added gpu::solvePnpRansac
This commit is contained in:
parent
518ed29480
commit
cae59a7caf
@ -868,6 +868,25 @@ namespace cv
|
||||
const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst,
|
||||
const Stream& stream);
|
||||
|
||||
struct CV_EXPORTS SolvePnpRansacParams
|
||||
{
|
||||
SolvePnpRansacParams(): subset_size(4),
|
||||
use_extrinsic_guess(false),
|
||||
num_iters(100),
|
||||
max_dist(2.f),
|
||||
min_num_inliers(-1),
|
||||
inliers(NULL) {}
|
||||
int subset_size;
|
||||
bool use_extrinsic_guess;
|
||||
int num_iters;
|
||||
float max_dist;
|
||||
int min_num_inliers;
|
||||
vector<int>* inliers;
|
||||
};
|
||||
|
||||
CV_EXPORTS void solvePnpRansac(const Mat& object, const Mat& image, const Mat& camera_mat,
|
||||
const Mat& dist_coef, Mat& rvec, Mat& tvec, SolvePnpRansacParams params);
|
||||
|
||||
//////////////////////////////// Filter Engine ////////////////////////////////
|
||||
|
||||
/*!
|
||||
|
@ -56,6 +56,9 @@ void cv::gpu::projectPoints(const GpuMat&, const Mat&, const Mat&,
|
||||
void cv::gpu::projectPoints(const GpuMat&, const Mat&, const Mat&,
|
||||
const Mat&, const Mat&, GpuMat&, const Stream&) { throw_nogpu(); }
|
||||
|
||||
void cv::gpu::solvePnpRansac(const Mat&, const Mat&, const Mat&, const Mat&,
|
||||
Mat&, Mat&, SolvePnpRansacParams) { throw_nogpu(); }
|
||||
|
||||
#else
|
||||
|
||||
using namespace cv;
|
||||
@ -103,6 +106,7 @@ namespace cv { namespace gpu { namespace project_points
|
||||
const float* proj, DevMem2D_<float2> dst, cudaStream_t stream);
|
||||
}}}
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
void projectPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec,
|
||||
@ -138,4 +142,139 @@ void cv::gpu::projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
|
||||
::projectPointsCaller(src, rvec, tvec, camera_mat, dist_coef, dst, StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
|
||||
namespace cv { namespace gpu { namespace solve_pnp_ransac
|
||||
{
|
||||
void computeHypothesisScores(
|
||||
const int num_hypotheses, const int num_points, const float* rot_matrices,
|
||||
const float3* transl_vectors, const float3* object, const float2* image,
|
||||
const float3* camera_mat, const float dist_threshold, int* hypothesis_scores);
|
||||
}}}
|
||||
|
||||
namespace
|
||||
{
|
||||
// Selects subset_size random different points from [0, num_points - 1] range
|
||||
void selectRandom(int subset_size, int num_points, vector<int>& subset)
|
||||
{
|
||||
subset.resize(subset_size);
|
||||
for (int i = 0; i < subset_size; ++i)
|
||||
{
|
||||
bool was;
|
||||
do
|
||||
{
|
||||
subset[i] = rand() % num_points;
|
||||
was = false;
|
||||
for (int j = 0; j < i; ++j)
|
||||
if (subset[j] == subset[i])
|
||||
{
|
||||
was = true;
|
||||
break;
|
||||
}
|
||||
} while (was);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::solvePnpRansac(const Mat& object, const Mat& image, const Mat& camera_mat,
|
||||
const Mat& dist_coef, Mat& rvec, Mat& tvec, SolvePnpRansacParams params)
|
||||
{
|
||||
CV_Assert(object.rows == 1 && object.cols > 0 && object.type() == CV_32FC3);
|
||||
CV_Assert(image.rows == 1 && image.cols > 1 && image.type() == CV_32FC2);
|
||||
CV_Assert(object.cols == image.cols);
|
||||
CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F);
|
||||
CV_Assert(dist_coef.empty()); // We don't support undistortion for now
|
||||
CV_Assert(!params.use_extrinsic_guess); // We don't support initial guess for now
|
||||
|
||||
const int num_points = object.cols;
|
||||
|
||||
// Current hypothesis input
|
||||
vector<int> subset_indices(params.subset_size);
|
||||
Mat_<Point3f> object_subset(1, params.subset_size);
|
||||
Mat_<Point2f> image_subset(1, params.subset_size);
|
||||
|
||||
// Current hypothesis result
|
||||
Mat rot_vec(1, 3, CV_64F);
|
||||
Mat rot_mat(3, 3, CV_64F);
|
||||
Mat transl_vec(1, 3, CV_64F);
|
||||
|
||||
// All hypotheses results
|
||||
Mat rot_matrices(1, params.num_iters * 9, CV_32F);
|
||||
Mat transl_vectors(1, params.num_iters * 3, CV_32F);
|
||||
|
||||
// Generate set of (rotation, translation) hypotheses using small subsets
|
||||
// of the input data
|
||||
for (int iter = 0; iter < params.num_iters; ++iter) // TODO TBB?
|
||||
{
|
||||
selectRandom(params.subset_size, num_points, subset_indices);
|
||||
for (int i = 0; i < params.subset_size; ++i)
|
||||
{
|
||||
object_subset(0, i) = object.at<Point3f>(subset_indices[i]);
|
||||
image_subset(0, i) = image.at<Point2f>(subset_indices[i]);
|
||||
}
|
||||
|
||||
solvePnP(object_subset, image_subset, camera_mat, dist_coef, rot_vec, transl_vec);
|
||||
|
||||
// Remember translation vector
|
||||
Mat transl_vec_ = transl_vectors.colRange(iter * 3, (iter + 1) * 3);
|
||||
transl_vec = transl_vec.reshape(0, 1);
|
||||
transl_vec.convertTo(transl_vec_, CV_32F);
|
||||
|
||||
// Remember rotation matrix
|
||||
Rodrigues(rot_vec, rot_mat);
|
||||
Mat rot_mat_ = rot_matrices.colRange(iter * 9, (iter + 1) * 9).reshape(0, 3);
|
||||
rot_mat.convertTo(rot_mat_, CV_32F);
|
||||
}
|
||||
|
||||
// Compute scores (i.e. number of inliers) for each hypothesis
|
||||
GpuMat d_object(object);
|
||||
GpuMat d_image(image);
|
||||
GpuMat d_hypothesis_scores(1, params.num_iters, CV_32S);
|
||||
solve_pnp_ransac::computeHypothesisScores(
|
||||
params.num_iters, num_points, rot_matrices.ptr<float>(), transl_vectors.ptr<float3>(),
|
||||
d_object.ptr<float3>(), d_image.ptr<float2>(), camera_mat.ptr<float3>(),
|
||||
params.max_dist * params.max_dist, d_hypothesis_scores.ptr<int>());
|
||||
|
||||
// Find the best hypothesis index
|
||||
Point best_idx;
|
||||
double best_score;
|
||||
minMaxLoc(d_hypothesis_scores, NULL, &best_score, NULL, &best_idx);
|
||||
int num_inliers = static_cast<int>(best_score);
|
||||
|
||||
// Extract the best hypothesis data
|
||||
rot_mat = rot_matrices.colRange(best_idx.x * 9, (best_idx.x + 1) * 9).reshape(0, 3);
|
||||
Rodrigues(rot_mat, rvec);
|
||||
rvec = rvec.reshape(0, 1);
|
||||
tvec = transl_vectors.colRange(best_idx.x * 3, (best_idx.x + 1) * 3).clone();
|
||||
tvec = tvec.reshape(0, 1);
|
||||
|
||||
// Build vector of inlier indices
|
||||
if (params.inliers != NULL)
|
||||
{
|
||||
params.inliers->resize(num_inliers);
|
||||
|
||||
Point3f p;
|
||||
Point3f p_transf;
|
||||
Point2f p_proj;
|
||||
const float* rot = rot_mat.ptr<float>();
|
||||
const float* transl = tvec.ptr<float>();
|
||||
int inlier_id = 0;
|
||||
|
||||
for (int i = 0; i < num_points; ++i)
|
||||
{
|
||||
p = object.at<Point3f>(0, i);
|
||||
p_transf.x = rot[0] * p.x + rot[1] * p.y + rot[2] * p.z + transl[0];
|
||||
p_transf.y = rot[3] * p.x + rot[4] * p.y + rot[5] * p.z + transl[1];
|
||||
p_transf.z = rot[6] * p.x + rot[7] * p.y + rot[8] * p.z + transl[2];
|
||||
if (p_transf.z > 0.f)
|
||||
{
|
||||
p_proj.x = camera_mat.at<float>(0, 0) * p_transf.x / p_transf.z + camera_mat.at<float>(0, 2);
|
||||
p_proj.y = camera_mat.at<float>(1, 1) * p_transf.x / p_transf.z + camera_mat.at<float>(1, 2);
|
||||
if (norm(p_proj - image.at<Point2f>(0, i)) < params.max_dist)
|
||||
(*params.inliers)[inlier_id++] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -43,6 +43,8 @@
|
||||
#include "internal_shared.hpp"
|
||||
#include "opencv2/gpu/device/transform.hpp"
|
||||
|
||||
#define SOLVE_PNP_RANSAC_NUM_ITERS 200
|
||||
|
||||
namespace cv { namespace gpu
|
||||
{
|
||||
namespace transform_points
|
||||
@ -75,6 +77,7 @@ namespace cv { namespace gpu
|
||||
}
|
||||
} // namespace transform_points
|
||||
|
||||
|
||||
namespace project_points
|
||||
{
|
||||
__constant__ float3 crot0;
|
||||
@ -114,4 +117,75 @@ namespace cv { namespace gpu
|
||||
}
|
||||
} // namespace project_points
|
||||
|
||||
|
||||
namespace solve_pnp_ransac
|
||||
{
|
||||
__constant__ float3 crot_matrices[SOLVE_PNP_RANSAC_NUM_ITERS * 3];
|
||||
__constant__ float3 ctransl_vectors[SOLVE_PNP_RANSAC_NUM_ITERS];
|
||||
__constant__ float3 ccamera_mat[2];
|
||||
|
||||
__device__ float sqr(float x)
|
||||
{
|
||||
return x * x;
|
||||
}
|
||||
|
||||
__global__ void computeHypothesisScoresKernel(
|
||||
const int num_points, const float3* object, const float2* image,
|
||||
const float dist_threshold, int* g_num_inliers)
|
||||
{
|
||||
const float3* const &rot_mat = crot_matrices + blockIdx.x * 3;
|
||||
const float3 &transl_vec = ctransl_vectors[blockIdx.x];
|
||||
int num_inliers = 0;
|
||||
|
||||
for (int i = threadIdx.x; i < num_points; i += blockDim.x)
|
||||
{
|
||||
float3 p = object[i];
|
||||
p = make_float3(
|
||||
rot_mat[0].x * p.x + rot_mat[0].y * p.y + rot_mat[0].z * p.z + transl_vec.x,
|
||||
rot_mat[1].x * p.x + rot_mat[1].y * p.y + rot_mat[1].z * p.z + transl_vec.y,
|
||||
rot_mat[2].x * p.x + rot_mat[2].y * p.y + rot_mat[2].z * p.z + transl_vec.z);
|
||||
if (p.z > 0)
|
||||
{
|
||||
p.x = ccamera_mat[0].x * p.x / p.z + ccamera_mat[0].z;
|
||||
p.y = ccamera_mat[1].y * p.y / p.z + ccamera_mat[1].z;
|
||||
float2 image_p = image[i];
|
||||
if (sqr(p.x - image_p.x) + sqr(p.y - image_p.y) < dist_threshold)
|
||||
++num_inliers;
|
||||
}
|
||||
}
|
||||
|
||||
extern __shared__ float s_num_inliers[];
|
||||
s_num_inliers[threadIdx.x] = num_inliers;
|
||||
__syncthreads();
|
||||
|
||||
for (int step = blockDim.x / 2; step > 0; step >>= 1)
|
||||
{
|
||||
if (threadIdx.x < step)
|
||||
s_num_inliers[threadIdx.x] += s_num_inliers[threadIdx.x + step];
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
g_num_inliers[blockIdx.x] = s_num_inliers[0];
|
||||
}
|
||||
|
||||
void computeHypothesisScores(
|
||||
const int num_hypotheses, const int num_points, const float* rot_matrices,
|
||||
const float3* transl_vectors, const float3* object, const float2* image,
|
||||
const float3* camera_mat, const float dist_threshold, int* hypothesis_scores)
|
||||
{
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot_matrices, rot_matrices, num_hypotheses * 3 * sizeof(float3)));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(ctransl_vectors, transl_vectors, num_hypotheses * sizeof(float3)));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(ccamera_mat, camera_mat, 2 * sizeof(float3)));
|
||||
|
||||
dim3 threads(256);
|
||||
dim3 grid(num_hypotheses);
|
||||
int smem_size = threads.x * sizeof(float);
|
||||
|
||||
computeHypothesisScoresKernel<<<grid, threads, smem_size>>>(
|
||||
num_points, object, image, dist_threshold, hypothesis_scores);
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
} // namespace solvepnp_ransac
|
||||
|
||||
}} // namespace cv { namespace gpu
|
@ -105,3 +105,31 @@ TEST(transformPoints, accuracy)
|
||||
ASSERT_LT(err.dot(err) / res_gold.dot(res_gold), 1e-3f);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
TEST(solvePnpRansac, accuracy)
|
||||
{
|
||||
RNG& rng = TS::ptr()->get_rng();
|
||||
|
||||
const int num_points = 5000;
|
||||
Mat object = randomMat(rng, Size(num_points, 1), CV_32FC3, 0, 100, false);
|
||||
Mat camera_mat = randomMat(rng, Size(3, 3), CV_32F, 1, 1, false);
|
||||
camera_mat.at<float>(0, 1) = 0.f;
|
||||
camera_mat.at<float>(1, 0) = 0.f;
|
||||
camera_mat.at<float>(2, 0) = 0.f;
|
||||
camera_mat.at<float>(2, 1) = 0.f;
|
||||
|
||||
Mat rvec_gold = randomMat(rng, Size(3, 1), CV_32F, 0, 1, false);
|
||||
Mat tvec_gold = randomMat(rng, Size(3, 1), CV_32F, 0, 1, false);
|
||||
|
||||
vector<Point2f> image_vec;
|
||||
projectPoints(object, rvec_gold, tvec_gold, camera_mat, Mat(), image_vec);
|
||||
Mat image(1, image_vec.size(), CV_32FC2, &image_vec[0]);
|
||||
|
||||
Mat rvec;
|
||||
Mat tvec;
|
||||
solvePnpRansac(object, image, camera_mat, Mat(), rvec, tvec, SolvePnpRansacParams());
|
||||
|
||||
ASSERT_LE(norm(rvec - rvec_gold), 1e-3f);
|
||||
ASSERT_LE(norm(tvec - tvec_gold), 1e-3f);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user