Merge pull request #3722 from berak:py_houghlines_sample
This commit is contained in:
commit
c9ea878d10
@ -59,7 +59,7 @@ denotes they are the parameters of possible lines in the image. (Image courtesy:
|
|||||||
|
|
||||||

|

|
||||||
|
|
||||||
Hough Tranform in OpenCV
|
Hough Transform in OpenCV
|
||||||
=========================
|
=========================
|
||||||
|
|
||||||
Everything explained above is encapsulated in the OpenCV function, \*\*cv2.HoughLines()\*\*. It simply returns an array of :math:(rho,
|
Everything explained above is encapsulated in the OpenCV function, \*\*cv2.HoughLines()\*\*. It simply returns an array of :math:(rho,
|
||||||
@ -78,7 +78,8 @@ gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
|||||||
edges = cv2.Canny(gray,50,150,apertureSize = 3)
|
edges = cv2.Canny(gray,50,150,apertureSize = 3)
|
||||||
|
|
||||||
lines = cv2.HoughLines(edges,1,np.pi/180,200)
|
lines = cv2.HoughLines(edges,1,np.pi/180,200)
|
||||||
for rho,theta in lines[0]:
|
for line in lines:
|
||||||
|
rho,theta = line[0]
|
||||||
a = np.cos(theta)
|
a = np.cos(theta)
|
||||||
b = np.sin(theta)
|
b = np.sin(theta)
|
||||||
x0 = a*rho
|
x0 = a*rho
|
||||||
@ -123,10 +124,9 @@ import numpy as np
|
|||||||
img = cv2.imread('dave.jpg')
|
img = cv2.imread('dave.jpg')
|
||||||
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||||
edges = cv2.Canny(gray,50,150,apertureSize = 3)
|
edges = cv2.Canny(gray,50,150,apertureSize = 3)
|
||||||
minLineLength = 100
|
lines = cv2.HoughLinesP(edges,1,np.pi/180,100,minLineLength=100,maxLineGap=10)
|
||||||
maxLineGap = 10
|
for line in lines:
|
||||||
lines = cv2.HoughLinesP(edges,1,np.pi/180,100,minLineLength,maxLineGap)
|
x1,y1,x2,y2 = line[0]
|
||||||
for x1,y1,x2,y2 in lines[0]:
|
|
||||||
cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)
|
cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)
|
||||||
|
|
||||||
cv2.imwrite('houghlines5.jpg',img)
|
cv2.imwrite('houghlines5.jpg',img)
|
||||||
|
@ -18,23 +18,25 @@ src = cv2.imread(fn)
|
|||||||
dst = cv2.Canny(src, 50, 200)
|
dst = cv2.Canny(src, 50, 200)
|
||||||
cdst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR)
|
cdst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR)
|
||||||
|
|
||||||
# HoughLines()
|
if True: # HoughLinesP
|
||||||
# lines = cv2.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0)
|
lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10)
|
||||||
# a,b,c = lines.shape
|
a,b,c = lines.shape
|
||||||
# for i in range(b):
|
for i in range(a):
|
||||||
# rho = lines[0][i][0]
|
cv2.line(cdst, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 3, cv2.LINE_AA)
|
||||||
# theta = lines[0][i][1]
|
|
||||||
# a = math.cos(theta)
|
else: # HoughLines
|
||||||
# b = math.sin(theta)
|
lines = cv2.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0)
|
||||||
# x0, y0 = a*rho, b*rho
|
a,b,c = lines.shape
|
||||||
# pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) )
|
for i in range(a):
|
||||||
# pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) )
|
rho = lines[i][0][0]
|
||||||
# cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA)
|
theta = lines[i][0][1]
|
||||||
|
a = math.cos(theta)
|
||||||
|
b = math.sin(theta)
|
||||||
|
x0, y0 = a*rho, b*rho
|
||||||
|
pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) )
|
||||||
|
pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) )
|
||||||
|
cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA)
|
||||||
|
|
||||||
lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 50, np.array([]), 50, 10)
|
|
||||||
a,b,c = lines.shape
|
|
||||||
for i in range(b):
|
|
||||||
cv2.line(cdst, (lines[0][i][0], lines[0][i][1]), (lines[0][i][2], lines[0][i][3]), (0, 0, 255), 3, cv2.LINE_AA)
|
|
||||||
|
|
||||||
cv2.imshow("source", src)
|
cv2.imshow("source", src)
|
||||||
cv2.imshow("detected lines", cdst)
|
cv2.imshow("detected lines", cdst)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user