an additional post-processing function that checks validity of the input. Only if all inputs are good then *goodInput* variable will be true.
|
||||
|
||||
#. **Get next input, if it fails or we have enough of them - calibrate**. After this we have a big loop where we do the following operations: get the next image from the image list, camera or video file. If this fails or we have enough images then we run the calibration process. In case of image we step out of the loop and otherwise the remaining frames will be undistorted (if the option is set) via changing from *DETECTION* mode to the *CALIBRATED* one.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
for(int i = 0;;++i)
|
||||
{
|
||||
Mat view;
|
||||
bool blinkOutput = false;
|
||||
|
||||
view = s.nextImage();
|
||||
|
||||
//----- If no more image, or got enough, then stop calibration and show result -------------
|
||||
if( mode == CAPTURING && imagePoints.size() >= (unsigned)s.nrFrames )
|
||||
{
|
||||
if( runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints))
|
||||
mode = CALIBRATED;
|
||||
else
|
||||
mode = DETECTION;
|
||||
}
|
||||
if(view.empty()) // If no more images then run calibration, save and stop loop.
|
||||
{
|
||||
if( imagePoints.size() > 0 )
|
||||
runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints);
|
||||
break;
|
||||
imageSize = view.size(); // Format input image.
|
||||
if( s.flipVertical ) flip( view, view, 0 );
|
||||
}
|
||||
|
||||
For some cameras we may need to flip the input image. Here we do this too.
|
||||
|
||||
#. **Find the pattern in the current input**. The formation of the equations I mentioned above aims to finding major patterns in the input: in case of the chessboard this are corners of the squares and for the circles, well, the circles themselves. The position of these will form the result which will be written into the *pointBuf* vector.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
vector<Point2f> pointBuf;
|
||||
|
||||
bool found;
|
||||
switch( s.calibrationPattern ) // Find feature points on the input format
|
||||
{
|
||||
case Settings::CHESSBOARD:
|
||||
found = findChessboardCorners( view, s.boardSize, pointBuf,
|
||||
CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_FAST_CHECK | CALIB_CB_NORMALIZE_IMAGE);
|
||||
break;
|
||||
case Settings::CIRCLES_GRID:
|
||||
found = findCirclesGrid( view, s.boardSize, pointBuf );
|
||||
break;
|
||||
case Settings::ASYMMETRIC_CIRCLES_GRID:
|
||||
found = findCirclesGrid( view, s.boardSize, pointBuf, CALIB_CB_ASYMMETRIC_GRID );
|
||||
break;
|
||||
}
|
||||
|
||||
Depending on the type of the input pattern you use either the :calib3d:`findChessboardCorners <findchessboardcorners>` or the :calib3d:`findCirclesGrid <findcirclesgrid>` function. For both of them you pass the current image and the size of the board and you'll get the positions of the patterns. Furthermore, they return a boolean variable which states if the pattern was found in the input (we only need to take into account those images where this is true!).
|
||||
|
||||
Then again in case of cameras we only take camera images when an input delay time is passed. This is done in order to allow user moving the chessboard around and getting different images. Similar images result in similar equations, and similar equations at the calibration step will form an ill-posed problem, so the calibration will fail. For square images the positions of the corners are only approximate. We may improve this by calling the :feature2d:`cornerSubPix <cornersubpix>` function. It will produce better calibration result. After this we add a valid inputs result to the *imagePoints* vector to collect all of the equations into a single container. Finally, for visualization feedback purposes we will draw the found points on the input image using :calib3d:`findChessboardCorners <drawchessboardcorners>` function.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
if ( found) // If done with success,
|
||||
{
|
||||
// improve the found corners' coordinate accuracy for chessboard
|
||||
if( s.calibrationPattern == Settings::CHESSBOARD)
|
||||
{
|
||||
Mat viewGray;
|
||||
cvtColor(view, viewGray, COLOR_BGR2GRAY);
|
||||
cornerSubPix( viewGray, pointBuf, Size(11,11),
|
||||
Size(-1,-1), TermCriteria( TermCriteria::EPS+TermCriteria::MAX_ITER, 30, 0.1 ));
|
||||
}
|
||||
|
||||
if( mode == CAPTURING && // For camera only take new samples after delay time
|
||||
(!s.inputCapture.isOpened() || clock() - prevTimestamp > s.delay*1e-3*CLOCKS_PER_SEC) )
|
||||
{
|
||||
imagePoints.push_back(pointBuf);
|
||||
prevTimestamp = clock();
|
||||
blinkOutput = s.inputCapture.isOpened();
|
||||
}
|
||||
|
||||
// Draw the corners.
|
||||
drawChessboardCorners( view, s.boardSize, Mat(pointBuf), found );
|
||||
}
|
||||
|
||||
#. **Show state and result to the user, plus command line control of the application**. This part shows text output on the image.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
//----------------------------- Output Text ------------------------------------------------
|
||||
string msg = (mode == CAPTURING) ? "100/100" :
|
||||
mode == CALIBRATED ? "Calibrated" : "Press 'g' to start";
|
||||
int baseLine = 0;
|
||||
Size textSize = getTextSize(msg, 1, 1, 1, &baseLine);
|
||||
Point textOrigin(view.cols - 2*textSize.width - 10, view.rows - 2*baseLine - 10);
|
||||
|
||||
if( mode == CAPTURING )
|
||||
{
|
||||
if(s.showUndistorsed)
|
||||
msg = format( "%d/%d Undist", (int)imagePoints.size(), s.nrFrames );
|
||||
else
|
||||
msg = format( "%d/%d", (int)imagePoints.size(), s.nrFrames );
|
||||
}
|
||||
|
||||
putText( view, msg, textOrigin, 1, 1, mode == CALIBRATED ? GREEN : RED);
|
||||
|
||||
if( blinkOutput )
|
||||
bitwise_not(view, view);
|
||||
|
||||
If we ran calibration and got camera's matrix with the distortion coefficients we may want to correct the image using :imgproc_geometric:`undistort <undistort>` function:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
//------------------------- Video capture output undistorted ------------------------------
|
||||
if( mode == CALIBRATED && s.showUndistorsed )
|
||||
{
|
||||
Mat temp = view.clone();
|
||||
undistort(temp, view, cameraMatrix, distCoeffs);
|
||||
}
|
||||
//------------------------------ Show image and check for input commands -------------------
|
||||
imshow("Image View", view);
|
||||
|
||||
Then we wait for an input key and if this is *u* we toggle the distortion removal, if it is *g* we start again the detection process, and finally for the *ESC* key we quit the application:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
char key = waitKey(s.inputCapture.isOpened() ? 50 : s.delay);
|
||||
if( key == ESC_KEY )
|
||||
break;
|
||||
|
||||
if( key == 'u' && mode == CALIBRATED )
|
||||
s.showUndistorsed = !s.showUndistorsed;
|
||||
|
||||
if( s.inputCapture.isOpened() && key == 'g' )
|
||||
{
|
||||
mode = CAPTURING;
|
||||
imagePoints.clear();
|
||||
}
|
||||
|
||||
#. **Show the distortion removal for the images too**. When you work with an image list it is not possible to remove the distortion inside the loop. Therefore, you must do this after the loop. Taking advantage of this now I'll expand the :imgproc_geometric:`undistort <undistort>` function, which is in fact first calls :imgproc_geometric:`initUndistortRectifyMap <initundistortrectifymap>` to find transformation matrices and then performs transformation using :imgproc_geometric:`remap <remap>` function. Because, after successful calibration map calculation needs to be done only once, by using this expanded form you may speed up your application:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
if( s.inputType == Settings::IMAGE_LIST && s.showUndistorsed )
|
||||
{
|
||||
Mat view, rview, map1, map2;
|
||||
initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(),
|
||||
getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0),
|
||||
imageSize, CV_16SC2, map1, map2);
|
||||
|
||||
for(int i = 0; i < (int)s.imageList.size(); i++ )
|
||||
{
|
||||
view = imread(s.imageList[i], 1);
|
||||
if(view.empty())
|
||||
continue;
|
||||
remap(view, rview, map1, map2, INTER_LINEAR);
|
||||
imshow("Image View", rview);
|
||||
char c = waitKey();
|
||||
if( c == ESC_KEY || c == 'q' || c == 'Q' )
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
The calibration and save
|
||||
========================
|
||||
|
||||
Because the calibration needs to be done only once per camera, it makes sense to save it after a successful calibration. This way later on you can just load these values into your program. Due to this we first make the calibration, and if it succeeds we save the result into an OpenCV style XML or YAML file, depending on the extension you give in the configuration file.
|
||||
|
||||
Therefore in the first function we just split up these two processes. Because we want to save many of the calibration variables we'll create these variables here and pass on both of them to the calibration and saving function. Again, I'll not show the saving part as that has little in common with the calibration. Explore the source file in order to find out how and what:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
|
||||
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,vector<vector<Point2f> > imagePoints )
|
||||
{
|
||||
vector<Mat> rvecs, tvecs;
|
||||
vector<float> reprojErrs;
|
||||
double totalAvgErr = 0;
|
||||
|
||||
bool ok = runCalibration(s,imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs,
|
||||
reprojErrs, totalAvgErr);
|
||||
cout << (ok ? "Calibration succeeded" : "Calibration failed")
|
||||
<< ". avg re projection error = " << totalAvgErr ;
|
||||
|
||||
if( ok ) // save only if the calibration was done with success
|
||||
saveCameraParams( s, imageSize, cameraMatrix, distCoeffs, rvecs ,tvecs, reprojErrs,
|
||||
imagePoints, totalAvgErr);
|
||||
return ok;
|
||||
}
|
||||
|
||||
We do the calibration with the help of the :calib3d:`calibrateCamera <calibratecamera>` function. It has the following parameters:
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
+ The object points. This is a vector of *Point3f* vector that for each input image describes how should the pattern look. If we have a planar pattern (like a chessboard) then we can simply set all Z coordinates to zero. This is a collection of the points where these important points are present. Because, we use a single pattern for all the input images we can calculate this just once and multiply it for all the other input views. We calculate the corner points with the *calcBoardCornerPositions* function as:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners,
|
||||
Settings::Pattern patternType /*= Settings::CHESSBOARD*/)
|
||||
{
|
||||
corners.clear();
|
||||
|
||||
switch(patternType)
|
||||
{
|
||||
case Settings::CHESSBOARD:
|
||||
case Settings::CIRCLES_GRID:
|
||||
for( int i = 0; i < boardSize.height; ++i )
|
||||
for( int j = 0; j < boardSize.width; ++j )
|
||||
corners.push_back(Point3f(float( j*squareSize ), float( i*squareSize ), 0));
|
||||
break;
|
||||
|
||||
case Settings::ASYMMETRIC_CIRCLES_GRID:
|
||||
for( int i = 0; i < boardSize.height; i++ )
|
||||
for( int j = 0; j < boardSize.width; j++ )
|
||||
corners.push_back(Point3f(float((2*j + i % 2)*squareSize), float(i*squareSize), 0));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
And then multiply it as:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
vector<vector<Point3f> > objectPoints(1);
|
||||
calcBoardCornerPositions(s.boardSize, s.squareSize, objectPoints[0], s.calibrationPattern);
|
||||
objectPoints.resize(imagePoints.size(),objectPoints[0]);
|
||||
|
||||
+ The image points. This is a vector of *Point2f* vector which for each input image contains coordinates of the important points (corners for chessboard and centers of the circles for the circle pattern). We have already collected this from :calib3d:`findChessboardCorners <findchessboardcorners>` or :calib3d:`findCirclesGrid <findcirclesgrid>` function. We just need to pass it on.
|
||||
|
||||
+ The size of the image acquired from the camera, video file or the images.
|
||||
|
||||
+ The camera matrix. If we used the fixed aspect ratio option we need to set the :math:`f_x` to zero:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
cameraMatrix = Mat::eye(3, 3, CV_64F);
|
||||
if( s.flag & CALIB_FIX_ASPECT_RATIO )
|
||||
cameraMatrix.at<double>(0,0) = 1.0;
|
||||
|
||||
+ The distortion coefficient matrix. Initialize with zero.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
distCoeffs = Mat::zeros(8, 1, CV_64F);
|
||||
|
||||
+ For all the views the function will calculate rotation and translation vectors which transform the object points (given in the model coordinate space) to the image points (given in the world coordinate space). The 7-th and 8-th parameters are the output vector of matrices containing in the i-th position the rotation and translation vector for the i-th object point to the i-th image point.
|
||||
|
||||
+ The final argument is the flag. You need to specify here options like fix the aspect ratio for the focal length, assume zero tangential distortion or to fix the principal point.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
double rms = calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix,
|
||||
distCoeffs, rvecs, tvecs, s.flag|CV_CALIB_FIX_K4|CV_CALIB_FIX_K5);
|
||||
|
||||
+ The function returns the average re-projection error. This number gives a good estimation of precision of the found parameters. This should be as close to zero as possible. Given the intrinsic, distortion, rotation and translation matrices we may calculate the error for one view by using the :calib3d:`projectPoints <projectpoints>` to first transform the object point to image point. Then we calculate the absolute norm between what we got with our transformation and the corner/circle finding algorithm. To find the average error we calculate the arithmetical mean of the errors calculated for all the calibration images.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints,
|
||||
const vector<vector<Point2f> >& imagePoints,
|
||||
const vector<Mat>& rvecs, const vector<Mat>& tvecs,
|
||||
const Mat& cameraMatrix , const Mat& distCoeffs,
|
||||
vector<float>& perViewErrors)
|
||||
{
|
||||
vector<Point2f> imagePoints2;
|
||||
int i, totalPoints = 0;
|
||||
double totalErr = 0, err;
|
||||
perViewErrors.resize(objectPoints.size());
|
||||
|
||||
for( i = 0; i < (int)objectPoints.size(); ++i )
|
||||
{
|
||||
projectPoints( Mat(objectPoints[i]), rvecs[i], tvecs[i], cameraMatrix, // project
|
||||
distCoeffs, imagePoints2);
|
||||
err = norm(Mat(imagePoints[i]), Mat(imagePoints2), NORM_L2); // difference
|
||||
|
||||
int n = (int)objectPoints[i].size();
|
||||
perViewErrors[i] = (float) std::sqrt(err*err/n); // save for this view
|
||||
totalErr += err*err; // sum it up
|
||||
totalPoints += n;
|
||||
}
|
||||
|
||||
return std::sqrt(totalErr/totalPoints); // calculate the arithmetical mean
|
||||
}
|
||||
|
||||
Results
|
||||
=======
|
||||
|
||||
Let there be :download:`this input chessboard pattern <../../../pattern.png>` which has a size of 9 X 6. I've used an AXIS IP camera to create a couple of snapshots of the board and saved it into VID5 directory. I've put this inside the :file:`images/CameraCalibration` folder of my working directory and created the following :file:`VID5.XML` file that describes which images to use:
|
||||
|
||||
.. code-block:: xml
|
||||
|
||||
<?xml version="1.0"?>
|
||||
<opencv_storage>
|
||||
<images>
|
||||
images/CameraCalibration/VID5/xx1.jpg
|
||||
images/CameraCalibration/VID5/xx2.jpg
|
||||
images/CameraCalibration/VID5/xx3.jpg
|
||||
images/CameraCalibration/VID5/xx4.jpg
|
||||
images/CameraCalibration/VID5/xx5.jpg
|
||||
images/CameraCalibration/VID5/xx6.jpg
|
||||
images/CameraCalibration/VID5/xx7.jpg
|
||||
images/CameraCalibration/VID5/xx8.jpg
|
||||
</images>
|
||||
</opencv_storage>
|
||||
|
||||
Then passed :file:`images/CameraCalibration/VID5/VID5.XML` as an input in the configuration file. Here's a chessboard pattern found during the runtime of the application:
|
||||
|
||||
.. image:: images/fileListImage.jpg
|
||||
:alt: A found chessboard
|
||||
:align: center
|
||||
|
||||
After applying the distortion removal we get:
|
||||
|
||||
.. image:: images/fileListImageUnDist.jpg
|
||||
:alt: Distortion removal for File List
|
||||
:align: center
|
||||
|
||||
The same works for :download:`this asymmetrical circle pattern <../../../acircles_pattern.png>` by setting the input width to 4 and height to 11. This time I've used a live camera feed by specifying its ID ("1") for the input. Here's, how a detected pattern should look:
|
||||
|
||||
.. image:: images/asymetricalPattern.jpg
|
||||
:alt: Asymmetrical circle detection
|
||||
:align: center
|
||||
|
||||
In both cases in the specified output XML/YAML file you'll find the camera and distortion coefficients matrices:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
<Camera_Matrix type_id="opencv-matrix">
|
||||
<rows>3</rows>
|
||||
<cols>3</cols>
|
||||
<dt>d</dt>
|
||||
<data>
|
||||
6.5746697944293521e+002 0. 3.1950000000000000e+002 0.
|
||||
6.5746697944293521e+002 2.3950000000000000e+002 0. 0. 1.</data></Camera_Matrix>
|
||||
<Distortion_Coefficients type_id="opencv-matrix">
|
||||
<rows>5</rows>
|
||||
<cols>1</cols>
|
||||
<dt>d</dt>
|
||||
<data>
|
||||
-4.1802327176423804e-001 5.0715244063187526e-001 0. 0.
|
||||
-5.7843597214487474e-001</data></Distortion_Coefficients>
|
||||
|
||||
Add these values as constants to your program, call the :imgproc_geometric:`initUndistortRectifyMap <initundistortrectifymap>` and the :imgproc_geometric:`remap <remap>` function to remove distortion and enjoy distortion free inputs for cheap and low quality cameras.
|
||||
|
||||
You may observe a runtime instance of this on the `YouTube here <https://www.youtube.com/watch?v=ViPN810E0SU>`_.
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<div align="center">
|
||||
<iframe title=" Camera calibration With OpenCV - Chessboard or asymmetrical circle pattern." width="560" height="349" src="http://www.youtube.com/embed/ViPN810E0SU?rel=0&loop=1" frameborder="0" allowfullscreen align="middle"></iframe>
|
||||
</div>
|
@@ -1,62 +0,0 @@
|
||||
.. _CameraCalibrationSquareChessBoardTutorial:
|
||||
|
||||
Camera calibration with square chessboard
|
||||
*****************************************
|
||||
|
||||
.. highlight:: cpp
|
||||
|
||||
The goal of this tutorial is to learn how to calibrate a camera given a set of chessboard images.
|
||||
|
||||
*Test data*: use images in your data/chess folder.
|
||||
|
||||
#.
|
||||
Compile opencv with samples by setting ``BUILD_EXAMPLES`` to ``ON`` in cmake configuration.
|
||||
|
||||
#.
|
||||
Go to ``bin`` folder and use ``imagelist_creator`` to create an ``XML/YAML`` list of your images.
|
||||
|
||||
#.
|
||||
Then, run ``calibration`` sample to get camera parameters. Use square size equal to 3cm.
|
||||
|
||||
Pose estimation
|
||||
===============
|
||||
|
||||
Now, let us write a code that detects a chessboard in a new image and finds its distance from the camera. You can apply the same method to any object with known 3D geometry that you can detect in an image.
|
||||
|
||||
*Test data*: use chess_test*.jpg images from your data folder.
|
||||
|
||||
#.
|
||||
Create an empty console project. Load a test image: ::
|
||||
|
||||
Mat img = imread(argv[1], IMREAD_GRAYSCALE);
|
||||
|
||||
#.
|
||||
Detect a chessboard in this image using findChessboard function. ::
|
||||
|
||||
bool found = findChessboardCorners( img, boardSize, ptvec, CALIB_CB_ADAPTIVE_THRESH );
|
||||
|
||||
#.
|
||||
Now, write a function that generates a ``vector<Point3f>`` array of 3d coordinates of a chessboard in any coordinate system. For simplicity, let us choose a system such that one of the chessboard corners is in the origin and the board is in the plane *z = 0*.
|
||||
|
||||
#.
|
||||
Read camera parameters from XML/YAML file: ::
|
||||
|
||||
FileStorage fs(filename, FileStorage::READ);
|
||||
Mat intrinsics, distortion;
|
||||
fs["camera_matrix"] >> intrinsics;
|
||||
fs["distortion_coefficients"] >> distortion;
|
||||
|
||||
#.
|
||||
Now we are ready to find chessboard pose by running ``solvePnP``: ::
|
||||
|
||||
vector<Point3f> boardPoints;
|
||||
// fill the array
|
||||
...
|
||||
|
||||
solvePnP(Mat(boardPoints), Mat(foundBoardCorners), cameraMatrix,
|
||||
distCoeffs, rvec, tvec, false);
|
||||
|
||||
#.
|
||||
Calculate reprojection error like it is done in ``calibration`` sample (see ``opencv/samples/cpp/calibration.cpp``, function ``computeReprojectionErrors``).
|
||||
|
||||
Question: how to calculate the distance from the camera origin to any of the corners?
|
@@ -1,749 +0,0 @@
|
||||
.. _realTimePoseEstimation:
|
||||
|
||||
Real Time pose estimation of a textured object
|
||||
**********************************************
|
||||
|
||||
Nowadays, augmented reality is one of the top research topic in computer vision and robotics fields. The most elemental problem in augmented reality is the estimation of the camera pose respect of an object in the case of computer vision area to do later some 3D rendering or in the case of robotics obtain an object pose in order to grasp it and do some manipulation. However, this is not a trivial problem to solve due to the fact that the most common issue in image processing is the computational cost of applying a lot of algorithms or mathematical operations for solving a problem which is basic and immediateley for humans.
|
||||
|
||||
|
||||
Goal
|
||||
====
|
||||
|
||||
In this tutorial is explained how to build a real time application to estimate the camera pose in order to track a textured object with six degrees of freedom given a 2D image and its 3D textured model.
|
||||
|
||||
The application will have the followings parts:
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
+ Read 3D textured object model and object mesh.
|
||||
+ Take input from Camera or Video.
|
||||
+ Extract ORB features and descriptors from the scene.
|
||||
+ Match scene descriptors with model descriptors using Flann matcher.
|
||||
+ Pose estimation using PnP + Ransac.
|
||||
+ Linear Kalman Filter for bad poses rejection.
|
||||
|
||||
|
||||
Theory
|
||||
======
|
||||
|
||||
In computer vision estimate the camera pose from *n* 3D-to-2D point correspondences is a fundamental and well understood problem. The most general version of the problem requires estimating the six degrees of freedom of the pose and five calibration parameters: focal length, principal point, aspect ratio and skew. It could be established with a minimum of 6 correspondences, using the well known Direct Linear Transform (DLT) algorithm. There are, though, several simplifications to the problem which turn into an extensive list of different algorithms that improve the accuracy of the DLT.
|
||||
|
||||
The most common simplification is to assume known calibration parameters which is the so-called Perspective-*n*-Point problem:
|
||||
|
||||
.. image:: images/pnp.jpg
|
||||
:alt: Perspective-n-Point problem scheme
|
||||
:align: center
|
||||
|
||||
**Problem Formulation:** Given a set of correspondences between 3D points :math:`p_i` expressed in a world reference frame, and their 2D projections :math:`u_i` onto the image, we seek to retrieve the pose (:math:`R` and :math:`t`) of the camera w.r.t. the world and the focal length :math:`f`.
|
||||
|
||||
OpenCV provides four different approaches to solve the Perspective-*n*-Point problem which return :math:`R` and :math:`t`. Then, using the following formula it's possible to project 3D points into the image plane:
|
||||
|
||||
.. math::
|
||||
|
||||
s\ \left [ \begin{matrix} u \\ v \\ 1 \end{matrix} \right ] = \left [ \begin{matrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{matrix} \right ] \left [ \begin{matrix} X \\ Y \\ Z\\ 1 \end{matrix} \right ]
|
||||
|
||||
The complete documentation of how to manage with this equations is in :calib3d:`Camera Calibration and 3D Reconstruction <>`.
|
||||
|
||||
Source code
|
||||
===========
|
||||
|
||||
You can find the source code of this tutorial in the :file:`samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/` folder of the OpenCV source library.
|
||||
|
||||
The tutorial consists of two main programs:
|
||||
|
||||
1. **Model registration**
|
||||
|
||||
This applicaton is exclusive to whom don't have a 3D textured model of the object to be detected. You can use this program to create your own textured 3D model. This program only works for planar objects, then if you want to model an object with complex shape you should use a sophisticated software to create it.
|
||||
|
||||
The application needs an input image of the object to be registered and its 3D mesh. We have also to provide the intrinsic parameters of the camera with which the input image was taken. All the files need to be specified using the absolute path or the relative one from your application’s working directory. If none files are specified the program will try to open the provided default parameters.
|
||||
|
||||
The application starts up extracting the ORB features and descriptors from the input image and then uses the mesh along with the `Möller–Trumbore intersection algorithm <http://http://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm/>`_ to compute the 3D coordinates of the found features. Finally, the 3D points and the descriptors are stored in different lists in a file with YAML format which each row is a different point. The technical background on how to store the files can be found in the :ref:`fileInputOutputXMLYAML` tutorial.
|
||||
|
||||
.. image:: images/registration.png
|
||||
:alt: Model registration
|
||||
:align: center
|
||||
|
||||
|
||||
2. **Model detection**
|
||||
|
||||
The aim of this application is estimate in real time the object pose given its 3D textured model.
|
||||
|
||||
The application starts up loading the 3D textured model in YAML file format with the same structure explained in the model registration program. From the scene, the ORB features and descriptors are detected and extracted. Then, is used :flann_based_matcher:`FlannBasedMatcher<>` with :flann:`LshIndexParams <flann-index-t-index>` to do the matching between the scene descriptors and the model descriptors. Using the found matches along with :calib3d:`solvePnPRansac <solvepnpransac>` function the :math:`R` and :math:`t` of the camera are computed. Finally, a :video:`KalmanFilter<kalmanfilter>` is applied in order to reject bad poses.
|
||||
|
||||
In the case that you compiled OpenCV with the samples, you can find it in :file:`opencv/build/bin/cpp-tutorial-pnp_detection`. Then you can run the application and change some parameters:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
This program shows how to detect an object given its 3D textured model. You can choose to use a recorded video or the webcam.
|
||||
Usage:
|
||||
./cpp-tutorial-pnp_detection -help
|
||||
Keys:
|
||||
'esc' - to quit.
|
||||
--------------------------------------------------------------------------
|
||||
|
||||
Usage: cpp-tutorial-pnp_detection [params]
|
||||
|
||||
-c, --confidence (value:0.95)
|
||||
RANSAC confidence
|
||||
-e, --error (value:2.0)
|
||||
RANSAC reprojection errror
|
||||
-f, --fast (value:true)
|
||||
use of robust fast match
|
||||
-h, --help (value:true)
|
||||
print this message
|
||||
--in, --inliers (value:30)
|
||||
minimum inliers for Kalman update
|
||||
--it, --iterations (value:500)
|
||||
RANSAC maximum iterations count
|
||||
-k, --keypoints (value:2000)
|
||||
number of keypoints to detect
|
||||
--mesh
|
||||
path to ply mesh
|
||||
--method, --pnp (value:0)
|
||||
PnP method: (0) ITERATIVE - (1) EPNP - (2) P3P - (3) DLS
|
||||
--model
|
||||
path to yml model
|
||||
-r, --ratio (value:0.7)
|
||||
threshold for ratio test
|
||||
-v, --video
|
||||
path to recorded video
|
||||
|
||||
For example, you can run the application changing the pnp method:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
./cpp-tutorial-pnp_detection --method=2
|
||||
|
||||
|
||||
Explanation
|
||||
===========
|
||||
|
||||
Here is explained in detail the code for the real time application:
|
||||
|
||||
1. **Read 3D textured object model and object mesh.**
|
||||
|
||||
In order to load the textured model I implemented the *class* **Model** which has the function *load()* that opens a YAML file and take the stored 3D points with its corresponding descriptors. You can find an example of a 3D textured model in :file:`samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/Data/cookies_ORB.yml`.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/* Load a YAML file using OpenCV */
|
||||
void Model::load(const std::string path)
|
||||
{
|
||||
cv::Mat points3d_mat;
|
||||
|
||||
cv::FileStorage storage(path, cv::FileStorage::READ);
|
||||
storage["points_3d"] >> points3d_mat;
|
||||
storage["descriptors"] >> descriptors_;
|
||||
|
||||
points3d_mat.copyTo(list_points3d_in_);
|
||||
|
||||
storage.release();
|
||||
|
||||
}
|
||||
|
||||
In the main program the model is loaded as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
Model model; // instantiate Model object
|
||||
model.load(yml_read_path); // load a 3D textured object model
|
||||
|
||||
In order to read the model mesh I implemented a *class* **Mesh** which has a function *load()* that opens a :math:`*`.ply file and store the 3D points of the object and also the composed triangles. You can find an example of a model mesh in :file:`samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/Data/box.ply`.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/* Load a CSV with *.ply format */
|
||||
void Mesh::load(const std::string path)
|
||||
{
|
||||
|
||||
// Create the reader
|
||||
CsvReader csvReader(path);
|
||||
|
||||
// Clear previous data
|
||||
list_vertex_.clear();
|
||||
list_triangles_.clear();
|
||||
|
||||
// Read from .ply file
|
||||
csvReader.readPLY(list_vertex_, list_triangles_);
|
||||
|
||||
// Update mesh attributes
|
||||
num_vertexs_ = list_vertex_.size();
|
||||
num_triangles_ = list_triangles_.size();
|
||||
|
||||
}
|
||||
|
||||
In the main program the mesh is loaded as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
Mesh mesh; // instantiate Mesh object
|
||||
mesh.load(ply_read_path); // load an object mesh
|
||||
|
||||
You can also load different model and mesh:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
./cpp-tutorial-pnp_detection --mesh=/absolute_path_to_your_mesh.ply --model=/absolute_path_to_your_model.yml
|
||||
|
||||
|
||||
2. **Take input from Camera or Video**
|
||||
|
||||
To detect is necessary capture video. It's done loading a recorded video by passing the absolute path where it is located in your machine. In order to test the application you can find a recorded video in :file:`samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/Data/box.mp4`.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
cv::VideoCapture cap; // instantiate VideoCapture
|
||||
cap.open(video_read_path); // open a recorded video
|
||||
|
||||
if(!cap.isOpened()) // check if we succeeded
|
||||
{
|
||||
std::cout << "Could not open the camera device" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
Then the algorithm is computed frame per frame:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
cv::Mat frame, frame_vis;
|
||||
|
||||
while(cap.read(frame) && cv::waitKey(30) != 27) // capture frame until ESC is pressed
|
||||
{
|
||||
|
||||
frame_vis = frame.clone(); // refresh visualisation frame
|
||||
|
||||
// MAIN ALGORITHM
|
||||
|
||||
}
|
||||
|
||||
You can also load different recorded video:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
./cpp-tutorial-pnp_detection --video=/absolute_path_to_your_video.mp4
|
||||
|
||||
|
||||
3. **Extract ORB features and descriptors from the scene**
|
||||
|
||||
The next step is to detect the scene features and extract it descriptors. For this task I implemented a *class* **RobustMatcher** which has a function for keypoints detection and features extraction. You can find it in :file:`samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/src/RobusMatcher.cpp`. In your *RobusMatch* object you can use any of the 2D features detectors of OpenCV. In this case I used :feature_detection_and_description:`ORB<orb>` features because is based on :feature_detection_and_description:`FAST<fast>` to detect the keypoints and :descriptor_extractor:`BRIEF<briefdescriptorextractor>` to extract the descriptors which means that is fast and robust to rotations. You can find more detailed information about *ORB* in the documentation.
|
||||
|
||||
The following code is how to instantiate and set the features detector and the descriptors extractor:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
RobustMatcher rmatcher; // instantiate RobustMatcher
|
||||
|
||||
cv::FeatureDetector * detector = new cv::OrbFeatureDetector(numKeyPoints); // instatiate ORB feature detector
|
||||
cv::DescriptorExtractor * extractor = new cv::OrbDescriptorExtractor(); // instatiate ORB descriptor extractor
|
||||
|
||||
rmatcher.setFeatureDetector(detector); // set feature detector
|
||||
rmatcher.setDescriptorExtractor(extractor); // set descriptor extractor
|
||||
|
||||
The features and descriptors will be computed by the *RobustMatcher* inside the matching function.
|
||||
|
||||
|
||||
4. **Match scene descriptors with model descriptors using Flann matcher**
|
||||
|
||||
It is the first step in our detection algorithm. The main idea is to match the scene descriptors with our model descriptors in order to know the 3D coordinates of the found features into the current scene.
|
||||
|
||||
Firstly, we have to set which matcher we want to use. In this case is used :flann_based_matcher:`FlannBasedMatcher<>` matcher which in terms of computational cost is faster than the :brute_force_matcher:`BruteForceMatcher<bfmatcher>` matcher as we increase the trained collectction of features. Then, for FlannBased matcher the index created is *Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search* due to *ORB* descriptors are binary.
|
||||
|
||||
You can tune the *LSH* and search parameters to improve the matching efficiency:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
cv::Ptr<cv::flann::IndexParams> indexParams = cv::makePtr<cv::flann::LshIndexParams>(6, 12, 1); // instantiate LSH index parameters
|
||||
cv::Ptr<cv::flann::SearchParams> searchParams = cv::makePtr<cv::flann::SearchParams>(50); // instantiate flann search parameters
|
||||
|
||||
cv::DescriptorMatcher * matcher = new cv::FlannBasedMatcher(indexParams, searchParams); // instantiate FlannBased matcher
|
||||
rmatcher.setDescriptorMatcher(matcher); // set matcher
|
||||
|
||||
|
||||
Secondly, we have to call the matcher by using *robustMatch()* or *fastRobustMatch()* function. The difference of using this two functions is its computational cost. The first method is slower but more robust at filtering good matches because uses two ratio test and a symmetry test. In contrast, the second method is faster but less robust because only applies a single ratio test to the matches.
|
||||
|
||||
The following code is to get the model 3D points and its descriptors and then call the matcher in the main program:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Get the MODEL INFO
|
||||
|
||||
std::vector<cv::Point3f> list_points3d_model = model.get_points3d(); // list with model 3D coordinates
|
||||
cv::Mat descriptors_model = model.get_descriptors(); // list with descriptors of each 3D coordinate
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// -- Step 1: Robust matching between model descriptors and scene descriptors
|
||||
|
||||
std::vector<cv::DMatch> good_matches; // to obtain the model 3D points in the scene
|
||||
std::vector<cv::KeyPoint> keypoints_scene; // to obtain the 2D points of the scene
|
||||
|
||||
if(fast_match)
|
||||
{
|
||||
rmatcher.fastRobustMatch(frame, good_matches, keypoints_scene, descriptors_model);
|
||||
}
|
||||
else
|
||||
{
|
||||
rmatcher.robustMatch(frame, good_matches, keypoints_scene, descriptors_model);
|
||||
}
|
||||
|
||||
The following code corresponds to the *robustMatch()* function which belongs to the *RobustMatcher* class. This function uses the given image to detect the keypoints and extract the descriptors, match using *two Nearest Neighbour* the extracted descriptors with the given model descriptors and vice versa. Then, a ratio test is applied to the two direction matches in order to remove these matches which its distance ratio between the first and second best match is larger than a given threshold. Finally, a symmetry test is applied in order the remove non symmetrical matches.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void RobustMatcher::robustMatch( const cv::Mat& frame, std::vector<cv::DMatch>& good_matches,
|
||||
std::vector<cv::KeyPoint>& keypoints_frame,
|
||||
const std::vector<cv::KeyPoint>& keypoints_model, const cv::Mat& descriptors_model )
|
||||
{
|
||||
|
||||
// 1a. Detection of the ORB features
|
||||
this->computeKeyPoints(frame, keypoints_frame);
|
||||
|
||||
// 1b. Extraction of the ORB descriptors
|
||||
cv::Mat descriptors_frame;
|
||||
this->computeDescriptors(frame, keypoints_frame, descriptors_frame);
|
||||
|
||||
// 2. Match the two image descriptors
|
||||
std::vector<std::vector<cv::DMatch> > matches12, matches21;
|
||||
|
||||
// 2a. From image 1 to image 2
|
||||
matcher_->knnMatch(descriptors_frame, descriptors_model, matches12, 2); // return 2 nearest neighbours
|
||||
|
||||
// 2b. From image 2 to image 1
|
||||
matcher_->knnMatch(descriptors_model, descriptors_frame, matches21, 2); // return 2 nearest neighbours
|
||||
|
||||
// 3. Remove matches for which NN ratio is > than threshold
|
||||
// clean image 1 -> image 2 matches
|
||||
int removed1 = ratioTest(matches12);
|
||||
// clean image 2 -> image 1 matches
|
||||
int removed2 = ratioTest(matches21);
|
||||
|
||||
// 4. Remove non-symmetrical matches
|
||||
symmetryTest(matches12, matches21, good_matches);
|
||||
|
||||
}
|
||||
|
||||
After the matches filtering we have to subtract the 2D and 3D correspondences from the found scene keypoints and our 3D model using the obtained *DMatches* vector. For more information about :basicstructures:`DMatch <dmatch>` check the documentation.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// -- Step 2: Find out the 2D/3D correspondences
|
||||
|
||||
std::vector<cv::Point3f> list_points3d_model_match; // container for the model 3D coordinates found in the scene
|
||||
std::vector<cv::Point2f> list_points2d_scene_match; // container for the model 2D coordinates found in the scene
|
||||
|
||||
for(unsigned int match_index = 0; match_index < good_matches.size(); ++match_index)
|
||||
{
|
||||
cv::Point3f point3d_model = list_points3d_model[ good_matches[match_index].trainIdx ]; // 3D point from model
|
||||
cv::Point2f point2d_scene = keypoints_scene[ good_matches[match_index].queryIdx ].pt; // 2D point from the scene
|
||||
list_points3d_model_match.push_back(point3d_model); // add 3D point
|
||||
list_points2d_scene_match.push_back(point2d_scene); // add 2D point
|
||||
}
|
||||
|
||||
You can also change the ratio test threshold, the number of keypoints to detect as well as use or not the robust matcher:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
./cpp-tutorial-pnp_detection --ratio=0.8 --keypoints=1000 --fast=false
|
||||
|
||||
|
||||
5. **Pose estimation using PnP + Ransac**
|
||||
|
||||
Once with the 2D and 3D correspondences we have to apply a PnP algorithm in order to estimate the camera pose. The reason why we have to use :calib3d:`solvePnPRansac <solvepnpransac>` instead of :calib3d:`solvePnP <solvepnp>` is due to the fact that after the matching not all the found correspondences are correct and, as like as not, there are false correspondences or also called *outliers*. The `Random Sample Consensus <http://en.wikipedia.org/wiki/RANSAC>`_ or *Ransac* is a non-deterministic iterative method which estimate parameters of a mathematical model from observed data producing an aproximate result as the number of iterations increase. After appyling *Ransac* all the *outliers* will be eliminated to then estimate the camera pose with a certain probability to obtain a good solution.
|
||||
|
||||
For the camera pose estimation I have implemented a *class* **PnPProblem**. This *class* has 4 atributes: a given calibration matrix, the rotation matrix, the translation matrix and the rotation-translation matrix. The intrinsic calibration parameters of the camera which you are using to estimate the pose are necessary. In order to obtain the parameters you can check :ref:`CameraCalibrationSquareChessBoardTutorial` and :ref:`cameraCalibrationOpenCV` tutorials.
|
||||
|
||||
The following code is how to declare the *PnPProblem class* in the main program:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Intrinsic camera parameters: UVC WEBCAM
|
||||
|
||||
double f = 55; // focal length in mm
|
||||
double sx = 22.3, sy = 14.9; // sensor size
|
||||
double width = 640, height = 480; // image size
|
||||
|
||||
double params_WEBCAM[] = { width*f/sx, // fx
|
||||
height*f/sy, // fy
|
||||
width/2, // cx
|
||||
height/2}; // cy
|
||||
|
||||
PnPProblem pnp_detection(params_WEBCAM); // instantiate PnPProblem class
|
||||
|
||||
The following code is how the *PnPProblem class* initialises its atributes:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Custom constructor given the intrinsic camera parameters
|
||||
|
||||
PnPProblem::PnPProblem(const double params[])
|
||||
{
|
||||
_A_matrix = cv::Mat::zeros(3, 3, CV_64FC1); // intrinsic camera parameters
|
||||
_A_matrix.at<double>(0, 0) = params[0]; // [ fx 0 cx ]
|
||||
_A_matrix.at<double>(1, 1) = params[1]; // [ 0 fy cy ]
|
||||
_A_matrix.at<double>(0, 2) = params[2]; // [ 0 0 1 ]
|
||||
_A_matrix.at<double>(1, 2) = params[3];
|
||||
_A_matrix.at<double>(2, 2) = 1;
|
||||
_R_matrix = cv::Mat::zeros(3, 3, CV_64FC1); // rotation matrix
|
||||
_t_matrix = cv::Mat::zeros(3, 1, CV_64FC1); // translation matrix
|
||||
_P_matrix = cv::Mat::zeros(3, 4, CV_64FC1); // rotation-translation matrix
|
||||
|
||||
}
|
||||
|
||||
OpenCV provides four PnP methods: ITERATIVE, EPNP, P3P and DLS. Depending on the application type, the estimation method will be different. In the case that we want to make a real time application, the more suitable methods are EPNP and P3P due to that are faster than ITERATIVE and DLS at finding an optimal solution. However, EPNP and P3P are not especially robust in front of planar surfaces and sometimes the pose estimation seems to have a mirror effect. Therefore, in this this tutorial is used ITERATIVE method due to the object to be detected has planar surfaces.
|
||||
|
||||
The OpenCV Ransac implementation wants you to provide three parameters: the maximum number of iterations until stop the algorithm, the maximum allowed distance between the observed and computed point projections to consider it an inlier and the confidence to obtain a good result. You can tune these paramaters in order to improve your algorithm performance. Increasing the number of iterations you will have a more accurate solution, but will take more time to find a solution. Increasing the reprojection error will reduce the computation time, but your solution will be unaccurate. Decreasing the confidence your arlgorithm will be faster, but the obtained solution will be unaccurate.
|
||||
|
||||
The following parameters work for this application:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// RANSAC parameters
|
||||
|
||||
int iterationsCount = 500; // number of Ransac iterations.
|
||||
float reprojectionError = 2.0; // maximum allowed distance to consider it an inlier.
|
||||
float confidence = 0.95; // ransac successful confidence.
|
||||
|
||||
|
||||
The following code corresponds to the *estimatePoseRANSAC()* function which belongs to the *PnPProblem class*. This function estimates the rotation and translation matrix given a set of 2D/3D correspondences, the desired PnP method to use, the output inliers container and the Ransac parameters:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Estimate the pose given a list of 2D/3D correspondences with RANSAC and the method to use
|
||||
|
||||
void PnPProblem::estimatePoseRANSAC( const std::vector<cv::Point3f> &list_points3d, // list with model 3D coordinates
|
||||
const std::vector<cv::Point2f> &list_points2d, // list with scene 2D coordinates
|
||||
int flags, cv::Mat &inliers, int iterationsCount, // PnP method; inliers container
|
||||
float reprojectionError, float confidence ) // Ransac parameters
|
||||
{
|
||||
cv::Mat distCoeffs = cv::Mat::zeros(4, 1, CV_64FC1); // vector of distortion coefficients
|
||||
cv::Mat rvec = cv::Mat::zeros(3, 1, CV_64FC1); // output rotation vector
|
||||
cv::Mat tvec = cv::Mat::zeros(3, 1, CV_64FC1); // output translation vector
|
||||
|
||||
bool useExtrinsicGuess = false; // if true the function uses the provided rvec and tvec values as
|
||||
// initial approximations of the rotation and translation vectors
|
||||
|
||||
cv::solvePnPRansac( list_points3d, list_points2d, _A_matrix, distCoeffs, rvec, tvec,
|
||||
useExtrinsicGuess, iterationsCount, reprojectionError, confidence,
|
||||
inliers, flags );
|
||||
|
||||
Rodrigues(rvec,_R_matrix); // converts Rotation Vector to Matrix
|
||||
_t_matrix = tvec; // set translation matrix
|
||||
|
||||
this->set_P_matrix(_R_matrix, _t_matrix); // set rotation-translation matrix
|
||||
|
||||
}
|
||||
|
||||
In the following code are the 3th and 4th steps of the main algorithm. The first, calling the above function and the second taking the output inliers vector from Ransac to get the 2D scene points for drawing purpose. As seen in the code we must be sure to apply Ransac if we have matches, in the other case, the function :calib3d:`solvePnPRansac <solvepnpransac>` crashes due to any OpenCV *bug*.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
if(good_matches.size() > 0) // None matches, then RANSAC crashes
|
||||
{
|
||||
|
||||
// -- Step 3: Estimate the pose using RANSAC approach
|
||||
pnp_detection.estimatePoseRANSAC( list_points3d_model_match, list_points2d_scene_match,
|
||||
pnpMethod, inliers_idx, iterationsCount, reprojectionError, confidence );
|
||||
|
||||
|
||||
// -- Step 4: Catch the inliers keypoints to draw
|
||||
for(int inliers_index = 0; inliers_index < inliers_idx.rows; ++inliers_index)
|
||||
{
|
||||
int n = inliers_idx.at<int>(inliers_index); // i-inlier
|
||||
cv::Point2f point2d = list_points2d_scene_match[n]; // i-inlier point 2D
|
||||
list_points2d_inliers.push_back(point2d); // add i-inlier to list
|
||||
}
|
||||
|
||||
|
||||
Finally, once the camera pose has been estimated we can use the :math:`R` and :math:`t` in order to compute the 2D projection onto the image of a given 3D point expressed in a world reference frame using the showed formula on *Theory*.
|
||||
|
||||
The following code corresponds to the *backproject3DPoint()* function which belongs to the *PnPProblem class*. The function backproject a given 3D point expressed in a world reference frame onto a 2D image:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Backproject a 3D point to 2D using the estimated pose parameters
|
||||
|
||||
cv::Point2f PnPProblem::backproject3DPoint(const cv::Point3f &point3d)
|
||||
{
|
||||
// 3D point vector [x y z 1]'
|
||||
cv::Mat point3d_vec = cv::Mat(4, 1, CV_64FC1);
|
||||
point3d_vec.at<double>(0) = point3d.x;
|
||||
point3d_vec.at<double>(1) = point3d.y;
|
||||
point3d_vec.at<double>(2) = point3d.z;
|
||||
point3d_vec.at<double>(3) = 1;
|
||||
|
||||
// 2D point vector [u v 1]'
|
||||
cv::Mat point2d_vec = cv::Mat(4, 1, CV_64FC1);
|
||||
point2d_vec = _A_matrix * _P_matrix * point3d_vec;
|
||||
|
||||
// Normalization of [u v]'
|
||||
cv::Point2f point2d;
|
||||
point2d.x = point2d_vec.at<double>(0) / point2d_vec.at<double>(2);
|
||||
point2d.y = point2d_vec.at<double>(1) / point2d_vec.at<double>(2);
|
||||
|
||||
return point2d;
|
||||
}
|
||||
|
||||
The above function is used to compute all the 3D points of the object *Mesh* to show the pose of the object.
|
||||
|
||||
You can also change RANSAC parameters and PnP method:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
./cpp-tutorial-pnp_detection --error=0.25 --confidence=0.90 --iterations=250 --method=3
|
||||
|
||||
|
||||
6. **Linear Kalman Filter for bad poses rejection**
|
||||
|
||||
Is it common in computer vision or robotics fields that after applying detection or tracking techniques, bad results are obtained due to some sensor errors. In order to avoid these bad detections in this tutorial is explained how to implement a Linear Kalman Filter. The Kalman Filter will be applied after detected a given number of inliers.
|
||||
|
||||
You can find more information about what `Kalman Filter <http://en.wikipedia.org/wiki/Kalman_filter>`_ is. In this tutorial it's used the OpenCV implementation of the :video:`Kalman Filter <kalmanfilter>` based on `Linear Kalman Filter for position and orientation tracking <http://campar.in.tum.de/Chair/KalmanFilter>`_ to set the dynamics and measurement models.
|
||||
|
||||
Firstly, we have to define our state vector which will have 18 states: the positional data (x,y,z) with its first and second derivatives (velocity and acceleration), then rotation is added in form of three euler angles (roll, pitch, jaw) together with their first and second derivatives (angular velocity and acceleration)
|
||||
|
||||
.. math::
|
||||
|
||||
X = (x,y,z,\dot x,\dot y,\dot z,\ddot x,\ddot y,\ddot z,\psi,\theta,\phi,\dot \psi,\dot \theta,\dot \phi,\ddot \psi,\ddot \theta,\ddot \phi)^T
|
||||
|
||||
Secondly, we have to define the number of measuremnts which will be 6: from :math:`R` and :math:`t` we can extract :math:`(x,y,z)` and :math:`(\psi,\theta,\phi)`. In addition, we have to define the number of control actions to apply to the system which in this case will be *zero*. Finally, we have to define the differential time between measurements which in this case is :math:`1/T`, where *T* is the frame rate of the video.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
cv::KalmanFilter KF; // instantiate Kalman Filter
|
||||
|
||||
int nStates = 18; // the number of states
|
||||
int nMeasurements = 6; // the number of measured states
|
||||
int nInputs = 0; // the number of action control
|
||||
|
||||
double dt = 0.125; // time between measurements (1/FPS)
|
||||
|
||||
initKalmanFilter(KF, nStates, nMeasurements, nInputs, dt); // init function
|
||||
|
||||
|
||||
The following code corresponds to the *Kalman Filter* initialisation. Firstly, is set the process noise, the measurement noise and the error covariance matrix. Secondly, are set the transition matrix which is the dynamic model and finally the measurement matrix, which is the measurement model.
|
||||
|
||||
You can tune the process and measurement noise to improve the *Kalman Filter* performance. As the measurement noise is reduced the faster will converge doing the algorithm sensitive in front of bad measurements.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void initKalmanFilter(cv::KalmanFilter &KF, int nStates, int nMeasurements, int nInputs, double dt)
|
||||
{
|
||||
|
||||
KF.init(nStates, nMeasurements, nInputs, CV_64F); // init Kalman Filter
|
||||
|
||||
cv::setIdentity(KF.processNoiseCov, cv::Scalar::all(1e-5)); // set process noise
|
||||
cv::setIdentity(KF.measurementNoiseCov, cv::Scalar::all(1e-4)); // set measurement noise
|
||||
cv::setIdentity(KF.errorCovPost, cv::Scalar::all(1)); // error covariance
|
||||
|
||||
|
||||
/* DYNAMIC MODEL */
|
||||
|
||||
// [1 0 0 dt 0 0 dt2 0 0 0 0 0 0 0 0 0 0 0]
|
||||
// [0 1 0 0 dt 0 0 dt2 0 0 0 0 0 0 0 0 0 0]
|
||||
// [0 0 1 0 0 dt 0 0 dt2 0 0 0 0 0 0 0 0 0]
|
||||
// [0 0 0 1 0 0 dt 0 0 0 0 0 0 0 0 0 0 0]
|
||||
// [0 0 0 0 1 0 0 dt 0 0 0 0 0 0 0 0 0 0]
|
||||
// [0 0 0 0 0 1 0 0 dt 0 0 0 0 0 0 0 0 0]
|
||||
// [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
|
||||
// [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
|
||||
// [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
|
||||
// [0 0 0 0 0 0 0 0 0 1 0 0 dt 0 0 dt2 0 0]
|
||||
// [0 0 0 0 0 0 0 0 0 0 1 0 0 dt 0 0 dt2 0]
|
||||
// [0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt 0 0 dt2]
|
||||
// [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt 0 0]
|
||||
// [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt 0]
|
||||
// [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt]
|
||||
// [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
|
||||
// [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
|
||||
// [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
|
||||
|
||||
// position
|
||||
KF.transitionMatrix.at<double>(0,3) = dt;
|
||||
KF.transitionMatrix.at<double>(1,4) = dt;
|
||||
KF.transitionMatrix.at<double>(2,5) = dt;
|
||||
KF.transitionMatrix.at<double>(3,6) = dt;
|
||||
KF.transitionMatrix.at<double>(4,7) = dt;
|
||||
KF.transitionMatrix.at<double>(5,8) = dt;
|
||||
KF.transitionMatrix.at<double>(0,6) = 0.5*pow(dt,2);
|
||||
KF.transitionMatrix.at<double>(1,7) = 0.5*pow(dt,2);
|
||||
KF.transitionMatrix.at<double>(2,8) = 0.5*pow(dt,2);
|
||||
|
||||
// orientation
|
||||
KF.transitionMatrix.at<double>(9,12) = dt;
|
||||
KF.transitionMatrix.at<double>(10,13) = dt;
|
||||
KF.transitionMatrix.at<double>(11,14) = dt;
|
||||
KF.transitionMatrix.at<double>(12,15) = dt;
|
||||
KF.transitionMatrix.at<double>(13,16) = dt;
|
||||
KF.transitionMatrix.at<double>(14,17) = dt;
|
||||
KF.transitionMatrix.at<double>(9,15) = 0.5*pow(dt,2);
|
||||
KF.transitionMatrix.at<double>(10,16) = 0.5*pow(dt,2);
|
||||
KF.transitionMatrix.at<double>(11,17) = 0.5*pow(dt,2);
|
||||
|
||||
|
||||
/* MEASUREMENT MODEL */
|
||||
|
||||
// [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
|
||||
// [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
|
||||
// [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
|
||||
// [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
|
||||
// [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
|
||||
// [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
|
||||
|
||||
KF.measurementMatrix.at<double>(0,0) = 1; // x
|
||||
KF.measurementMatrix.at<double>(1,1) = 1; // y
|
||||
KF.measurementMatrix.at<double>(2,2) = 1; // z
|
||||
KF.measurementMatrix.at<double>(3,9) = 1; // roll
|
||||
KF.measurementMatrix.at<double>(4,10) = 1; // pitch
|
||||
KF.measurementMatrix.at<double>(5,11) = 1; // yaw
|
||||
|
||||
}
|
||||
|
||||
In the following code is the 5th step of the main algorithm. When the obtained number of inliers after *Ransac* is over the threshold, the measurements matrix is filled and then the *Kalman Filter* is updated:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// -- Step 5: Kalman Filter
|
||||
|
||||
// GOOD MEASUREMENT
|
||||
if( inliers_idx.rows >= minInliersKalman )
|
||||
{
|
||||
|
||||
// Get the measured translation
|
||||
cv::Mat translation_measured(3, 1, CV_64F);
|
||||
translation_measured = pnp_detection.get_t_matrix();
|
||||
|
||||
// Get the measured rotation
|
||||
cv::Mat rotation_measured(3, 3, CV_64F);
|
||||
rotation_measured = pnp_detection.get_R_matrix();
|
||||
|
||||
// fill the measurements vector
|
||||
fillMeasurements(measurements, translation_measured, rotation_measured);
|
||||
|
||||
}
|
||||
|
||||
// Instantiate estimated translation and rotation
|
||||
cv::Mat translation_estimated(3, 1, CV_64F);
|
||||
cv::Mat rotation_estimated(3, 3, CV_64F);
|
||||
|
||||
// update the Kalman filter with good measurements
|
||||
updateKalmanFilter( KF, measurements,
|
||||
translation_estimated, rotation_estimated);
|
||||
|
||||
The following code corresponds to the *fillMeasurements()* function which converts the measured `Rotation Matrix to Eulers angles <http://euclideanspace.com/maths/geometry/rotations/conversions/matrixToEuler/index.htm>`_ and fill the measurements matrix along with the measured translation vector:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void fillMeasurements( cv::Mat &measurements,
|
||||
const cv::Mat &translation_measured, const cv::Mat &rotation_measured)
|
||||
{
|
||||
// Convert rotation matrix to euler angles
|
||||
cv::Mat measured_eulers(3, 1, CV_64F);
|
||||
measured_eulers = rot2euler(rotation_measured);
|
||||
|
||||
// Set measurement to predict
|
||||
measurements.at<double>(0) = translation_measured.at<double>(0); // x
|
||||
measurements.at<double>(1) = translation_measured.at<double>(1); // y
|
||||
measurements.at<double>(2) = translation_measured.at<double>(2); // z
|
||||
measurements.at<double>(3) = measured_eulers.at<double>(0); // roll
|
||||
measurements.at<double>(4) = measured_eulers.at<double>(1); // pitch
|
||||
measurements.at<double>(5) = measured_eulers.at<double>(2); // yaw
|
||||
}
|
||||
|
||||
|
||||
The following code corresponds to the *updateKalmanFilter()* function which update the Kalman Filter and set the estimated Rotation Matrix and translation vector. The estimated Rotation Matrix comes from the estimated `Euler angles to Rotation Matrix <http://euclideanspace.com/maths/geometry/rotations/conversions/eulerToMatrix/index.htm>`_.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void updateKalmanFilter( cv::KalmanFilter &KF, cv::Mat &measurement,
|
||||
cv::Mat &translation_estimated, cv::Mat &rotation_estimated )
|
||||
{
|
||||
|
||||
// First predict, to update the internal statePre variable
|
||||
cv::Mat prediction = KF.predict();
|
||||
|
||||
// The "correct" phase that is going to use the predicted value and our measurement
|
||||
cv::Mat estimated = KF.correct(measurement);
|
||||
|
||||
// Estimated translation
|
||||
translation_estimated.at<double>(0) = estimated.at<double>(0);
|
||||
translation_estimated.at<double>(1) = estimated.at<double>(1);
|
||||
translation_estimated.at<double>(2) = estimated.at<double>(2);
|
||||
|
||||
// Estimated euler angles
|
||||
cv::Mat eulers_estimated(3, 1, CV_64F);
|
||||
eulers_estimated.at<double>(0) = estimated.at<double>(9);
|
||||
eulers_estimated.at<double>(1) = estimated.at<double>(10);
|
||||
eulers_estimated.at<double>(2) = estimated.at<double>(11);
|
||||
|
||||
// Convert estimated quaternion to rotation matrix
|
||||
rotation_estimated = euler2rot(eulers_estimated);
|
||||
|
||||
}
|
||||
|
||||
The 6th step is set the estimated rotation-translation matrix:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// -- Step 6: Set estimated projection matrix
|
||||
pnp_detection_est.set_P_matrix(rotation_estimated, translation_estimated);
|
||||
|
||||
|
||||
The last and optional step is draw the found pose. To do it I implemented a function to draw all the mesh 3D points and an extra reference axis:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// -- Step X: Draw pose
|
||||
|
||||
drawObjectMesh(frame_vis, &mesh, &pnp_detection, green); // draw current pose
|
||||
drawObjectMesh(frame_vis, &mesh, &pnp_detection_est, yellow); // draw estimated pose
|
||||
|
||||
double l = 5;
|
||||
std::vector<cv::Point2f> pose_points2d;
|
||||
pose_points2d.push_back(pnp_detection_est.backproject3DPoint(cv::Point3f(0,0,0))); // axis center
|
||||
pose_points2d.push_back(pnp_detection_est.backproject3DPoint(cv::Point3f(l,0,0))); // axis x
|
||||
pose_points2d.push_back(pnp_detection_est.backproject3DPoint(cv::Point3f(0,l,0))); // axis y
|
||||
pose_points2d.push_back(pnp_detection_est.backproject3DPoint(cv::Point3f(0,0,l))); // axis z
|
||||
draw3DCoordinateAxes(frame_vis, pose_points2d); // draw axes
|
||||
|
||||
You can also modify the minimum inliers to update Kalman Filter:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
./cpp-tutorial-pnp_detection --inliers=20
|
||||
|
||||
|
||||
Results
|
||||
=======
|
||||
|
||||
The following videos are the results of pose estimation in real time using the explained detection algorithm using the following parameters:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Robust Matcher parameters
|
||||
|
||||
int numKeyPoints = 2000; // number of detected keypoints
|
||||
float ratio = 0.70f; // ratio test
|
||||
bool fast_match = true; // fastRobustMatch() or robustMatch()
|
||||
|
||||
|
||||
// RANSAC parameters
|
||||
|
||||
int iterationsCount = 500; // number of Ransac iterations.
|
||||
int reprojectionError = 2.0; // maximum allowed distance to consider it an inlier.
|
||||
float confidence = 0.95; // ransac successful confidence.
|
||||
|
||||
|
||||
// Kalman Filter parameters
|
||||
|
||||
int minInliersKalman = 30; // Kalman threshold updating
|
||||
|
||||
|
||||
You can watch the real time pose estimation on the `YouTube here <http://www.youtube.com/user/opencvdev/videos>`_.
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<div align="center">
|
||||
<iframe title="Pose estimation of textured object using OpenCV" width="560" height="349" src="http://www.youtube.com/embed/XNATklaJlSQ?rel=0&loop=1" frameborder="0" allowfullscreen align="middle"></iframe>
|
||||
</div>
|
||||
<div align="center">
|
||||
<iframe title="Pose estimation of textured object using OpenCV in cluttered background" width="560" height="349" src="http://www.youtube.com/embed/YLS9bWek78k?rel=0&loop=1" frameborder="0" allowfullscreen align="middle"></iframe>
|
||||
</div>
|
@@ -1,76 +0,0 @@
|
||||
.. _Table-Of-Content-Calib3D:
|
||||
|
||||
*calib3d* module. Camera calibration and 3D reconstruction
|
||||
-----------------------------------------------------------
|
||||
|
||||
Although we got most of our images in a 2D format they do come from a 3D world. Here you will learn how to find out from the 2D images information about the 3D world.
|
||||
|
||||
.. include:: ../../definitions/tocDefinitions.rst
|
||||
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
===================== ==============================================
|
||||
|CameraCalSqChess| **Title:** :ref:`CameraCalibrationSquareChessBoardTutorial`
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
*Author:* |Author_VictorE|
|
||||
|
||||
You will use some chessboard images to calibrate your camera.
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
.. |CameraCalSqChess| image:: images/camera_calibration_square_chess.jpg
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
===================== ==============================================
|
||||
|CameraCalibration| **Title:** :ref:`cameraCalibrationOpenCV`
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
*Author:* |Author_BernatG|
|
||||
|
||||
Camera calibration by using either the chessboard, circle or the asymmetrical circle pattern. Get the images either from a camera attached, a video file or from an image collection.
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
.. |CameraCalibration| image:: images/camera_calibration.png
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
===================== ==============================================
|
||||
|PoseEstimation| **Title:** :ref:`realTimePoseEstimation`
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
*Author:* Edgar Riba
|
||||
|
||||
Real time pose estimation of a textured object using ORB features, FlannBased matcher, PnP approach plus Ransac and Linear Kalman Filter to reject possible bad poses.
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
.. |PoseEstimation| image:: images/real_time_pose_estimation.jpg
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
.. raw:: latex
|
||||
|
||||
\pagebreak
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
|
||||
../camera_calibration_square_chess/camera_calibration_square_chess
|
||||
../camera_calibration/camera_calibration
|
||||
../real_time_pose/real_time_pose
|
Reference in New Issue
Block a user