Merge pull request #3217 from avdmitry:samples_cpp_data
@@ -113,8 +113,8 @@ if __name__ == '__main__':
|
||||
try:
|
||||
fn1, fn2 = args
|
||||
except:
|
||||
fn1 = 'data/aero1.jpg'
|
||||
fn2 = 'data/aero3.jpg'
|
||||
fn1 = '../data/aero1.jpg'
|
||||
fn2 = '../data/aero3.jpg'
|
||||
|
||||
img1 = cv2.imread(fn1, 0)
|
||||
img2 = cv2.imread(fn2, 0)
|
||||
|
@@ -43,7 +43,7 @@ if __name__ == '__main__':
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/baboon.jpg'
|
||||
fn = '../data/baboon.jpg'
|
||||
|
||||
src = cv2.imread(fn)
|
||||
|
||||
|
@@ -31,7 +31,7 @@ if __name__ == '__main__':
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = 0
|
||||
cam = video.create_capture(fn, fallback='synth:bg=../cpp/baboon.jpg:class=chess:noise=0.05')
|
||||
cam = video.create_capture(fn, fallback='synth:bg=../data/baboon.jpg:class=chess:noise=0.05')
|
||||
|
||||
while True:
|
||||
flag, frame = cam.read()
|
||||
|
Before Width: | Height: | Size: 58 KiB |
Before Width: | Height: | Size: 52 KiB |
Before Width: | Height: | Size: 704 KiB |
Before Width: | Height: | Size: 57 KiB |
Before Width: | Height: | Size: 296 KiB |
Before Width: | Height: | Size: 31 KiB |
Before Width: | Height: | Size: 26 KiB |
@@ -19,11 +19,11 @@ Usage:
|
||||
ESC - exit
|
||||
|
||||
Examples:
|
||||
deconvolution.py --angle 135 --d 22 data/licenseplate_motion.jpg
|
||||
deconvolution.py --angle 135 --d 22 ../data/licenseplate_motion.jpg
|
||||
(image source: http://www.topazlabs.com/infocus/_images/licenseplate_compare.jpg)
|
||||
|
||||
deconvolution.py --angle 86 --d 31 data/text_motion.jpg
|
||||
deconvolution.py --circle --d 19 data/text_defocus.jpg
|
||||
deconvolution.py --angle 86 --d 31 ../data/text_motion.jpg
|
||||
deconvolution.py --circle --d 19 ../data/text_defocus.jpg
|
||||
(image source: compact digital photo camera, no artificial distortion)
|
||||
|
||||
|
||||
@@ -70,7 +70,7 @@ if __name__ == '__main__':
|
||||
try:
|
||||
fn = args[0]
|
||||
except:
|
||||
fn = 'data/licenseplate_motion.jpg'
|
||||
fn = '../data/licenseplate_motion.jpg'
|
||||
|
||||
win = 'deconvolution'
|
||||
|
||||
|
@@ -56,7 +56,7 @@ if __name__ == "__main__":
|
||||
if len(sys.argv)>1:
|
||||
im = cv2.imread(sys.argv[1])
|
||||
else :
|
||||
im = cv2.imread('../c/baboon.jpg')
|
||||
im = cv2.imread('../data/baboon.jpg')
|
||||
print "usage : python dft.py <image_file>"
|
||||
|
||||
# convert to grayscale
|
||||
|
@@ -3,7 +3,7 @@
|
||||
'''
|
||||
SVM and KNearest digit recognition.
|
||||
|
||||
Sample loads a dataset of handwritten digits from 'digits.png'.
|
||||
Sample loads a dataset of handwritten digits from '../data/digits.png'.
|
||||
Then it trains a SVM and KNearest classifiers on it and evaluates
|
||||
their accuracy.
|
||||
|
||||
@@ -38,7 +38,7 @@ from common import clock, mosaic
|
||||
|
||||
SZ = 20 # size of each digit is SZ x SZ
|
||||
CLASS_N = 10
|
||||
DIGITS_FN = 'data/digits.png'
|
||||
DIGITS_FN = '../data/digits.png'
|
||||
|
||||
def split2d(img, cell_size, flatten=True):
|
||||
h, w = img.shape[:2]
|
||||
|
@@ -22,7 +22,7 @@ if __name__ == '__main__':
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/fruits.jpg'
|
||||
fn = '../data/fruits.jpg'
|
||||
print __doc__
|
||||
|
||||
img = cv2.imread(fn, 0)
|
||||
|
@@ -38,7 +38,7 @@ if __name__ == '__main__':
|
||||
cascade = cv2.CascadeClassifier(cascade_fn)
|
||||
nested = cv2.CascadeClassifier(nested_fn)
|
||||
|
||||
cam = create_capture(video_src, fallback='synth:bg=../cpp/lena.jpg:noise=0.05')
|
||||
cam = create_capture(video_src, fallback='synth:bg=../data/lena.jpg:noise=0.05')
|
||||
|
||||
while True:
|
||||
ret, img = cam.read()
|
||||
|
@@ -139,8 +139,8 @@ if __name__ == '__main__':
|
||||
try:
|
||||
fn1, fn2 = args
|
||||
except:
|
||||
fn1 = '../cpp/box.png'
|
||||
fn2 = '../cpp/box_in_scene.png'
|
||||
fn1 = '../data/box.png'
|
||||
fn2 = '../data/box_in_scene.png'
|
||||
|
||||
img1 = cv2.imread(fn1, 0)
|
||||
img2 = cv2.imread(fn2, 0)
|
||||
|
@@ -22,7 +22,7 @@ if __name__ == '__main__':
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/fruits.jpg'
|
||||
fn = '../data/fruits.jpg'
|
||||
print __doc__
|
||||
|
||||
img = cv2.imread(fn, True)
|
||||
|
@@ -52,7 +52,7 @@ if __name__ == '__main__':
|
||||
try:
|
||||
img_fn = sys.argv[1]
|
||||
except:
|
||||
img_fn = '../cpp/baboon.jpg'
|
||||
img_fn = '../data/baboon.jpg'
|
||||
|
||||
img = cv2.imread(img_fn)
|
||||
if img is None:
|
||||
|
@@ -102,9 +102,9 @@ print __doc__
|
||||
if len(sys.argv) == 2:
|
||||
filename = sys.argv[1] # for drawing purposes
|
||||
else:
|
||||
print "No input image given, so loading default image, lena.jpg \n"
|
||||
print "No input image given, so loading default image, ../data/lena.jpg \n"
|
||||
print "Correct Usage: python grabcut.py <filename> \n"
|
||||
filename = '../cpp/lena.jpg'
|
||||
filename = '../data/lena.jpg'
|
||||
|
||||
img = cv2.imread(filename)
|
||||
img2 = img.copy() # a copy of original image
|
||||
|
@@ -57,7 +57,7 @@ if __name__ == '__main__':
|
||||
if len(sys.argv)>1:
|
||||
fname = sys.argv[1]
|
||||
else :
|
||||
fname = '../cpp/lena.jpg'
|
||||
fname = '../data/lena.jpg'
|
||||
print "usage : python hist.py <image_file>"
|
||||
|
||||
im = cv2.imread(fname)
|
||||
|
@@ -3,7 +3,7 @@
|
||||
'''
|
||||
This example illustrates how to use cv2.HoughCircles() function.
|
||||
Usage: ./houghcircles.py [<image_name>]
|
||||
image argument defaults to ../cpp/board.jpg
|
||||
image argument defaults to ../data/board.jpg
|
||||
'''
|
||||
|
||||
import cv2
|
||||
@@ -15,7 +15,7 @@ print __doc__
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = "../cpp/board.jpg"
|
||||
fn = "../data/board.jpg"
|
||||
|
||||
src = cv2.imread(fn, 1)
|
||||
img = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
|
||||
|
@@ -2,7 +2,7 @@
|
||||
'''
|
||||
This example illustrates how to use Hough Transform to find lines
|
||||
Usage: ./houghlines.py [<image_name>]
|
||||
image argument defaults to ../cpp/pic1.png
|
||||
image argument defaults to ../data/pic1.png
|
||||
'''
|
||||
import cv2
|
||||
import numpy as np
|
||||
@@ -12,7 +12,7 @@ import math
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = "../cpp/pic1.png"
|
||||
fn = "../data/pic1.png"
|
||||
print __doc__
|
||||
src = cv2.imread(fn)
|
||||
dst = cv2.Canny(src, 50, 200)
|
||||
|
@@ -24,7 +24,7 @@ if __name__ == '__main__':
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/fruits.jpg'
|
||||
fn = '../data/fruits.jpg'
|
||||
|
||||
print __doc__
|
||||
|
||||
|
@@ -153,7 +153,7 @@ if __name__ == '__main__':
|
||||
args, dummy = getopt.getopt(sys.argv[1:], '', ['model=', 'data=', 'load=', 'save='])
|
||||
args = dict(args)
|
||||
args.setdefault('--model', 'rtrees')
|
||||
args.setdefault('--data', '../cpp/letter-recognition.data')
|
||||
args.setdefault('--data', '../data/letter-recognition.data')
|
||||
|
||||
print 'loading data %s ...' % args['--data']
|
||||
samples, responses = load_base(args['--data'])
|
||||
|
@@ -6,7 +6,7 @@ if __name__ == '__main__':
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/fruits.jpg'
|
||||
fn = '../data/fruits.jpg'
|
||||
|
||||
img = cv2.imread(fn)
|
||||
if img is None:
|
||||
|
@@ -26,7 +26,7 @@ if __name__ == '__main__':
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/baboon.jpg'
|
||||
fn = '../data/baboon.jpg'
|
||||
|
||||
img = cv2.imread(fn)
|
||||
|
||||
|
@@ -32,8 +32,8 @@ def write_ply(fn, verts, colors):
|
||||
|
||||
if __name__ == '__main__':
|
||||
print 'loading images...'
|
||||
imgL = cv2.pyrDown( cv2.imread('../gpu/aloeL.jpg') ) # downscale images for faster processing
|
||||
imgR = cv2.pyrDown( cv2.imread('../gpu/aloeR.jpg') )
|
||||
imgL = cv2.pyrDown( cv2.imread('../data/aloeL.jpg') ) # downscale images for faster processing
|
||||
imgR = cv2.pyrDown( cv2.imread('../data/aloeR.jpg') )
|
||||
|
||||
# disparity range is tuned for 'aloe' image pair
|
||||
window_size = 3
|
||||
|
@@ -18,7 +18,7 @@ if __name__ == '__main__':
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = 'data/starry_night.jpg'
|
||||
fn = '../data/starry_night.jpg'
|
||||
|
||||
img = cv2.imread(fn)
|
||||
if img is None:
|
||||
|
@@ -20,8 +20,8 @@ Usage:
|
||||
- synth:<params> for procedural video
|
||||
|
||||
Synth examples:
|
||||
synth:bg=../cpp/lena.jpg:noise=0.1
|
||||
synth:class=chess:bg=../cpp/lena.jpg:noise=0.1:size=640x480
|
||||
synth:bg=../data/lena.jpg:noise=0.1
|
||||
synth:class=chess:bg=../data/lena.jpg:noise=0.1:size=640x480
|
||||
|
||||
Keys:
|
||||
ESC - exit
|
||||
@@ -130,8 +130,8 @@ classes = dict(chess=Chess)
|
||||
|
||||
presets = dict(
|
||||
empty = 'synth:',
|
||||
lena = 'synth:bg=../cpp/lena.jpg:noise=0.1',
|
||||
chess = 'synth:class=chess:bg=../cpp/lena.jpg:noise=0.1:size=640x480'
|
||||
lena = 'synth:bg=../data/lena.jpg:noise=0.1',
|
||||
chess = 'synth:class=chess:bg=../data/lena.jpg:noise=0.1:size=640x480'
|
||||
)
|
||||
|
||||
|
||||
|
@@ -79,6 +79,6 @@ if __name__ == '__main__':
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/fruits.jpg'
|
||||
fn = '../data/fruits.jpg'
|
||||
print __doc__
|
||||
App(fn).run()
|
||||
|