Primal-dual algorithm
This is an implementation of primal-dual algorithm, based on the C++ source code by Vadim Pisarevsky. It was extended to handle the denoising based on multiple observations. It also contains documentation and tests.
This commit is contained in:
183
modules/optim/src/denoise_tvl1.cpp
Normal file
183
modules/optim/src/denoise_tvl1.cpp
Normal file
@@ -0,0 +1,183 @@
|
||||
#include "precomp.hpp"
|
||||
#define ALEX_DEBUG
|
||||
#include "debug.hpp"
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
||||
#define ABSCLIP(val,threshold) MIN(MAX((val),-(threshold)),(threshold))
|
||||
|
||||
namespace cv{namespace optim{
|
||||
|
||||
class AddFloatToCharScaled{
|
||||
public:
|
||||
AddFloatToCharScaled(float scale):_scale(scale){}
|
||||
inline float operator()(float a,uchar b){
|
||||
return a+_scale*((float)b);
|
||||
}
|
||||
private:
|
||||
float _scale;
|
||||
};
|
||||
|
||||
void solve_TVL1(const Mat& img, Mat& res, double _clambda, int niters)
|
||||
{
|
||||
const float L2 = 8.0f, tau = 0.02f, sigma = 1./(L2*tau), theta = 1.f, img_scale = 1.f/255;
|
||||
float clambda = (float)_clambda, threshold = clambda*tau;
|
||||
const int workdepth = CV_32F;
|
||||
|
||||
int i, x, y, rows=img.rows, cols=img.cols;
|
||||
|
||||
Mat X, P = Mat::zeros(rows, cols, CV_MAKETYPE(workdepth, 2));
|
||||
img.convertTo(X, workdepth, 1./255);
|
||||
|
||||
for( i = 0; i < niters; i++ )
|
||||
{
|
||||
float currsigma = i == 0 ? 1 + sigma : sigma;
|
||||
|
||||
// P_ = P + sigma*nabla(X)
|
||||
// P(x,y) = P_(x,y)/max(||P(x,y)||,1)
|
||||
for( y = 0; y < rows; y++ )
|
||||
{
|
||||
const float* x_curr = X.ptr<float>(y);
|
||||
const float* x_next = X.ptr<float>(std::min(y+1, rows-1));
|
||||
Point2f* p_curr = P.ptr<Point2f>(y);
|
||||
float dx, dy, m;
|
||||
for( x = 0; x < cols-1; x++ )
|
||||
{
|
||||
dx = (x_curr[x+1] - x_curr[x])*currsigma + p_curr[x].x;
|
||||
dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y;
|
||||
m = 1.f/std::max(std::sqrt(dx*dx + dy*dy), 1.f);
|
||||
p_curr[x].x = dx*m;
|
||||
p_curr[x].y = dy*m;
|
||||
}
|
||||
dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y;
|
||||
m = 1.f/std::max(std::abs(dy), 1.f);
|
||||
p_curr[x].x = 0.f;
|
||||
p_curr[x].y = dy*m;
|
||||
}
|
||||
|
||||
// X1 = X + tau*(-nablaT(P))
|
||||
// X2 = X1 + clip(img - X1, -clambda*tau, clambda*tau)
|
||||
// X = X2 + theta*(X2 - X)
|
||||
for( y = 0; y < rows; y++ )
|
||||
{
|
||||
const uchar* img_curr = img.ptr<uchar>(y);
|
||||
float* x_curr = X.ptr<float>(y);
|
||||
const Point2f* p_curr = P.ptr<Point2f>(y);
|
||||
const Point2f* p_prev = P.ptr<Point2f>(std::max(y - 1, 0));
|
||||
|
||||
x = 0;
|
||||
float x_new = x_curr[x] + tau*(p_curr[x].y - p_prev[x].y);
|
||||
x_new += std::min(std::max(img_curr[x]*img_scale - x_new, -threshold), threshold);
|
||||
x_curr[x] = x_new + theta*(x_new - x_curr[x]);
|
||||
|
||||
for( x = 1; x < cols; x++ )
|
||||
{
|
||||
x_new = x_curr[x] + tau*(p_curr[x].x - p_curr[x-1].x + p_curr[x].y - p_prev[x].y);
|
||||
x_new += std::min(std::max(img_curr[x]*img_scale - x_new, -threshold), threshold);
|
||||
x_curr[x] = x_new + theta*(x_new - x_curr[x]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
res.create(X.rows,X.cols,CV_8U);
|
||||
X.convertTo(res, CV_8U, 255);
|
||||
}
|
||||
|
||||
void denoise_TVL1(const std::vector<Mat>& observations,Mat& result, double lambda, int niters){
|
||||
|
||||
CV_Assert(observations.size()>0 && niters>0 && lambda>0);
|
||||
#if 0
|
||||
solve_TVL1(observations[0],result,lambda,niters);
|
||||
return;
|
||||
#endif
|
||||
|
||||
const float L2 = 8.0f, tau = 0.02f, sigma = 1./(L2*tau), theta = 1.f, img_scale = 1.f/255;
|
||||
float clambda = (float)lambda, threshold = clambda*tau;
|
||||
float s=0;
|
||||
const int workdepth = CV_32F;
|
||||
|
||||
int i, x, y, rows=observations[0].rows, cols=observations[0].cols,count;
|
||||
for(i=1;i<observations.size();i++){
|
||||
CV_Assert(observations[i].rows==rows && observations[i].cols==cols);
|
||||
}
|
||||
|
||||
Mat X, P = Mat::zeros(rows, cols, CV_MAKETYPE(workdepth, 2));
|
||||
observations[0].convertTo(X, workdepth, 1./255);
|
||||
std::vector< Mat_<float> > Rs(observations.size());
|
||||
for(count=0;count<Rs.size();count++){
|
||||
Rs[count]=Mat::zeros(rows,cols,workdepth);
|
||||
}
|
||||
|
||||
for( i = 0; i < niters; i++ )
|
||||
{
|
||||
float currsigma = i == 0 ? 1 + sigma : sigma;
|
||||
|
||||
// P_ = P + sigma*nabla(X)
|
||||
// P(x,y) = P_(x,y)/max(||P(x,y)||,1)
|
||||
for( y = 0; y < rows; y++ )
|
||||
{
|
||||
const float* x_curr = X.ptr<float>(y);
|
||||
const float* x_next = X.ptr<float>(std::min(y+1, rows-1));
|
||||
Point2f* p_curr = P.ptr<Point2f>(y);
|
||||
float dx, dy, m;
|
||||
for( x = 0; x < cols-1; x++ )
|
||||
{
|
||||
dx = (x_curr[x+1] - x_curr[x])*currsigma + p_curr[x].x;
|
||||
dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y;
|
||||
m = 1.f/std::max(std::sqrt(dx*dx + dy*dy), 1.f);
|
||||
p_curr[x].x = dx*m;
|
||||
p_curr[x].y = dy*m;
|
||||
}
|
||||
dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y;
|
||||
m = 1.f/std::max(std::abs(dy), 1.f);
|
||||
p_curr[x].x = 0.f;
|
||||
p_curr[x].y = dy*m;
|
||||
}
|
||||
|
||||
|
||||
//Rs = clip(Rs + sigma*(X-imgs), -clambda, clambda)
|
||||
for(count=0;count<Rs.size();count++){
|
||||
std::transform<MatIterator_<float>,MatConstIterator_<uchar>,MatIterator_<float>,AddFloatToCharScaled>(
|
||||
Rs[count].begin(),Rs[count].end(),observations[count].begin<uchar>(),
|
||||
Rs[count].begin(),AddFloatToCharScaled(-sigma/255.0));
|
||||
Rs[count]+=sigma*X;
|
||||
min(Rs[count],clambda,Rs[count]);
|
||||
max(Rs[count],-clambda,Rs[count]);
|
||||
}
|
||||
|
||||
for( y = 0; y < rows; y++ )
|
||||
{
|
||||
const uchar* img_curr = observations[0].ptr<uchar>(y);
|
||||
float* x_curr = X.ptr<float>(y);
|
||||
const Point2f* p_curr = P.ptr<Point2f>(y);
|
||||
const Point2f* p_prev = P.ptr<Point2f>(std::max(y - 1, 0));
|
||||
|
||||
// X1 = X + tau*(-nablaT(P))
|
||||
x = 0;
|
||||
s=0.0;
|
||||
for(count=0;count<Rs.size();count++){
|
||||
s=s+Rs[count](y,x);
|
||||
}
|
||||
float x_new = x_curr[x] + tau*(p_curr[x].y - p_prev[x].y)-tau*s;
|
||||
// X = X2 + theta*(X2 - X)
|
||||
x_curr[x] = x_new + theta*(x_new - x_curr[x]);
|
||||
|
||||
|
||||
for(x = 1; x < cols; x++ )
|
||||
{
|
||||
s=0.0;
|
||||
for(count=0;count<Rs.size();count++){
|
||||
s+=Rs[count](y,x);
|
||||
}
|
||||
// X1 = X + tau*(-nablaT(P))
|
||||
x_new = x_curr[x] + tau*(p_curr[x].x - p_curr[x-1].x + p_curr[x].y - p_prev[x].y)-tau*s;
|
||||
// X = X2 + theta*(X2 - X)
|
||||
x_curr[x] = x_new + theta*(x_new - x_curr[x]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result.create(X.rows,X.cols,CV_8U);
|
||||
X.convertTo(result, CV_8U, 255);
|
||||
}
|
||||
}}
|
Reference in New Issue
Block a user