Merge pull request #3722 from berak:py_houghlines_sample

This commit is contained in:
Vadim Pisarevsky
2015-03-03 18:16:25 +00:00
2 changed files with 24 additions and 22 deletions

View File

@@ -59,7 +59,7 @@ denotes they are the parameters of possible lines in the image. (Image courtesy:
![](images/houghlines2.jpg)
Hough Tranform in OpenCV
Hough Transform in OpenCV
=========================
Everything explained above is encapsulated in the OpenCV function, \*\*cv2.HoughLines()\*\*. It simply returns an array of :math:(rho,
@@ -78,7 +78,8 @@ gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
lines = cv2.HoughLines(edges,1,np.pi/180,200)
for rho,theta in lines[0]:
for line in lines:
rho,theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
@@ -123,10 +124,9 @@ import numpy as np
img = cv2.imread('dave.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
minLineLength = 100
maxLineGap = 10
lines = cv2.HoughLinesP(edges,1,np.pi/180,100,minLineLength,maxLineGap)
for x1,y1,x2,y2 in lines[0]:
lines = cv2.HoughLinesP(edges,1,np.pi/180,100,minLineLength=100,maxLineGap=10)
for line in lines:
x1,y1,x2,y2 = line[0]
cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)
cv2.imwrite('houghlines5.jpg',img)