initial (buggy) C++ version of Delaunay triangulation
This commit is contained in:
parent
1248775177
commit
cfdf464052
955
samples/cpp/delaunay2.cpp
Normal file
955
samples/cpp/delaunay2.cpp
Normal file
@ -0,0 +1,955 @@
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include <iostream>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
class CV_EXPORTS_W Subdiv2D
|
||||
{
|
||||
public:
|
||||
|
||||
enum
|
||||
{
|
||||
PTLOC_ERROR = -2,
|
||||
PTLOC_OUTSIDE_RECT = -1,
|
||||
PTLOC_INSIDE = 0,
|
||||
PTLOC_VERTEX = 1,
|
||||
PTLOC_ON_EDGE = 2
|
||||
};
|
||||
|
||||
enum
|
||||
{
|
||||
NEXT_AROUND_ORG = 0x00,
|
||||
NEXT_AROUND_DST = 0x22,
|
||||
PREV_AROUND_ORG = 0x11,
|
||||
PREV_AROUND_DST = 0x33,
|
||||
NEXT_AROUND_LEFT = 0x13,
|
||||
NEXT_AROUND_RIGHT = 0x31,
|
||||
PREV_AROUND_LEFT = 0x20,
|
||||
PREV_AROUND_RIGHT = 0x02
|
||||
};
|
||||
|
||||
CV_WRAP Subdiv2D();
|
||||
CV_WRAP Subdiv2D(Rect rect);
|
||||
CV_WRAP void initDelaunay(Rect rect);
|
||||
|
||||
CV_WRAP int insert(Point2f pt);
|
||||
CV_WRAP void insert(const vector<Point2f>& ptvec);
|
||||
CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);
|
||||
|
||||
CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt=0);
|
||||
CV_WRAP void getTriangleList(CV_OUT vector<Vec6f>& triangleList);
|
||||
CV_WRAP void getVoronoiFacetList(const vector<int>& idx, CV_OUT vector<vector<Point2f> >& facetList);
|
||||
|
||||
CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge=0) const;
|
||||
|
||||
CV_WRAP int getEdge( int edge, int nextEdgeType ) const;
|
||||
CV_WRAP int nextEdge(int edge) const;
|
||||
CV_WRAP int rotateEdge(int edge, int rotate) const;
|
||||
CV_WRAP int symEdge(int edge) const;
|
||||
CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt=0) const;
|
||||
CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt=0) const;
|
||||
|
||||
protected:
|
||||
int newEdge();
|
||||
void deleteEdge(int edge);
|
||||
int newPoint(Point2f pt, bool isvirtual, int firstEdge=0);
|
||||
void deletePoint(int vtx);
|
||||
void setEdgePoints( int edge, int orgPt, int dstPt );
|
||||
void splice( int edgeA, int edgeB );
|
||||
int connectEdges( int edgeA, int edgeB );
|
||||
void swapEdges( int edge );
|
||||
int isRightOf(Point2f pt, int edge) const;
|
||||
void calcVoronoi();
|
||||
void clearVoronoi();
|
||||
|
||||
struct CV_EXPORTS Vertex
|
||||
{
|
||||
Vertex();
|
||||
Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0);
|
||||
bool isvirtual() const;
|
||||
bool isfree() const;
|
||||
int firstEdge;
|
||||
int type;
|
||||
Point2f pt;
|
||||
};
|
||||
struct CV_EXPORTS QuadEdge
|
||||
{
|
||||
QuadEdge();
|
||||
QuadEdge(int edgeidx);
|
||||
bool isfree() const;
|
||||
int next[4];
|
||||
int pt[4];
|
||||
};
|
||||
|
||||
vector<Vertex> vtx;
|
||||
vector<QuadEdge> qedges;
|
||||
int freeQEdge;
|
||||
int freePoint;
|
||||
bool validGeometry;
|
||||
|
||||
int recentEdge;
|
||||
Point2f topLeft;
|
||||
Point2f bottomRight;
|
||||
};
|
||||
|
||||
|
||||
int Subdiv2D::nextEdge(int edge) const
|
||||
{
|
||||
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
|
||||
return qedges[edge >> 2].next[edge & 3];
|
||||
}
|
||||
|
||||
int Subdiv2D::rotateEdge(int edge, int rotate) const
|
||||
{
|
||||
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
|
||||
return (edge & ~3) + ((edge + rotate) & 3);
|
||||
}
|
||||
|
||||
int Subdiv2D::symEdge(int edge) const
|
||||
{
|
||||
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
|
||||
return edge ^ 2;
|
||||
}
|
||||
|
||||
int Subdiv2D::getEdge(int edge, int nextEdgeType) const
|
||||
{
|
||||
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
|
||||
edge = qedges[edge >> 2].next[(edge + nextEdgeType) & 3];
|
||||
return (edge & ~3) + ((edge + (nextEdgeType >> 4)) & 3);
|
||||
}
|
||||
|
||||
int Subdiv2D::edgeOrg(int edge, CV_OUT Point2f* orgpt) const
|
||||
{
|
||||
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
|
||||
int vidx = qedges[edge >> 2].pt[edge & 3];
|
||||
if( orgpt )
|
||||
{
|
||||
CV_DbgAssert((size_t)vidx < vtx.size());
|
||||
*orgpt = vtx[vidx].pt;
|
||||
}
|
||||
return vidx;
|
||||
}
|
||||
|
||||
int Subdiv2D::edgeDst(int edge, CV_OUT Point2f* dstpt) const
|
||||
{
|
||||
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
|
||||
int vidx = qedges[edge >> 2].pt[(edge + 2) & 3];
|
||||
if( dstpt )
|
||||
{
|
||||
CV_DbgAssert((size_t)vidx < vtx.size());
|
||||
*dstpt = vtx[vidx].pt;
|
||||
}
|
||||
return vidx;
|
||||
}
|
||||
|
||||
|
||||
Point2f Subdiv2D::getVertex(int vertex, CV_OUT int* firstEdge) const
|
||||
{
|
||||
CV_DbgAssert((size_t)vertex < vtx.size());
|
||||
if( firstEdge )
|
||||
*firstEdge = vtx[vertex].firstEdge;
|
||||
return vtx[vertex].pt;
|
||||
}
|
||||
|
||||
|
||||
Subdiv2D::Subdiv2D()
|
||||
{
|
||||
validGeometry = false;
|
||||
freeQEdge = 0;
|
||||
freePoint = 0;
|
||||
recentEdge = 0;
|
||||
}
|
||||
|
||||
Subdiv2D::Subdiv2D(Rect rect)
|
||||
{
|
||||
validGeometry = false;
|
||||
freeQEdge = 0;
|
||||
freePoint = 0;
|
||||
recentEdge = 0;
|
||||
|
||||
initDelaunay(rect);
|
||||
}
|
||||
|
||||
|
||||
Subdiv2D::QuadEdge::QuadEdge()
|
||||
{
|
||||
next[0] = next[1] = next[2] = next[3] = 0;
|
||||
pt[0] = pt[1] = pt[2] = pt[3] = 0;
|
||||
}
|
||||
|
||||
Subdiv2D::QuadEdge::QuadEdge(int edgeidx)
|
||||
{
|
||||
next[0] = edgeidx;
|
||||
next[1] = edgeidx+3;
|
||||
next[2] = edgeidx+2;
|
||||
next[3] = edgeidx+1;
|
||||
|
||||
pt[0] = pt[1] = pt[2] = pt[3] = 0;
|
||||
}
|
||||
|
||||
bool Subdiv2D::QuadEdge::isfree() const
|
||||
{
|
||||
return next[0] <= 0;
|
||||
}
|
||||
|
||||
Subdiv2D::Vertex::Vertex()
|
||||
{
|
||||
firstEdge = 0;
|
||||
type = -1;
|
||||
}
|
||||
|
||||
Subdiv2D::Vertex::Vertex(Point2f _pt, bool _isvirtual, int _firstEdge)
|
||||
{
|
||||
firstEdge = _firstEdge;
|
||||
type = (int)_isvirtual;
|
||||
pt = _pt;
|
||||
}
|
||||
|
||||
bool Subdiv2D::Vertex::isvirtual() const
|
||||
{
|
||||
return type > 0;
|
||||
}
|
||||
|
||||
bool Subdiv2D::Vertex::isfree() const
|
||||
{
|
||||
return firstEdge <= 0;
|
||||
}
|
||||
|
||||
void Subdiv2D::splice( int edgeA, int edgeB )
|
||||
{
|
||||
int& a_next = qedges[edgeA >> 2].next[edgeA & 3];
|
||||
int& b_next = qedges[edgeB >> 2].next[edgeB & 3];
|
||||
int a_rot = rotateEdge(a_next, 1);
|
||||
int b_rot = rotateEdge(b_next, 1);
|
||||
int& a_rot_next = qedges[a_rot >> 2].next[a_rot & 3];
|
||||
int& b_rot_next = qedges[b_rot >> 2].next[b_rot & 3];
|
||||
std::swap(a_next, b_next);
|
||||
std::swap(a_rot_next, b_rot_next);
|
||||
}
|
||||
|
||||
void Subdiv2D::setEdgePoints(int edge, int orgPt, int dstPt)
|
||||
{
|
||||
qedges[edge >> 2].pt[edge & 3] = orgPt;
|
||||
qedges[edge >> 2].pt[(edge + 2) & 3] = dstPt;
|
||||
}
|
||||
|
||||
int Subdiv2D::connectEdges( int edgeA, int edgeB )
|
||||
{
|
||||
int edge = newEdge();
|
||||
|
||||
splice(edge, getEdge(edgeA, NEXT_AROUND_LEFT));
|
||||
splice(symEdge(edge), edgeB);
|
||||
|
||||
setEdgePoints(edge, edgeDst(edgeA), edgeOrg(edgeB));
|
||||
return edge;
|
||||
}
|
||||
|
||||
void Subdiv2D::swapEdges( int edge )
|
||||
{
|
||||
int sedge = symEdge(edge);
|
||||
int a = getEdge(edge, PREV_AROUND_ORG);
|
||||
int b = getEdge(sedge, PREV_AROUND_ORG);
|
||||
|
||||
splice(edge, a);
|
||||
splice(sedge, b);
|
||||
|
||||
setEdgePoints(edge, edgeDst(a), edgeDst(b));
|
||||
|
||||
splice(edge, getEdge(a, NEXT_AROUND_LEFT));
|
||||
splice(sedge, getEdge(b, NEXT_AROUND_LEFT));
|
||||
}
|
||||
|
||||
int Subdiv2D::isRightOf(Point2f pt, int edge) const
|
||||
{
|
||||
Point2f org, dst;
|
||||
edgeOrg(edge, &org);
|
||||
edgeDst(edge, &dst);
|
||||
double cw_area = cvTriangleArea( pt, dst, org );
|
||||
|
||||
return (cw_area > 0) - (cw_area < 0);
|
||||
}
|
||||
|
||||
|
||||
int Subdiv2D::newEdge()
|
||||
{
|
||||
if( freeQEdge == 0 )
|
||||
{
|
||||
qedges.push_back(QuadEdge());
|
||||
freeQEdge = (int)(qedges.size()-1);
|
||||
}
|
||||
int edge = freeQEdge*4;
|
||||
freeQEdge = qedges[edge >> 2].next[1];
|
||||
qedges[edge >> 2] = QuadEdge(edge);
|
||||
return edge;
|
||||
}
|
||||
|
||||
void Subdiv2D::deleteEdge(int edge)
|
||||
{
|
||||
CV_DbgAssert((size_t)(edge >> 2) < (size_t)qedges.size());
|
||||
splice( edge, getEdge(edge, PREV_AROUND_ORG) );
|
||||
int sedge = symEdge(edge);
|
||||
splice(sedge, getEdge(sedge, PREV_AROUND_ORG) );
|
||||
|
||||
edge >>= 2;
|
||||
qedges[edge].next[0] = -1;
|
||||
qedges[edge].next[1] = freeQEdge;
|
||||
freeQEdge = edge;
|
||||
}
|
||||
|
||||
int Subdiv2D::newPoint(Point2f pt, bool isvirtual, int firstEdge)
|
||||
{
|
||||
if( freePoint == 0 )
|
||||
{
|
||||
vtx.push_back(Vertex());
|
||||
freePoint = (int)(vtx.size()-1);
|
||||
vtx[freePoint].type = -1;
|
||||
vtx[freePoint].firstEdge = 0;
|
||||
}
|
||||
int vidx = freePoint;
|
||||
freePoint = vtx[vidx].firstEdge;
|
||||
vtx[vidx] = Vertex(pt, isvirtual, firstEdge);
|
||||
|
||||
return vidx;
|
||||
}
|
||||
|
||||
void Subdiv2D::deletePoint(int vidx)
|
||||
{
|
||||
CV_DbgAssert( (size_t)vidx < vtx.size() );
|
||||
vtx[vidx].firstEdge = freePoint;
|
||||
vtx[vidx].type = -1;
|
||||
freePoint = vidx;
|
||||
}
|
||||
|
||||
int Subdiv2D::locate(Point2f pt, int& _edge, int& _vertex)
|
||||
{
|
||||
int vertex = 0;
|
||||
|
||||
int i, maxEdges = (int)(qedges.size() * 4);
|
||||
int edge = recentEdge;
|
||||
|
||||
CV_Assert(edge > 0);
|
||||
|
||||
if( pt.x < topLeft.x || pt.y < topLeft.y || pt.x >= bottomRight.x || pt.y >= bottomRight.y )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
|
||||
int location = PTLOC_ERROR;
|
||||
|
||||
int right_of_curr = isRightOf(pt, edge);
|
||||
if( right_of_curr > 0 )
|
||||
{
|
||||
edge = symEdge(edge);
|
||||
right_of_curr = -right_of_curr;
|
||||
}
|
||||
|
||||
for( i = 0; i < maxEdges; i++ )
|
||||
{
|
||||
int onext_edge = nextEdge( edge );
|
||||
int dprev_edge = getEdge( edge, PREV_AROUND_DST );
|
||||
|
||||
int right_of_onext = isRightOf( pt, onext_edge );
|
||||
int right_of_dprev = isRightOf( pt, dprev_edge );
|
||||
|
||||
if( right_of_dprev > 0 )
|
||||
{
|
||||
if( right_of_onext > 0 || (right_of_onext == 0 && right_of_curr == 0) )
|
||||
{
|
||||
location = PTLOC_INSIDE;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
right_of_curr = right_of_onext;
|
||||
edge = onext_edge;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if( right_of_onext > 0 )
|
||||
{
|
||||
if( right_of_dprev == 0 && right_of_curr == 0 )
|
||||
{
|
||||
location = PTLOC_INSIDE;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
right_of_curr = right_of_dprev;
|
||||
edge = dprev_edge;
|
||||
}
|
||||
}
|
||||
else if( right_of_curr == 0 &&
|
||||
isRightOf( vtx[edgeDst(onext_edge)].pt, edge ) >= 0 )
|
||||
{
|
||||
edge = symEdge( edge );
|
||||
}
|
||||
else
|
||||
{
|
||||
right_of_curr = right_of_onext;
|
||||
edge = onext_edge;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
recentEdge = edge;
|
||||
|
||||
if( location == PTLOC_INSIDE )
|
||||
{
|
||||
Point2f org_pt, dst_pt;
|
||||
edgeOrg(edge, &org_pt);
|
||||
edgeDst(edge, &dst_pt);
|
||||
|
||||
double t1 = fabs( pt.x - org_pt.x );
|
||||
t1 += fabs( pt.y - org_pt.y );
|
||||
double t2 = fabs( pt.x - dst_pt.x );
|
||||
t2 += fabs( pt.y - dst_pt.y );
|
||||
double t3 = fabs( org_pt.x - dst_pt.x );
|
||||
t3 += fabs( org_pt.y - dst_pt.y );
|
||||
|
||||
if( t1 < FLT_EPSILON )
|
||||
{
|
||||
location = PTLOC_VERTEX;
|
||||
vertex = edgeOrg( edge );
|
||||
edge = 0;
|
||||
}
|
||||
else if( t2 < FLT_EPSILON )
|
||||
{
|
||||
location = PTLOC_VERTEX;
|
||||
vertex = edgeDst( edge );
|
||||
edge = 0;
|
||||
}
|
||||
else if( (t1 < t3 || t2 < t3) &&
|
||||
fabs( cvTriangleArea( pt, org_pt, dst_pt )) < FLT_EPSILON )
|
||||
{
|
||||
location = PTLOC_ON_EDGE;
|
||||
vertex = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if( location == PTLOC_ERROR )
|
||||
{
|
||||
edge = 0;
|
||||
vertex = 0;
|
||||
}
|
||||
|
||||
_edge = edge;
|
||||
_vertex = vertex;
|
||||
|
||||
return location;
|
||||
}
|
||||
|
||||
|
||||
inline bool
|
||||
isPtInCircle3( Point2f pt, Point2f a, Point2f b, Point2f c)
|
||||
{
|
||||
const double eps = FLT_EPSILON*0.125;
|
||||
double val = ((double)a.x * a.x + (double)a.y * a.y) * cvTriangleArea( b, c, pt );
|
||||
val -= ((double)b.x * b.x + (double)b.y * b.y) * cvTriangleArea( a, c, pt );
|
||||
val += ((double)c.x * c.x + (double)c.y * c.y) * cvTriangleArea( a, b, pt );
|
||||
val -= ((double)pt.x * pt.x + (double)pt.y * pt.y) * cvTriangleArea( a, b, c );
|
||||
|
||||
return val > eps ? 1 : val < -eps ? -1 : 0;
|
||||
}
|
||||
|
||||
|
||||
int Subdiv2D::insert(Point2f pt)
|
||||
{
|
||||
int curr_point = 0, curr_edge = 0, deleted_edge = 0;
|
||||
int location = locate( pt, curr_edge, curr_point );
|
||||
|
||||
if( location == PTLOC_ERROR )
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
|
||||
if( location == PTLOC_OUTSIDE_RECT )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
|
||||
if( location == PTLOC_VERTEX )
|
||||
return curr_point;
|
||||
|
||||
if( location == PTLOC_ON_EDGE )
|
||||
{
|
||||
deleted_edge = curr_edge;
|
||||
recentEdge = curr_edge = getEdge( curr_edge, PREV_AROUND_ORG );
|
||||
deleteEdge(deleted_edge);
|
||||
}
|
||||
else if( location == PTLOC_INSIDE )
|
||||
;
|
||||
else
|
||||
CV_Error_(CV_StsError, ("Subdiv2D::locate returned invalid location = %d", location) );
|
||||
|
||||
assert( curr_edge != 0 );
|
||||
validGeometry = false;
|
||||
|
||||
curr_point = newPoint(pt, false);
|
||||
int base_edge = newEdge();
|
||||
int first_point = edgeOrg(curr_edge);
|
||||
setEdgePoints(base_edge, first_point, curr_point);
|
||||
splice(base_edge, curr_edge);
|
||||
|
||||
do
|
||||
{
|
||||
base_edge = connectEdges( curr_edge, symEdge(base_edge) );
|
||||
curr_edge = getEdge(base_edge, PREV_AROUND_ORG);
|
||||
}
|
||||
while( edgeDst(curr_edge) != first_point );
|
||||
|
||||
curr_edge = getEdge( base_edge, PREV_AROUND_ORG );
|
||||
|
||||
int i, max_edges = qedges.size()*4;
|
||||
|
||||
for( i = 0; i < max_edges; i++ )
|
||||
{
|
||||
int temp_dst = 0, curr_org = 0, curr_dst = 0;
|
||||
int temp_edge = getEdge( curr_edge, PREV_AROUND_ORG );
|
||||
|
||||
temp_dst = edgeDst( temp_edge );
|
||||
curr_org = edgeOrg( curr_edge );
|
||||
curr_dst = edgeDst( curr_edge );
|
||||
|
||||
if( isRightOf( vtx[temp_dst].pt, curr_edge ) > 0 &&
|
||||
isPtInCircle3( vtx[curr_org].pt, vtx[temp_dst].pt,
|
||||
vtx[curr_dst].pt, vtx[curr_point].pt ) < 0 )
|
||||
{
|
||||
swapEdges( curr_edge );
|
||||
curr_edge = getEdge( curr_edge, PREV_AROUND_ORG );
|
||||
}
|
||||
else if( curr_org == first_point )
|
||||
break;
|
||||
else
|
||||
curr_edge = getEdge( nextEdge( curr_edge ), PREV_AROUND_LEFT );
|
||||
}
|
||||
|
||||
return curr_point;
|
||||
}
|
||||
|
||||
void Subdiv2D::insert(const vector<Point2f>& ptvec)
|
||||
{
|
||||
for( size_t i = 0; i < ptvec.size(); i++ )
|
||||
insert(ptvec[i]);
|
||||
}
|
||||
|
||||
void Subdiv2D::initDelaunay( Rect rect )
|
||||
{
|
||||
float big_coord = 3.f * MAX( rect.width, rect.height );
|
||||
float rx = (float)rect.x;
|
||||
float ry = (float)rect.y;
|
||||
|
||||
vtx.clear();
|
||||
qedges.clear();
|
||||
|
||||
recentEdge = 0;
|
||||
validGeometry = false;
|
||||
|
||||
topLeft = Point2f( rx, ry );
|
||||
bottomRight = Point2f( rx + rect.width, ry + rect.height );
|
||||
|
||||
Point2f ppA( rx + big_coord, ry );
|
||||
Point2f ppB( rx, ry + big_coord );
|
||||
Point2f ppC( rx - big_coord, ry - big_coord );
|
||||
|
||||
vtx.push_back(Vertex());
|
||||
qedges.push_back(QuadEdge());
|
||||
|
||||
freeQEdge = 0;
|
||||
freePoint = 0;
|
||||
|
||||
int pA = newPoint(ppA, false);
|
||||
int pB = newPoint(ppB, false);
|
||||
int pC = newPoint(ppC, false);
|
||||
|
||||
int edge_AB = newEdge();
|
||||
int edge_BC = newEdge();
|
||||
int edge_CA = newEdge();
|
||||
|
||||
setEdgePoints( edge_AB, pA, pB );
|
||||
setEdgePoints( edge_BC, pB, pC );
|
||||
setEdgePoints( edge_CA, pC, pA );
|
||||
|
||||
splice( edge_AB, symEdge( edge_CA ));
|
||||
splice( edge_BC, symEdge( edge_AB ));
|
||||
splice( edge_CA, symEdge( edge_BC ));
|
||||
|
||||
recentEdge = edge_AB;
|
||||
}
|
||||
|
||||
|
||||
void Subdiv2D::clearVoronoi()
|
||||
{
|
||||
size_t i, total = qedges.size();
|
||||
|
||||
for( i = 0; i < total; i++ )
|
||||
qedges[i].pt[1] = qedges[i].pt[3] = 0;
|
||||
|
||||
total = vtx.size();
|
||||
for( i = 0; i < total; i++ )
|
||||
{
|
||||
if( vtx[i].isvirtual() )
|
||||
deletePoint((int)i);
|
||||
}
|
||||
|
||||
validGeometry = false;
|
||||
}
|
||||
|
||||
|
||||
static Point2f computeVoronoiPoint(Point2f org0, Point2f dst0, Point2f org1, Point2f dst1)
|
||||
{
|
||||
double a0 = dst0.x - org0.x;
|
||||
double b0 = dst0.y - org0.y;
|
||||
double c0 = -0.5*(a0 * (dst0.x + org0.x) + b0 * (dst0.y + org0.y));
|
||||
|
||||
double a1 = dst1.x - org1.x;
|
||||
double b1 = dst1.y - org1.y;
|
||||
double c1 = -0.5*(a1 * (dst1.x + org1.x) + b1 * (dst1.y + org1.y));
|
||||
|
||||
double det = a0 * b1 - a1 * b0;
|
||||
|
||||
if( det != 0 )
|
||||
{
|
||||
det = 1. / det;
|
||||
return Point2f((float) ((b0 * c1 - b1 * c0) * det),
|
||||
(float) ((a1 * c0 - a0 * c1) * det));
|
||||
}
|
||||
|
||||
return Point2f(FLT_MAX, FLT_MAX);
|
||||
}
|
||||
|
||||
|
||||
void Subdiv2D::calcVoronoi()
|
||||
{
|
||||
// check if it is already calculated
|
||||
if( validGeometry )
|
||||
return;
|
||||
|
||||
clearVoronoi();
|
||||
int i, total = (int)qedges.size();
|
||||
|
||||
// loop through all quad-edges, except for the first 3 (#1, #2, #3 - 0 is reserved for "NULL" pointer)
|
||||
for( i = 4; i < total; i++ )
|
||||
{
|
||||
QuadEdge& quadedge = qedges[i];
|
||||
|
||||
if( quadedge.isfree() )
|
||||
continue;
|
||||
|
||||
int edge0 = (int)(i*4);
|
||||
Point2f org0, dst0, org1, dst1;
|
||||
|
||||
if( !quadedge.pt[3] )
|
||||
{
|
||||
int edge1 = getEdge( edge0, NEXT_AROUND_LEFT );
|
||||
int edge2 = getEdge( edge1, NEXT_AROUND_LEFT );
|
||||
|
||||
edgeOrg(edge0, &org0);
|
||||
edgeDst(edge0, &dst0);
|
||||
edgeOrg(edge1, &org1);
|
||||
edgeDst(edge1, &dst1);
|
||||
|
||||
Point2f virt_point = computeVoronoiPoint(org0, dst0, org1, dst1);
|
||||
|
||||
if( fabs( virt_point.x ) < FLT_MAX * 0.5 &&
|
||||
fabs( virt_point.y ) < FLT_MAX * 0.5 )
|
||||
{
|
||||
quadedge.pt[3] = qedges[edge1 >> 2].pt[3 - (edge1 & 2)] =
|
||||
qedges[edge2 >> 2].pt[3 - (edge2 & 2)] = newPoint(virt_point, true);
|
||||
}
|
||||
}
|
||||
|
||||
if( !quadedge.pt[1] )
|
||||
{
|
||||
int edge1 = getEdge( edge0, NEXT_AROUND_RIGHT );
|
||||
int edge2 = getEdge( edge1, NEXT_AROUND_RIGHT );
|
||||
|
||||
edgeOrg(edge0, &org0);
|
||||
edgeDst(edge0, &dst0);
|
||||
edgeOrg(edge1, &org1);
|
||||
edgeDst(edge1, &dst1);
|
||||
|
||||
Point2f virt_point = computeVoronoiPoint(org0, dst0, org1, dst1);
|
||||
|
||||
if( fabs( virt_point.x ) < FLT_MAX * 0.5 &&
|
||||
fabs( virt_point.y ) < FLT_MAX * 0.5 )
|
||||
{
|
||||
quadedge.pt[1] = qedges[edge1 >> 2].pt[1 + (edge1 & 2)] =
|
||||
qedges[edge2 >> 2].pt[1 + (edge2 & 2)] = newPoint(virt_point, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
validGeometry = true;
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
isRightOf2( const Point2f& pt, const Point2f& org, const Point2f& diff )
|
||||
{
|
||||
double cw_area = ((double)org.x - pt.x)*diff.y - ((double)org.y - pt.y)*diff.x;
|
||||
return (cw_area > 0) - (cw_area < 0);
|
||||
}
|
||||
|
||||
|
||||
int Subdiv2D::findNearest(Point2f pt, Point2f* nearestPt)
|
||||
{
|
||||
if( !validGeometry )
|
||||
calcVoronoi();
|
||||
|
||||
int vertex = 0, edge = 0;
|
||||
int loc = locate( pt, edge, vertex );
|
||||
|
||||
if( loc != PTLOC_ON_EDGE && loc != PTLOC_INSIDE )
|
||||
return vertex;
|
||||
|
||||
vertex = 0;
|
||||
|
||||
Point2f start;
|
||||
edgeOrg(edge, &start);
|
||||
Point2f diff = pt - start;
|
||||
|
||||
edge = rotateEdge(edge, 1);
|
||||
|
||||
int i, total = (int)vtx.size();
|
||||
|
||||
for( i = 0; i < total; i++ )
|
||||
{
|
||||
Point2f t;
|
||||
|
||||
for(;;)
|
||||
{
|
||||
CV_Assert( edgeDst(edge, &t) > 0 );
|
||||
if( isRightOf2( t, start, diff ) >= 0 )
|
||||
break;
|
||||
|
||||
edge = getEdge( edge, NEXT_AROUND_LEFT );
|
||||
}
|
||||
|
||||
for(;;)
|
||||
{
|
||||
CV_Assert( edgeOrg( edge, &t ) > 0 );
|
||||
|
||||
if( isRightOf2( t, start, diff ) < 0 )
|
||||
break;
|
||||
|
||||
edge = getEdge( edge, PREV_AROUND_LEFT );
|
||||
}
|
||||
|
||||
Point2f tempDiff;
|
||||
edgeDst(edge, &tempDiff);
|
||||
edgeOrg(edge, &t);
|
||||
tempDiff -= t;
|
||||
|
||||
if( isRightOf2( pt, t, tempDiff ) >= 0 )
|
||||
{
|
||||
vertex = edgeOrg(rotateEdge( edge, 3 ));
|
||||
break;
|
||||
}
|
||||
|
||||
edge = symEdge( edge );
|
||||
}
|
||||
|
||||
if( nearestPt && vertex > 0 )
|
||||
*nearestPt = vtx[vertex].pt;
|
||||
|
||||
return vertex;
|
||||
}
|
||||
|
||||
void Subdiv2D::getTriangleList(vector<Vec6f>& triangleList)
|
||||
{
|
||||
vector<bool> processed(vtx.size(), false);
|
||||
processed[0] = true;
|
||||
|
||||
calcVoronoi();
|
||||
triangleList.clear();
|
||||
|
||||
for( size_t i = 4; i < qedges.size(); i++ )
|
||||
{
|
||||
if( qedges[i].isfree() )
|
||||
continue;
|
||||
int e0 = (int)(i*4), e1 = rotateEdge(e0, 1), e;
|
||||
int vidx0 = edgeOrg(e1), vidx1 = edgeDst(e1);
|
||||
Point2f a, b, c;
|
||||
if( !processed[vidx0] )
|
||||
{
|
||||
edgeOrg(e0, &a);
|
||||
edgeDst(e0, &b);
|
||||
e = getEdge(e0, NEXT_AROUND_LEFT);
|
||||
edgeDst(e, &c);
|
||||
triangleList.push_back(Vec6f(a.x, a.y, b.x, b.y, c.x, c.y));
|
||||
processed[vidx0] = true;
|
||||
}
|
||||
if( !processed[vidx1] )
|
||||
{
|
||||
edgeDst(e0, &a);
|
||||
edgeOrg(e0, &b);
|
||||
e = getEdge(e0, PREV_AROUND_RIGHT);
|
||||
edgeOrg(e, &c);
|
||||
triangleList.push_back(Vec6f(a.x, a.y, b.x, b.y, c.x, c.y));
|
||||
processed[vidx1] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Subdiv2D::getVoronoiFacetList(const vector<int>& idx, CV_OUT vector<vector<Point2f> >& facetList)
|
||||
{
|
||||
calcVoronoi();
|
||||
facetList.clear();
|
||||
|
||||
vector<Point2f> buf;
|
||||
|
||||
size_t i, total;
|
||||
if( idx.empty() )
|
||||
i = 4, total = vtx.size();
|
||||
else
|
||||
i = 0, total = idx.size();
|
||||
|
||||
for( ; i < total; i++ )
|
||||
{
|
||||
int k = idx.empty() ? (int)i : idx[i];
|
||||
|
||||
if( vtx[k].isvirtual() )
|
||||
continue;
|
||||
int edge = rotateEdge(vtx[k].firstEdge, 1), t = edge;
|
||||
|
||||
// gather points
|
||||
buf.clear();
|
||||
do
|
||||
{
|
||||
buf.push_back(vtx[edgeOrg(t)].pt);
|
||||
t = getEdge( t, NEXT_AROUND_LEFT );
|
||||
}
|
||||
while( t != edge );
|
||||
|
||||
facetList.push_back(buf);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
static void help()
|
||||
{
|
||||
cout << "\nThis program demostrates iterative construction of\n"
|
||||
"delaunay triangulation and voronoi tesselation.\n"
|
||||
"It draws a random set of points in an image and then delaunay triangulates them.\n"
|
||||
"Usage: \n"
|
||||
"./delaunay \n"
|
||||
"\nThis program builds the traingulation interactively, you may stop this process by\n"
|
||||
"hitting any key.\n";
|
||||
}
|
||||
|
||||
|
||||
static void draw_subdiv_point( Mat& img, Point2f fp, Scalar color )
|
||||
{
|
||||
circle( img, fp, 3, color, CV_FILLED, 8, 0 );
|
||||
}
|
||||
|
||||
static void draw_subdiv( Mat& img, Subdiv2D& subdiv, Scalar delaunay_color )
|
||||
{
|
||||
vector<Vec6f> triangleList;
|
||||
subdiv.getTriangleList(triangleList);
|
||||
vector<Point> pt(3);
|
||||
|
||||
for( size_t i = 0; i < triangleList.size(); i++ )
|
||||
{
|
||||
Vec6f t = triangleList[i];
|
||||
pt[0] = Point(cvRound(t[0]), cvRound(t[1]));
|
||||
pt[1] = Point(cvRound(t[2]), cvRound(t[3]));
|
||||
pt[2] = Point(cvRound(t[4]), cvRound(t[5]));
|
||||
line(img, pt[0], pt[1], delaunay_color, 1, CV_AA, 0);
|
||||
line(img, pt[1], pt[2], delaunay_color, 1, CV_AA, 0);
|
||||
line(img, pt[2], pt[0], delaunay_color, 1, CV_AA, 0);
|
||||
}
|
||||
}
|
||||
|
||||
static void locate_point( Mat& img, Subdiv2D& subdiv, Point2f fp, Scalar active_color )
|
||||
{
|
||||
int e0=0, vertex=0;
|
||||
|
||||
subdiv.locate(fp, e0, vertex);
|
||||
|
||||
if( e0 > 0 )
|
||||
{
|
||||
int e = e0;
|
||||
do
|
||||
{
|
||||
Point2f org, dst;
|
||||
if( subdiv.edgeOrg(e, &org) > 0 && subdiv.edgeDst(e, &dst) > 0 )
|
||||
line( img, org, dst, active_color, 3, CV_AA, 0 );
|
||||
|
||||
e = subdiv.getEdge(e, Subdiv2D::NEXT_AROUND_LEFT);
|
||||
}
|
||||
while( e != e0 );
|
||||
}
|
||||
|
||||
draw_subdiv_point( img, fp, active_color );
|
||||
}
|
||||
|
||||
|
||||
void paint_voronoi( Mat& img, Subdiv2D& subdiv )
|
||||
{
|
||||
vector<vector<Point2f> > facets;
|
||||
subdiv.getVoronoiFacetList(vector<int>(), facets);
|
||||
|
||||
vector<Point> ifacet;
|
||||
vector<vector<Point> > ifacets(1);
|
||||
|
||||
for( size_t i = 0; i < facets.size(); i++ )
|
||||
{
|
||||
ifacet.resize(facets[i].size());
|
||||
for( size_t j = 0; j < facets[i].size(); j++ )
|
||||
ifacet[j] = facets[i][j];
|
||||
|
||||
Scalar color;
|
||||
color[0] = rand() & 256;
|
||||
color[1] = rand() & 256;
|
||||
color[2] = rand() & 256;
|
||||
fillConvexPoly(img, ifacet, color, 8, 0);
|
||||
|
||||
ifacets[0] = ifacet;
|
||||
polylines(img, ifacets, true, Scalar(), 1, CV_AA, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main( int, char** )
|
||||
{
|
||||
help();
|
||||
|
||||
Scalar active_facet_color(0, 0, 255), delaunay_color(255,255,255);
|
||||
Rect rect(0, 0, 600, 600);
|
||||
|
||||
Subdiv2D subdiv(rect);
|
||||
Mat img(rect.size(), CV_8UC3);
|
||||
|
||||
img = Scalar::all(0);
|
||||
string win = "Delaunay Demo";
|
||||
imshow(win, img);
|
||||
|
||||
for( int i = 0; i < 200; i++ )
|
||||
{
|
||||
Point2f fp( (float)(rand()%(rect.width-10)+5),
|
||||
(float)(rand()%(rect.height-10)+5));
|
||||
|
||||
locate_point( img, subdiv, fp, active_facet_color );
|
||||
imshow( win, img );
|
||||
|
||||
if( waitKey( 100 ) >= 0 )
|
||||
break;
|
||||
|
||||
subdiv.insert(fp);
|
||||
img = Scalar::all(0);
|
||||
draw_subdiv( img, subdiv, delaunay_color );
|
||||
imshow( win, img );
|
||||
|
||||
if( waitKey( 100 ) >= 0 )
|
||||
break;
|
||||
}
|
||||
|
||||
img = Scalar::all(0);
|
||||
paint_voronoi( img, subdiv );
|
||||
imshow( win, img );
|
||||
|
||||
waitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user