moved image labeling to gpu module

This commit is contained in:
Vladislav Vinogradov
2013-04-17 18:16:34 +04:00
parent e72ba73e70
commit cad9518928
6 changed files with 16 additions and 16 deletions

View File

@@ -55,6 +55,22 @@
namespace cv { namespace gpu {
//!performs labeling via graph cuts of a 2D regular 4-connected graph.
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels,
GpuMat& buf, Stream& stream = Stream::Null());
//!performs labeling via graph cuts of a 2D regular 8-connected graph.
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& topLeft, GpuMat& topRight,
GpuMat& bottom, GpuMat& bottomLeft, GpuMat& bottomRight,
GpuMat& labels,
GpuMat& buf, Stream& stream = Stream::Null());
//! compute mask for Generalized Flood fill componetns labeling.
CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& stream = Stream::Null());
//! performs connected componnents labeling.
CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, int flags = 0, Stream& stream = Stream::Null());
//! removes points (CV_32FC2, single row matrix) with zero mask value
CV_EXPORTS void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask);

View File

@@ -0,0 +1,195 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
using namespace perf;
DEF_PARAM_TEST_1(Image, string);
struct GreedyLabeling
{
struct dot
{
int x;
int y;
static dot make(int i, int j)
{
dot d; d.x = i; d.y = j;
return d;
}
};
struct InInterval
{
InInterval(const int& _lo, const int& _hi) : lo(-_lo), hi(_hi) {}
const int lo, hi;
bool operator() (const unsigned char a, const unsigned char b) const
{
int d = a - b;
return lo <= d && d <= hi;
}
private:
InInterval& operator=(const InInterval&);
};
GreedyLabeling(cv::Mat img)
: image(img), _labels(image.size(), CV_32SC1, cv::Scalar::all(-1)) {stack = new dot[image.cols * image.rows];}
~GreedyLabeling(){delete[] stack;}
void operator() (cv::Mat labels) const
{
labels.setTo(cv::Scalar::all(-1));
InInterval inInt(0, 2);
int cc = -1;
int* dist_labels = (int*)labels.data;
int pitch = static_cast<int>(labels.step1());
unsigned char* source = (unsigned char*)image.data;
int width = image.cols;
int height = image.rows;
for (int j = 0; j < image.rows; ++j)
for (int i = 0; i < image.cols; ++i)
{
if (dist_labels[j * pitch + i] != -1) continue;
dot* top = stack;
dot p = dot::make(i, j);
cc++;
dist_labels[j * pitch + i] = cc;
while (top >= stack)
{
int* dl = &dist_labels[p.y * pitch + p.x];
unsigned char* sp = &source[p.y * image.step1() + p.x];
dl[0] = cc;
//right
if( p.x < (width - 1) && dl[ +1] == -1 && inInt(sp[0], sp[+1]))
*top++ = dot::make(p.x + 1, p.y);
//left
if( p.x > 0 && dl[-1] == -1 && inInt(sp[0], sp[-1]))
*top++ = dot::make(p.x - 1, p.y);
//bottom
if( p.y < (height - 1) && dl[+pitch] == -1 && inInt(sp[0], sp[+image.step1()]))
*top++ = dot::make(p.x, p.y + 1);
//top
if( p.y > 0 && dl[-pitch] == -1 && inInt(sp[0], sp[-static_cast<int>(image.step1())]))
*top++ = dot::make(p.x, p.y - 1);
p = *--top;
}
}
}
cv::Mat image;
cv::Mat _labels;
dot* stack;
};
PERF_TEST_P(Image, DISABLED_Labeling_ConnectivityMask,
Values<string>("gpu/labeling/aloe-disp.png"))
{
declare.time(1.0);
const cv::Mat image = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_image(image);
cv::gpu::GpuMat mask;
TEST_CYCLE() cv::gpu::connectivityMask(d_image, mask, cv::Scalar::all(0), cv::Scalar::all(2));
GPU_SANITY_CHECK(mask);
}
else
{
FAIL_NO_CPU();
}
}
PERF_TEST_P(Image, DISABLED_Labeling_ConnectedComponents,
Values<string>("gpu/labeling/aloe-disp.png"))
{
declare.time(1.0);
const cv::Mat image = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_mask;
cv::gpu::connectivityMask(cv::gpu::GpuMat(image), d_mask, cv::Scalar::all(0), cv::Scalar::all(2));
cv::gpu::GpuMat components;
TEST_CYCLE() cv::gpu::labelComponents(d_mask, components);
GPU_SANITY_CHECK(components);
}
else
{
GreedyLabeling host(image);
TEST_CYCLE() host(host._labels);
cv::Mat components = host._labels;
CPU_SANITY_CHECK(components);
}
}

View File

@@ -0,0 +1,534 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include <opencv2/core/cuda/common.hpp>
#include <opencv2/core/cuda/vec_traits.hpp>
#include <opencv2/core/cuda/vec_math.hpp>
#include <opencv2/core/cuda/emulation.hpp>
#include <iostream>
#include <stdio.h>
namespace cv { namespace gpu { namespace cudev
{
namespace ccl
{
enum
{
WARP_SIZE = 32,
WARP_LOG = 5,
CTA_SIZE_X = 32,
CTA_SIZE_Y = 8,
STA_SIZE_MERGE_Y = 4,
STA_SIZE_MERGE_X = 32,
TPB_X = 1,
TPB_Y = 4,
TILE_COLS = CTA_SIZE_X * TPB_X,
TILE_ROWS = CTA_SIZE_Y * TPB_Y
};
template<typename T> struct IntervalsTraits
{
typedef T elem_type;
};
template<> struct IntervalsTraits<unsigned char>
{
typedef int dist_type;
enum {ch = 1};
};
template<> struct IntervalsTraits<uchar3>
{
typedef int3 dist_type;
enum {ch = 3};
};
template<> struct IntervalsTraits<uchar4>
{
typedef int4 dist_type;
enum {ch = 4};
};
template<> struct IntervalsTraits<unsigned short>
{
typedef int dist_type;
enum {ch = 1};
};
template<> struct IntervalsTraits<ushort3>
{
typedef int3 dist_type;
enum {ch = 3};
};
template<> struct IntervalsTraits<ushort4>
{
typedef int4 dist_type;
enum {ch = 4};
};
template<> struct IntervalsTraits<float>
{
typedef float dist_type;
enum {ch = 1};
};
template<> struct IntervalsTraits<int>
{
typedef int dist_type;
enum {ch = 1};
};
typedef unsigned char component;
enum Edges { UP = 1, DOWN = 2, LEFT = 4, RIGHT = 8, EMPTY = 0xF0 };
template<typename T, int CH> struct InInterval {};
template<typename T> struct InInterval<T, 1>
{
typedef typename VecTraits<T>::elem_type E;
__host__ __device__ __forceinline__ InInterval(const float4& _lo, const float4& _hi) : lo((E)(-_lo.x)), hi((E)_hi.x) {};
T lo, hi;
template<typename I> __device__ __forceinline__ bool operator() (const I& a, const I& b) const
{
I d = a - b;
return lo <= d && d <= hi;
}
};
template<typename T> struct InInterval<T, 3>
{
typedef typename VecTraits<T>::elem_type E;
__host__ __device__ __forceinline__ InInterval(const float4& _lo, const float4& _hi)
: lo (VecTraits<T>::make((E)(-_lo.x), (E)(-_lo.y), (E)(-_lo.z))), hi (VecTraits<T>::make((E)_hi.x, (E)_hi.y, (E)_hi.z)){};
T lo, hi;
template<typename I> __device__ __forceinline__ bool operator() (const I& a, const I& b) const
{
I d = a - b;
return lo.x <= d.x && d.x <= hi.x &&
lo.y <= d.y && d.y <= hi.y &&
lo.z <= d.z && d.z <= hi.z;
}
};
template<typename T> struct InInterval<T, 4>
{
typedef typename VecTraits<T>::elem_type E;
__host__ __device__ __forceinline__ InInterval(const float4& _lo, const float4& _hi)
: lo (VecTraits<T>::make((E)(-_lo.x), (E)(-_lo.y), (E)(-_lo.z), (E)(-_lo.w))), hi (VecTraits<T>::make((E)_hi.x, (E)_hi.y, (E)_hi.z, (E)_hi.w)){};
T lo, hi;
template<typename I> __device__ __forceinline__ bool operator() (const I& a, const I& b) const
{
I d = a - b;
return lo.x <= d.x && d.x <= hi.x &&
lo.y <= d.y && d.y <= hi.y &&
lo.z <= d.z && d.z <= hi.z &&
lo.w <= d.w && d.w <= hi.w;
}
};
template<typename T, typename F>
__global__ void computeConnectivity(const PtrStepSz<T> image, PtrStepSzb components, F connected)
{
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
if (x >= image.cols || y >= image.rows) return;
T intensity = image(y, x);
component c = 0;
if ( x > 0 && connected(intensity, image(y, x - 1)))
c |= LEFT;
if ( y > 0 && connected(intensity, image(y - 1, x)))
c |= UP;
if ( x + 1 < image.cols && connected(intensity, image(y, x + 1)))
c |= RIGHT;
if ( y + 1 < image.rows && connected(intensity, image(y + 1, x)))
c |= DOWN;
components(y, x) = c;
}
template< typename T>
void computeEdges(const PtrStepSzb& image, PtrStepSzb edges, const float4& lo, const float4& hi, cudaStream_t stream)
{
dim3 block(CTA_SIZE_X, CTA_SIZE_Y);
dim3 grid(divUp(image.cols, block.x), divUp(image.rows, block.y));
typedef InInterval<typename IntervalsTraits<T>::dist_type, IntervalsTraits<T>::ch> Int_t;
Int_t inInt(lo, hi);
computeConnectivity<T, Int_t><<<grid, block, 0, stream>>>(static_cast<const PtrStepSz<T> >(image), edges, inInt);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template void computeEdges<uchar> (const PtrStepSzb& image, PtrStepSzb edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<uchar3> (const PtrStepSzb& image, PtrStepSzb edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<uchar4> (const PtrStepSzb& image, PtrStepSzb edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<ushort> (const PtrStepSzb& image, PtrStepSzb edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<ushort3>(const PtrStepSzb& image, PtrStepSzb edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<ushort4>(const PtrStepSzb& image, PtrStepSzb edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<int> (const PtrStepSzb& image, PtrStepSzb edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<float> (const PtrStepSzb& image, PtrStepSzb edges, const float4& lo, const float4& hi, cudaStream_t stream);
__global__ void lableTiles(const PtrStepSzb edges, PtrStepSzi comps)
{
int x = threadIdx.x + blockIdx.x * TILE_COLS;
int y = threadIdx.y + blockIdx.y * TILE_ROWS;
if (x >= edges.cols || y >= edges.rows) return;
//currently x is 1
int bounds = ((y + TPB_Y) < edges.rows);
__shared__ int labelsTile[TILE_ROWS][TILE_COLS];
__shared__ int edgesTile[TILE_ROWS][TILE_COLS];
int new_labels[TPB_Y][TPB_X];
int old_labels[TPB_Y][TPB_X];
#pragma unroll
for (int i = 0; i < TPB_Y; ++i)
#pragma unroll
for (int j = 0; j < TPB_X; ++j)
{
int yloc = threadIdx.y + CTA_SIZE_Y * i;
int xloc = threadIdx.x + CTA_SIZE_X * j;
component c = edges(bounds * (y + CTA_SIZE_Y * i), x + CTA_SIZE_X * j);
if (!xloc) c &= ~LEFT;
if (!yloc) c &= ~UP;
if (xloc == TILE_COLS -1) c &= ~RIGHT;
if (yloc == TILE_ROWS -1) c &= ~DOWN;
new_labels[i][j] = yloc * TILE_COLS + xloc;
edgesTile[yloc][xloc] = c;
}
for (int k = 0; ;++k)
{
//1. backup
#pragma unroll
for (int i = 0; i < TPB_Y; ++i)
#pragma unroll
for (int j = 0; j < TPB_X; ++j)
{
int yloc = threadIdx.y + CTA_SIZE_Y * i;
int xloc = threadIdx.x + CTA_SIZE_X * j;
old_labels[i][j] = new_labels[i][j];
labelsTile[yloc][xloc] = new_labels[i][j];
}
__syncthreads();
//2. compare local arrays
#pragma unroll
for (int i = 0; i < TPB_Y; ++i)
#pragma unroll
for (int j = 0; j < TPB_X; ++j)
{
int yloc = threadIdx.y + CTA_SIZE_Y * i;
int xloc = threadIdx.x + CTA_SIZE_X * j;
component c = edgesTile[yloc][xloc];
int label = new_labels[i][j];
if (c & UP)
label = ::min(label, labelsTile[yloc - 1][xloc]);
if (c & DOWN)
label = ::min(label, labelsTile[yloc + 1][xloc]);
if (c & LEFT)
label = ::min(label, labelsTile[yloc][xloc - 1]);
if (c & RIGHT)
label = ::min(label, labelsTile[yloc][xloc + 1]);
new_labels[i][j] = label;
}
__syncthreads();
//3. determine: Is any value changed?
int changed = 0;
#pragma unroll
for (int i = 0; i < TPB_Y; ++i)
#pragma unroll
for (int j = 0; j < TPB_X; ++j)
{
if (new_labels[i][j] < old_labels[i][j])
{
changed = 1;
Emulation::smem::atomicMin(&labelsTile[0][0] + old_labels[i][j], new_labels[i][j]);
}
}
changed = Emulation::syncthreadsOr(changed);
if (!changed)
break;
//4. Compact paths
const int *labels = &labelsTile[0][0];
#pragma unroll
for (int i = 0; i < TPB_Y; ++i)
#pragma unroll
for (int j = 0; j < TPB_X; ++j)
{
int label = new_labels[i][j];
while( labels[label] < label ) label = labels[label];
new_labels[i][j] = label;
}
__syncthreads();
}
#pragma unroll
for (int i = 0; i < TPB_Y; ++i)
#pragma unroll
for (int j = 0; j < TPB_X; ++j)
{
int label = new_labels[i][j];
int yloc = label / TILE_COLS;
int xloc = label - yloc * TILE_COLS;
xloc += blockIdx.x * TILE_COLS;
yloc += blockIdx.y * TILE_ROWS;
label = yloc * edges.cols + xloc;
// do it for x too.
if (y + CTA_SIZE_Y * i < comps.rows) comps(y + CTA_SIZE_Y * i, x + CTA_SIZE_X * j) = label;
}
}
__device__ __forceinline__ int root(const PtrStepSzi& comps, int label)
{
while(1)
{
int y = label / comps.cols;
int x = label - y * comps.cols;
int parent = comps(y, x);
if (label == parent) break;
label = parent;
}
return label;
}
__device__ __forceinline__ void isConnected(PtrStepSzi& comps, int l1, int l2, bool& changed)
{
int r1 = root(comps, l1);
int r2 = root(comps, l2);
if (r1 == r2) return;
int mi = ::min(r1, r2);
int ma = ::max(r1, r2);
int y = ma / comps.cols;
int x = ma - y * comps.cols;
atomicMin(&comps.ptr(y)[x], mi);
changed = true;
}
__global__ void crossMerge(const int tilesNumY, const int tilesNumX, int tileSizeY, int tileSizeX,
const PtrStepSzb edges, PtrStepSzi comps, const int yIncomplete, int xIncomplete)
{
int tid = threadIdx.y * blockDim.x + threadIdx.x;
int stride = blockDim.y * blockDim.x;
int ybegin = blockIdx.y * (tilesNumY * tileSizeY);
int yend = ybegin + tilesNumY * tileSizeY;
if (blockIdx.y == gridDim.y - 1)
{
yend -= yIncomplete * tileSizeY;
yend -= tileSizeY;
tileSizeY = (edges.rows % tileSizeY);
yend += tileSizeY;
}
int xbegin = blockIdx.x * tilesNumX * tileSizeX;
int xend = xbegin + tilesNumX * tileSizeX;
if (blockIdx.x == gridDim.x - 1)
{
if (xIncomplete) yend = ybegin;
xend -= xIncomplete * tileSizeX;
xend -= tileSizeX;
tileSizeX = (edges.cols % tileSizeX);
xend += tileSizeX;
}
if (blockIdx.y == (gridDim.y - 1) && yIncomplete)
{
xend = xbegin;
}
int tasksV = (tilesNumX - 1) * (yend - ybegin);
int tasksH = (tilesNumY - 1) * (xend - xbegin);
int total = tasksH + tasksV;
bool changed;
do
{
changed = false;
for (int taskIdx = tid; taskIdx < total; taskIdx += stride)
{
if (taskIdx < tasksH)
{
int indexH = taskIdx;
int row = indexH / (xend - xbegin);
int col = indexH - row * (xend - xbegin);
int y = ybegin + (row + 1) * tileSizeY;
int x = xbegin + col;
component e = edges( x, y);
if (e & UP)
{
int lc = comps(y,x);
int lu = comps(y - 1, x);
isConnected(comps, lc, lu, changed);
}
}
else
{
int indexV = taskIdx - tasksH;
int col = indexV / (yend - ybegin);
int row = indexV - col * (yend - ybegin);
int x = xbegin + (col + 1) * tileSizeX;
int y = ybegin + row;
component e = edges(x, y);
if (e & LEFT)
{
int lc = comps(y, x);
int ll = comps(y, x - 1);
isConnected(comps, lc, ll, changed);
}
}
}
} while (Emulation::syncthreadsOr(changed));
}
__global__ void flatten(const PtrStepSzb edges, PtrStepSzi comps)
{
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
if( x < comps.cols && y < comps.rows)
comps(y, x) = root(comps, comps(y, x));
}
enum {CC_NO_COMPACT = 0, CC_COMPACT_LABELS = 1};
void labelComponents(const PtrStepSzb& edges, PtrStepSzi comps, int flags, cudaStream_t stream)
{
(void) flags;
dim3 block(CTA_SIZE_X, CTA_SIZE_Y);
dim3 grid(divUp(edges.cols, TILE_COLS), divUp(edges.rows, TILE_ROWS));
lableTiles<<<grid, block, 0, stream>>>(edges, comps);
cudaSafeCall( cudaGetLastError() );
int tileSizeX = TILE_COLS, tileSizeY = TILE_ROWS;
while (grid.x > 1 || grid.y > 1)
{
dim3 mergeGrid((int)ceilf(grid.x / 2.f), (int)ceilf(grid.y / 2.f));
dim3 mergeBlock(STA_SIZE_MERGE_X, STA_SIZE_MERGE_Y);
// debug log
// std::cout << "merging: " << grid.y << " x " << grid.x << " ---> " << mergeGrid.y << " x " << mergeGrid.x << " for tiles: " << tileSizeY << " x " << tileSizeX << std::endl;
crossMerge<<<mergeGrid, mergeBlock, 0, stream>>>(2, 2, tileSizeY, tileSizeX, edges, comps, (int)ceilf(grid.y / 2.f) - grid.y / 2, (int)ceilf(grid.x / 2.f) - grid.x / 2);
tileSizeX <<= 1;
tileSizeY <<= 1;
grid = mergeGrid;
cudaSafeCall( cudaGetLastError() );
}
grid.x = divUp(edges.cols, block.x);
grid.y = divUp(edges.rows, block.y);
flatten<<<grid, block, 0, stream>>>(edges, comps);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
} } }
#endif /* CUDA_DISABLER */

View File

@@ -0,0 +1,282 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::gpu::graphcut(GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::graphcut(GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::connectivityMask(const GpuMat&, GpuMat&, const cv::Scalar&, const cv::Scalar&, Stream&) { throw_no_cuda(); }
void cv::gpu::labelComponents(const GpuMat&, GpuMat&, int, Stream&) { throw_no_cuda(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace cudev
{
namespace ccl
{
void labelComponents(const PtrStepSzb& edges, PtrStepSzi comps, int flags, cudaStream_t stream);
template<typename T>
void computeEdges(const PtrStepSzb& image, PtrStepSzb edges, const float4& lo, const float4& hi, cudaStream_t stream);
}
}}}
static float4 scalarToCudaType(const cv::Scalar& in)
{
return make_float4((float)in[0], (float)in[1], (float)in[2], (float)in[3]);
}
void cv::gpu::connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& s)
{
CV_Assert(!image.empty());
int ch = image.channels();
CV_Assert(ch <= 4);
int depth = image.depth();
typedef void (*func_t)(const PtrStepSzb& image, PtrStepSzb edges, const float4& lo, const float4& hi, cudaStream_t stream);
static const func_t suppotLookup[8][4] =
{ // 1, 2, 3, 4
{ cudev::ccl::computeEdges<uchar>, 0, cudev::ccl::computeEdges<uchar3>, cudev::ccl::computeEdges<uchar4> },// CV_8U
{ 0, 0, 0, 0 },// CV_16U
{ cudev::ccl::computeEdges<ushort>, 0, cudev::ccl::computeEdges<ushort3>, cudev::ccl::computeEdges<ushort4> },// CV_8S
{ 0, 0, 0, 0 },// CV_16S
{ cudev::ccl::computeEdges<int>, 0, 0, 0 },// CV_32S
{ cudev::ccl::computeEdges<float>, 0, 0, 0 },// CV_32F
{ 0, 0, 0, 0 },// CV_64F
{ 0, 0, 0, 0 } // CV_USRTYPE1
};
func_t f = suppotLookup[depth][ch - 1];
CV_Assert(f);
if (image.size() != mask.size() || mask.type() != CV_8UC1)
mask.create(image.size(), CV_8UC1);
cudaStream_t stream = StreamAccessor::getStream(s);
float4 culo = scalarToCudaType(lo), cuhi = scalarToCudaType(hi);
f(image, mask, culo, cuhi, stream);
}
void cv::gpu::labelComponents(const GpuMat& mask, GpuMat& components, int flags, Stream& s)
{
CV_Assert(!mask.empty() && mask.type() == CV_8U);
if (!deviceSupports(SHARED_ATOMICS))
CV_Error(cv::Error::StsNotImplemented, "The device doesn't support shared atomics and communicative synchronization!");
components.create(mask.size(), CV_32SC1);
cudaStream_t stream = StreamAccessor::getStream(s);
cudev::ccl::labelComponents(mask, components, flags, stream);
}
namespace
{
typedef NppStatus (*init_func_t)(NppiSize oSize, NppiGraphcutState** ppState, Npp8u* pDeviceMem);
class NppiGraphcutStateHandler
{
public:
NppiGraphcutStateHandler(NppiSize sznpp, Npp8u* pDeviceMem, const init_func_t func)
{
nppSafeCall( func(sznpp, &pState, pDeviceMem) );
}
~NppiGraphcutStateHandler()
{
nppSafeCall( nppiGraphcutFree(pState) );
}
operator NppiGraphcutState*()
{
return pState;
}
private:
NppiGraphcutState* pState;
};
}
void cv::gpu::graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels, GpuMat& buf, Stream& s)
{
#if (CUDA_VERSION < 5000)
CV_Assert(terminals.type() == CV_32S);
#else
CV_Assert(terminals.type() == CV_32S || terminals.type() == CV_32F);
#endif
Size src_size = terminals.size();
CV_Assert(leftTransp.size() == Size(src_size.height, src_size.width));
CV_Assert(leftTransp.type() == terminals.type());
CV_Assert(rightTransp.size() == Size(src_size.height, src_size.width));
CV_Assert(rightTransp.type() == terminals.type());
CV_Assert(top.size() == src_size);
CV_Assert(top.type() == terminals.type());
CV_Assert(bottom.size() == src_size);
CV_Assert(bottom.type() == terminals.type());
labels.create(src_size, CV_8U);
NppiSize sznpp;
sznpp.width = src_size.width;
sznpp.height = src_size.height;
int bufsz;
nppSafeCall( nppiGraphcutGetSize(sznpp, &bufsz) );
ensureSizeIsEnough(1, bufsz, CV_8U, buf);
cudaStream_t stream = StreamAccessor::getStream(s);
NppStreamHandler h(stream);
NppiGraphcutStateHandler state(sznpp, buf.ptr<Npp8u>(), nppiGraphcutInitAlloc);
#if (CUDA_VERSION < 5000)
nppSafeCall( nppiGraphcut_32s8u(terminals.ptr<Npp32s>(), leftTransp.ptr<Npp32s>(), rightTransp.ptr<Npp32s>(), top.ptr<Npp32s>(), bottom.ptr<Npp32s>(),
static_cast<int>(terminals.step), static_cast<int>(leftTransp.step), sznpp, labels.ptr<Npp8u>(), static_cast<int>(labels.step), state) );
#else
if (terminals.type() == CV_32S)
{
nppSafeCall( nppiGraphcut_32s8u(terminals.ptr<Npp32s>(), leftTransp.ptr<Npp32s>(), rightTransp.ptr<Npp32s>(), top.ptr<Npp32s>(), bottom.ptr<Npp32s>(),
static_cast<int>(terminals.step), static_cast<int>(leftTransp.step), sznpp, labels.ptr<Npp8u>(), static_cast<int>(labels.step), state) );
}
else
{
nppSafeCall( nppiGraphcut_32f8u(terminals.ptr<Npp32f>(), leftTransp.ptr<Npp32f>(), rightTransp.ptr<Npp32f>(), top.ptr<Npp32f>(), bottom.ptr<Npp32f>(),
static_cast<int>(terminals.step), static_cast<int>(leftTransp.step), sznpp, labels.ptr<Npp8u>(), static_cast<int>(labels.step), state) );
}
#endif
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
void cv::gpu::graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& topLeft, GpuMat& topRight,
GpuMat& bottom, GpuMat& bottomLeft, GpuMat& bottomRight, GpuMat& labels, GpuMat& buf, Stream& s)
{
#if (CUDA_VERSION < 5000)
CV_Assert(terminals.type() == CV_32S);
#else
CV_Assert(terminals.type() == CV_32S || terminals.type() == CV_32F);
#endif
Size src_size = terminals.size();
CV_Assert(leftTransp.size() == Size(src_size.height, src_size.width));
CV_Assert(leftTransp.type() == terminals.type());
CV_Assert(rightTransp.size() == Size(src_size.height, src_size.width));
CV_Assert(rightTransp.type() == terminals.type());
CV_Assert(top.size() == src_size);
CV_Assert(top.type() == terminals.type());
CV_Assert(topLeft.size() == src_size);
CV_Assert(topLeft.type() == terminals.type());
CV_Assert(topRight.size() == src_size);
CV_Assert(topRight.type() == terminals.type());
CV_Assert(bottom.size() == src_size);
CV_Assert(bottom.type() == terminals.type());
CV_Assert(bottomLeft.size() == src_size);
CV_Assert(bottomLeft.type() == terminals.type());
CV_Assert(bottomRight.size() == src_size);
CV_Assert(bottomRight.type() == terminals.type());
labels.create(src_size, CV_8U);
NppiSize sznpp;
sznpp.width = src_size.width;
sznpp.height = src_size.height;
int bufsz;
nppSafeCall( nppiGraphcut8GetSize(sznpp, &bufsz) );
ensureSizeIsEnough(1, bufsz, CV_8U, buf);
cudaStream_t stream = StreamAccessor::getStream(s);
NppStreamHandler h(stream);
NppiGraphcutStateHandler state(sznpp, buf.ptr<Npp8u>(), nppiGraphcut8InitAlloc);
#if (CUDA_VERSION < 5000)
nppSafeCall( nppiGraphcut8_32s8u(terminals.ptr<Npp32s>(), leftTransp.ptr<Npp32s>(), rightTransp.ptr<Npp32s>(),
top.ptr<Npp32s>(), topLeft.ptr<Npp32s>(), topRight.ptr<Npp32s>(),
bottom.ptr<Npp32s>(), bottomLeft.ptr<Npp32s>(), bottomRight.ptr<Npp32s>(),
static_cast<int>(terminals.step), static_cast<int>(leftTransp.step), sznpp, labels.ptr<Npp8u>(), static_cast<int>(labels.step), state) );
#else
if (terminals.type() == CV_32S)
{
nppSafeCall( nppiGraphcut8_32s8u(terminals.ptr<Npp32s>(), leftTransp.ptr<Npp32s>(), rightTransp.ptr<Npp32s>(),
top.ptr<Npp32s>(), topLeft.ptr<Npp32s>(), topRight.ptr<Npp32s>(),
bottom.ptr<Npp32s>(), bottomLeft.ptr<Npp32s>(), bottomRight.ptr<Npp32s>(),
static_cast<int>(terminals.step), static_cast<int>(leftTransp.step), sznpp, labels.ptr<Npp8u>(), static_cast<int>(labels.step), state) );
}
else
{
nppSafeCall( nppiGraphcut8_32f8u(terminals.ptr<Npp32f>(), leftTransp.ptr<Npp32f>(), rightTransp.ptr<Npp32f>(),
top.ptr<Npp32f>(), topLeft.ptr<Npp32f>(), topRight.ptr<Npp32f>(),
bottom.ptr<Npp32f>(), bottomLeft.ptr<Npp32f>(), bottomRight.ptr<Npp32f>(),
static_cast<int>(terminals.step), static_cast<int>(leftTransp.step), sznpp, labels.ptr<Npp8u>(), static_cast<int>(labels.step), state) );
}
#endif
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
#endif /* !defined (HAVE_CUDA) */

View File

@@ -0,0 +1,197 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_CUDA
namespace
{
struct GreedyLabeling
{
struct dot
{
int x;
int y;
static dot make(int i, int j)
{
dot d; d.x = i; d.y = j;
return d;
}
};
struct InInterval
{
InInterval(const int& _lo, const int& _hi) : lo(-_lo), hi(_hi) {};
const int lo, hi;
bool operator() (const unsigned char a, const unsigned char b) const
{
int d = a - b;
return lo <= d && d <= hi;
}
};
GreedyLabeling(cv::Mat img)
: image(img), _labels(image.size(), CV_32SC1, cv::Scalar::all(-1)) {}
void operator() (cv::Mat labels) const
{
InInterval inInt(0, 2);
dot* stack = new dot[image.cols * image.rows];
int cc = -1;
int* dist_labels = (int*)labels.data;
int pitch = (int) labels.step1();
unsigned char* source = (unsigned char*)image.data;
int width = image.cols;
int height = image.rows;
int step1 = (int)image.step1();
for (int j = 0; j < image.rows; ++j)
for (int i = 0; i < image.cols; ++i)
{
if (dist_labels[j * pitch + i] != -1) continue;
dot* top = stack;
dot p = dot::make(i, j);
cc++;
dist_labels[j * pitch + i] = cc;
while (top >= stack)
{
int* dl = &dist_labels[p.y * pitch + p.x];
unsigned char* sp = &source[p.y * step1 + p.x];
dl[0] = cc;
//right
if( p.x < (width - 1) && dl[ +1] == -1 && inInt(sp[0], sp[+1]))
*top++ = dot::make(p.x + 1, p.y);
//left
if( p.x > 0 && dl[-1] == -1 && inInt(sp[0], sp[-1]))
*top++ = dot::make(p.x - 1, p.y);
//bottom
if( p.y < (height - 1) && dl[+pitch] == -1 && inInt(sp[0], sp[+step1]))
*top++ = dot::make(p.x, p.y + 1);
//top
if( p.y > 0 && dl[-pitch] == -1 && inInt(sp[0], sp[-step1]))
*top++ = dot::make(p.x, p.y - 1);
p = *--top;
}
}
delete[] stack;
}
void checkCorrectness(cv::Mat gpu)
{
cv::Mat diff = gpu - _labels;
int outliers = 0;
for (int j = 0; j < image.rows; ++j)
for (int i = 0; i < image.cols - 1; ++i)
{
if ( (_labels.at<int>(j,i) == gpu.at<int>(j,i + 1)) && (diff.at<int>(j, i) != diff.at<int>(j,i + 1)))
{
outliers++;
}
}
ASSERT_TRUE(outliers < gpu.cols + gpu.rows);
}
cv::Mat image;
cv::Mat _labels;
};
}
struct Labeling : testing::TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
}
cv::Mat loat_image()
{
return cv::imread(std::string( cvtest::TS::ptr()->get_data_path() ) + "labeling/label.png");
}
};
GPU_TEST_P(Labeling, DISABLED_ConnectedComponents)
{
cv::Mat image;
cvtColor(loat_image(), image, cv::COLOR_BGR2GRAY);
cv::threshold(image, image, 150, 255, cv::THRESH_BINARY);
ASSERT_TRUE(image.type() == CV_8UC1);
GreedyLabeling host(image);
host(host._labels);
cv::gpu::GpuMat mask;
mask.create(image.rows, image.cols, CV_8UC1);
cv::gpu::GpuMat components;
components.create(image.rows, image.cols, CV_32SC1);
cv::gpu::connectivityMask(cv::gpu::GpuMat(image), mask, cv::Scalar::all(0), cv::Scalar::all(2));
cv::gpu::labelComponents(mask, components);
host.checkCorrectness(cv::Mat(components));
}
INSTANTIATE_TEST_CASE_P(GPU_ConnectedComponents, Labeling, ALL_DEVICES);
#endif // HAVE_CUDA