refactor cudaarithm reductions:
* remove overloads with explicit buffer, now BufferPool is used * added async versions for all reduce functions
This commit is contained in:
@@ -47,110 +47,106 @@ using namespace cv::cuda;
|
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
||||
|
||||
double cv::cuda::norm(InputArray, int, InputArray, GpuMat&) { throw_no_cuda(); return 0.0; }
|
||||
double cv::cuda::norm(InputArray, InputArray, GpuMat&, int) { throw_no_cuda(); return 0.0; }
|
||||
double cv::cuda::norm(InputArray, int, InputArray) { throw_no_cuda(); return 0.0; }
|
||||
void cv::cuda::calcNorm(InputArray, OutputArray, int, InputArray, Stream&) { throw_no_cuda(); }
|
||||
double cv::cuda::norm(InputArray, InputArray, int) { throw_no_cuda(); return 0.0; }
|
||||
void cv::cuda::calcNormDiff(InputArray, InputArray, OutputArray, int, Stream&) { throw_no_cuda(); }
|
||||
|
||||
Scalar cv::cuda::sum(InputArray, InputArray, GpuMat&) { throw_no_cuda(); return Scalar(); }
|
||||
Scalar cv::cuda::absSum(InputArray, InputArray, GpuMat&) { throw_no_cuda(); return Scalar(); }
|
||||
Scalar cv::cuda::sqrSum(InputArray, InputArray, GpuMat&) { throw_no_cuda(); return Scalar(); }
|
||||
Scalar cv::cuda::sum(InputArray, InputArray) { throw_no_cuda(); return Scalar(); }
|
||||
void cv::cuda::calcSum(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
|
||||
Scalar cv::cuda::absSum(InputArray, InputArray) { throw_no_cuda(); return Scalar(); }
|
||||
void cv::cuda::calcAbsSum(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
|
||||
Scalar cv::cuda::sqrSum(InputArray, InputArray) { throw_no_cuda(); return Scalar(); }
|
||||
void cv::cuda::calcSqrSum(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
|
||||
|
||||
void cv::cuda::minMax(InputArray, double*, double*, InputArray, GpuMat&) { throw_no_cuda(); }
|
||||
void cv::cuda::minMaxLoc(InputArray, double*, double*, Point*, Point*, InputArray, GpuMat&, GpuMat&) { throw_no_cuda(); }
|
||||
void cv::cuda::minMax(InputArray, double*, double*, InputArray) { throw_no_cuda(); }
|
||||
void cv::cuda::findMinMax(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
|
||||
void cv::cuda::minMaxLoc(InputArray, double*, double*, Point*, Point*, InputArray) { throw_no_cuda(); }
|
||||
void cv::cuda::findMinMaxLoc(InputArray, OutputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
|
||||
|
||||
int cv::cuda::countNonZero(InputArray, GpuMat&) { throw_no_cuda(); return 0; }
|
||||
int cv::cuda::countNonZero(InputArray) { throw_no_cuda(); return 0; }
|
||||
void cv::cuda::countNonZero(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
|
||||
|
||||
void cv::cuda::reduce(InputArray, OutputArray, int, int, int, Stream&) { throw_no_cuda(); }
|
||||
|
||||
void cv::cuda::meanStdDev(InputArray, Scalar&, Scalar&, GpuMat&) { throw_no_cuda(); }
|
||||
void cv::cuda::meanStdDev(InputArray, Scalar&, Scalar&) { throw_no_cuda(); }
|
||||
void cv::cuda::meanStdDev(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
|
||||
|
||||
void cv::cuda::rectStdDev(InputArray, InputArray, OutputArray, Rect, Stream&) { throw_no_cuda(); }
|
||||
|
||||
void cv::cuda::normalize(InputArray, OutputArray, double, double, int, int, InputArray, GpuMat&, GpuMat&) { throw_no_cuda(); }
|
||||
void cv::cuda::normalize(InputArray, OutputArray, double, double, int, int, InputArray, Stream&) { throw_no_cuda(); }
|
||||
|
||||
void cv::cuda::integral(InputArray, OutputArray, GpuMat&, Stream&) { throw_no_cuda(); }
|
||||
void cv::cuda::sqrIntegral(InputArray, OutputArray, GpuMat&, Stream&) { throw_no_cuda(); }
|
||||
void cv::cuda::integral(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
|
||||
void cv::cuda::sqrIntegral(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
|
||||
|
||||
#else
|
||||
|
||||
namespace
|
||||
{
|
||||
class DeviceBuffer
|
||||
{
|
||||
public:
|
||||
explicit DeviceBuffer(int count_ = 1) : count(count_)
|
||||
{
|
||||
cudaSafeCall( cudaMalloc(&pdev, count * sizeof(double)) );
|
||||
}
|
||||
~DeviceBuffer()
|
||||
{
|
||||
cudaSafeCall( cudaFree(pdev) );
|
||||
}
|
||||
|
||||
operator double*() {return pdev;}
|
||||
|
||||
void download(double* hptr)
|
||||
{
|
||||
double hbuf;
|
||||
cudaSafeCall( cudaMemcpy(&hbuf, pdev, sizeof(double), cudaMemcpyDeviceToHost) );
|
||||
*hptr = hbuf;
|
||||
}
|
||||
void download(double** hptrs)
|
||||
{
|
||||
AutoBuffer<double, 2 * sizeof(double)> hbuf(count);
|
||||
cudaSafeCall( cudaMemcpy((void*)hbuf, pdev, count * sizeof(double), cudaMemcpyDeviceToHost) );
|
||||
for (int i = 0; i < count; ++i)
|
||||
*hptrs[i] = hbuf[i];
|
||||
}
|
||||
|
||||
private:
|
||||
double* pdev;
|
||||
int count;
|
||||
};
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// norm
|
||||
|
||||
double cv::cuda::norm(InputArray _src, int normType, InputArray _mask, GpuMat& buf)
|
||||
{
|
||||
GpuMat src = _src.getGpuMat();
|
||||
GpuMat mask = _mask.getGpuMat();
|
||||
namespace cv { namespace cuda { namespace internal {
|
||||
|
||||
void normL2(cv::InputArray _src, cv::OutputArray _dst, cv::InputArray _mask, Stream& stream);
|
||||
|
||||
void findMaxAbs(cv::InputArray _src, cv::OutputArray _dst, cv::InputArray _mask, Stream& stream);
|
||||
|
||||
}}}
|
||||
|
||||
void cv::cuda::calcNorm(InputArray _src, OutputArray dst, int normType, InputArray mask, Stream& stream)
|
||||
{
|
||||
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
|
||||
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src.size() && src.channels() == 1) );
|
||||
|
||||
GpuMat src = getInputMat(_src, stream);
|
||||
|
||||
GpuMat src_single_channel = src.reshape(1);
|
||||
|
||||
if (normType == NORM_L1)
|
||||
return cuda::absSum(src_single_channel, mask, buf)[0];
|
||||
{
|
||||
calcAbsSum(src_single_channel, dst, mask, stream);
|
||||
}
|
||||
else if (normType == NORM_L2)
|
||||
{
|
||||
internal::normL2(src_single_channel, dst, mask, stream);
|
||||
}
|
||||
else // NORM_INF
|
||||
{
|
||||
internal::findMaxAbs(src_single_channel, dst, mask, stream);
|
||||
}
|
||||
}
|
||||
|
||||
if (normType == NORM_L2)
|
||||
return std::sqrt(cuda::sqrSum(src_single_channel, mask, buf)[0]);
|
||||
double cv::cuda::norm(InputArray _src, int normType, InputArray _mask)
|
||||
{
|
||||
Stream& stream = Stream::Null();
|
||||
|
||||
// NORM_INF
|
||||
double min_val, max_val;
|
||||
cuda::minMax(src_single_channel, &min_val, &max_val, mask, buf);
|
||||
return std::max(std::abs(min_val), std::abs(max_val));
|
||||
HostMem dst;
|
||||
calcNorm(_src, dst, normType, _mask, stream);
|
||||
|
||||
stream.waitForCompletion();
|
||||
|
||||
double val;
|
||||
dst.createMatHeader().convertTo(Mat(1, 1, CV_64FC1, &val), CV_64F);
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// meanStdDev
|
||||
|
||||
void cv::cuda::meanStdDev(InputArray _src, Scalar& mean, Scalar& stddev, GpuMat& buf)
|
||||
void cv::cuda::meanStdDev(InputArray _src, OutputArray _dst, Stream& stream)
|
||||
{
|
||||
GpuMat src = _src.getGpuMat();
|
||||
if (!deviceSupports(FEATURE_SET_COMPUTE_13))
|
||||
CV_Error(cv::Error::StsNotImplemented, "Not sufficient compute capebility");
|
||||
|
||||
const GpuMat src = getInputMat(_src, stream);
|
||||
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
|
||||
if (!deviceSupports(FEATURE_SET_COMPUTE_13))
|
||||
CV_Error(cv::Error::StsNotImplemented, "Not sufficient compute capebility");
|
||||
GpuMat dst = getOutputMat(_dst, 1, 2, CV_64FC1, stream);
|
||||
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
sz.height = src.rows;
|
||||
|
||||
DeviceBuffer dbuf(2);
|
||||
|
||||
int bufSize;
|
||||
#if (CUDA_VERSION <= 4020)
|
||||
nppSafeCall( nppiMeanStdDev8uC1RGetBufferHostSize(sz, &bufSize) );
|
||||
@@ -158,14 +154,30 @@ void cv::cuda::meanStdDev(InputArray _src, Scalar& mean, Scalar& stddev, GpuMat&
|
||||
nppSafeCall( nppiMeanStdDevGetBufferHostSize_8u_C1R(sz, &bufSize) );
|
||||
#endif
|
||||
|
||||
ensureSizeIsEnough(1, bufSize, CV_8UC1, buf);
|
||||
BufferPool pool(stream);
|
||||
GpuMat buf = pool.getBuffer(1, bufSize, CV_8UC1);
|
||||
|
||||
nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), sz, buf.ptr<Npp8u>(), dbuf, (double*)dbuf + 1) );
|
||||
NppStreamHandler h(StreamAccessor::getStream(stream));
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), sz, buf.ptr<Npp8u>(), dst.ptr<Npp64f>(), dst.ptr<Npp64f>() + 1) );
|
||||
|
||||
double* ptrs[2] = {mean.val, stddev.val};
|
||||
dbuf.download(ptrs);
|
||||
syncOutput(dst, _dst, stream);
|
||||
}
|
||||
|
||||
void cv::cuda::meanStdDev(InputArray _src, Scalar& mean, Scalar& stddev)
|
||||
{
|
||||
Stream& stream = Stream::Null();
|
||||
|
||||
HostMem dst;
|
||||
meanStdDev(_src, dst, stream);
|
||||
|
||||
stream.waitForCompletion();
|
||||
|
||||
double vals[2];
|
||||
dst.createMatHeader().copyTo(Mat(1, 2, CV_64FC1, &vals[0]));
|
||||
|
||||
mean = Scalar(vals[0]);
|
||||
stddev = Scalar(vals[1]);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
@@ -173,13 +185,12 @@ void cv::cuda::meanStdDev(InputArray _src, Scalar& mean, Scalar& stddev, GpuMat&
|
||||
|
||||
void cv::cuda::rectStdDev(InputArray _src, InputArray _sqr, OutputArray _dst, Rect rect, Stream& _stream)
|
||||
{
|
||||
GpuMat src = _src.getGpuMat();
|
||||
GpuMat sqr = _sqr.getGpuMat();
|
||||
GpuMat src = getInputMat(_src, _stream);
|
||||
GpuMat sqr = getInputMat(_sqr, _stream);
|
||||
|
||||
CV_Assert( src.type() == CV_32SC1 && sqr.type() == CV_64FC1 );
|
||||
|
||||
_dst.create(src.size(), CV_32FC1);
|
||||
GpuMat dst = _dst.getGpuMat();
|
||||
GpuMat dst = getOutputMat(_dst, src.size(), CV_32FC1, _stream);
|
||||
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
@@ -200,45 +211,8 @@ void cv::cuda::rectStdDev(InputArray _src, InputArray _sqr, OutputArray _dst, Re
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// normalize
|
||||
|
||||
void cv::cuda::normalize(InputArray _src, OutputArray dst, double a, double b, int norm_type, int dtype, InputArray mask, GpuMat& norm_buf, GpuMat& cvt_buf)
|
||||
{
|
||||
GpuMat src = _src.getGpuMat();
|
||||
|
||||
double scale = 1, shift = 0;
|
||||
|
||||
if (norm_type == NORM_MINMAX)
|
||||
{
|
||||
double smin = 0, smax = 0;
|
||||
double dmin = std::min(a, b), dmax = std::max(a, b);
|
||||
cuda::minMax(src, &smin, &smax, mask, norm_buf);
|
||||
scale = (dmax - dmin) * (smax - smin > std::numeric_limits<double>::epsilon() ? 1.0 / (smax - smin) : 0.0);
|
||||
shift = dmin - smin * scale;
|
||||
}
|
||||
else if (norm_type == NORM_L2 || norm_type == NORM_L1 || norm_type == NORM_INF)
|
||||
{
|
||||
scale = cuda::norm(src, norm_type, mask, norm_buf);
|
||||
scale = scale > std::numeric_limits<double>::epsilon() ? a / scale : 0.0;
|
||||
shift = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error(cv::Error::StsBadArg, "Unknown/unsupported norm type");
|
||||
}
|
||||
|
||||
if (mask.empty())
|
||||
{
|
||||
src.convertTo(dst, dtype, scale, shift);
|
||||
}
|
||||
else
|
||||
{
|
||||
src.convertTo(cvt_buf, dtype, scale, shift);
|
||||
cvt_buf.copyTo(dst, mask);
|
||||
}
|
||||
syncOutput(dst, _dst, _stream);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user