started work on API & doc synchronization (in particular, Mat& => Input/OutputArray in the descriptions)
This commit is contained in:
@@ -51,7 +51,7 @@ descriptors is represented as
|
||||
|
||||
DescriptorExtractor::compute
|
||||
--------------------------------
|
||||
.. c:function:: void DescriptorExtractor::compute( const Mat\& image, vector<KeyPoint>\& keypoints, Mat\& descriptors ) const
|
||||
.. cpp:function:: void DescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const
|
||||
|
||||
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).
|
||||
|
||||
@@ -61,7 +61,7 @@ DescriptorExtractor::compute
|
||||
|
||||
:param descriptors: Descriptors. Row i is the descriptor for keypoint i.
|
||||
|
||||
.. c:function:: void DescriptorExtractor::compute( const vector<Mat>\& images, vector<vector<KeyPoint> >\& keypoints, vector<Mat>\& descriptors ) const
|
||||
.. cpp:function:: void DescriptorExtractor::compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const
|
||||
|
||||
:param images: Image set.
|
||||
|
||||
@@ -75,7 +75,7 @@ DescriptorExtractor::compute
|
||||
|
||||
DescriptorExtractor::read
|
||||
-----------------------------
|
||||
.. c:function:: void DescriptorExtractor::read( const FileNode\& fn )
|
||||
.. cpp:function:: void DescriptorExtractor::read( const FileNode& fn )
|
||||
|
||||
Reads the object of a descriptor extractor from a file node.
|
||||
|
||||
@@ -85,7 +85,7 @@ DescriptorExtractor::read
|
||||
|
||||
DescriptorExtractor::write
|
||||
------------------------------
|
||||
.. c:function:: void DescriptorExtractor::write( FileStorage\& fs ) const
|
||||
.. cpp:function:: void DescriptorExtractor::write( FileStorage& fs ) const
|
||||
|
||||
Writes the object of a descriptor extractor to a file storage.
|
||||
|
||||
@@ -95,7 +95,7 @@ DescriptorExtractor::write
|
||||
|
||||
DescriptorExtractor::create
|
||||
-------------------------------
|
||||
.. c:function:: Ptr<DescriptorExtractor> DescriptorExtractor::create( const string& descriptorExtractorType )
|
||||
.. cpp:function:: Ptr<DescriptorExtractor> DescriptorExtractor::create( const string& descriptorExtractorType )
|
||||
|
||||
Creates a descriptor extractor by name.
|
||||
|
||||
|
@@ -7,7 +7,7 @@ Feature Detection and Description
|
||||
|
||||
FAST
|
||||
--------
|
||||
.. c:function:: void FAST( const Mat& image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSupression=true )
|
||||
.. cpp:function:: void FAST( const Mat& image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSupression=true )
|
||||
|
||||
Detects corners using the FAST algorithm by E. Rosten (*Machine learning for high-speed corner detection*, 2006).
|
||||
|
||||
@@ -355,11 +355,11 @@ Class containing a base structure for ``RTreeClassifier`` ::
|
||||
|
||||
RandomizedTree::train
|
||||
-------------------------
|
||||
.. c:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits)
|
||||
.. cpp:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits)
|
||||
|
||||
Trains a randomized tree using an input set of keypoints.
|
||||
|
||||
.. c:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits)
|
||||
.. cpp:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits)
|
||||
|
||||
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training.
|
||||
|
||||
@@ -379,9 +379,9 @@ RandomizedTree::train
|
||||
|
||||
RandomizedTree::read
|
||||
------------------------
|
||||
.. c:function:: read(const char* file_name, int num_quant_bits)
|
||||
.. cpp:function:: read(const char* file_name, int num_quant_bits)
|
||||
|
||||
.. c:function:: read(std::istream &is, int num_quant_bits)
|
||||
.. cpp:function:: read(std::istream &is, int num_quant_bits)
|
||||
|
||||
Reads a pre-saved randomized tree from a file or stream.
|
||||
|
||||
@@ -395,11 +395,11 @@ RandomizedTree::read
|
||||
|
||||
RandomizedTree::write
|
||||
-------------------------
|
||||
.. c:function:: void write(const char* file_name) const
|
||||
.. cpp:function:: void write(const char* file_name) const
|
||||
|
||||
Writes the current randomized tree to a file or stream.
|
||||
|
||||
.. c:function:: void write(std::ostream \&os) const
|
||||
.. cpp:function:: void write(std::ostream \&os) const
|
||||
|
||||
:param file_name: Name of the file where randomized tree data is stored.
|
||||
|
||||
@@ -409,7 +409,7 @@ RandomizedTree::write
|
||||
|
||||
RandomizedTree::applyQuantization
|
||||
-------------------------------------
|
||||
.. c:function:: void applyQuantization(int num_quant_bits)
|
||||
.. cpp:function:: void applyQuantization(int num_quant_bits)
|
||||
|
||||
Applies quantization to the current randomized tree.
|
||||
|
||||
@@ -519,11 +519,11 @@ Class containing ``RTreeClassifier``. It represents the Calonder descriptor that
|
||||
|
||||
RTreeClassifier::train
|
||||
--------------------------
|
||||
.. c:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true)
|
||||
.. cpp:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true)
|
||||
|
||||
Trains a randomized tree classifier using an input set of keypoints.
|
||||
|
||||
.. c:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true)
|
||||
.. cpp:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true)
|
||||
|
||||
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training.
|
||||
|
||||
@@ -547,11 +547,11 @@ RTreeClassifier::train
|
||||
|
||||
RTreeClassifier::getSignature
|
||||
---------------------------------
|
||||
.. c:function:: void getSignature(IplImage *patch, uchar *sig)
|
||||
.. cpp:function:: void getSignature(IplImage *patch, uchar *sig)
|
||||
|
||||
Returns a signature for an image patch.
|
||||
|
||||
.. c:function:: void getSignature(IplImage *patch, float *sig)
|
||||
.. cpp:function:: void getSignature(IplImage *patch, float *sig)
|
||||
|
||||
:param patch: Image patch to calculate the signature for.
|
||||
:param sig: Output signature (array dimension is ``reduced_num_dim)`` .
|
||||
@@ -561,7 +561,7 @@ RTreeClassifier::getSignature
|
||||
RTreeClassifier::getSparseSignature
|
||||
---------------------------------------
|
||||
|
||||
.. c:function:: void getSparseSignature(IplImage *patch, float *sig, float thresh)
|
||||
.. cpp:function:: void getSparseSignature(IplImage *patch, float *sig, float thresh)
|
||||
|
||||
Returns a signature for an image patch similarly to ``getSignature`` but uses a threshold for removing all signature elements below the threshold so that the signature is compressed.
|
||||
|
||||
@@ -575,7 +575,7 @@ RTreeClassifier::getSparseSignature
|
||||
|
||||
RTreeClassifier::countNonZeroElements
|
||||
-----------------------------------------
|
||||
.. c:function:: static int countNonZeroElements(float *vec, int n, double tol=1e-10)
|
||||
.. cpp:function:: static int countNonZeroElements(float *vec, int n, double tol=1e-10)
|
||||
|
||||
Returns the number of non-zero elements in an input array.
|
||||
|
||||
@@ -589,11 +589,11 @@ RTreeClassifier::countNonZeroElements
|
||||
|
||||
RTreeClassifier::read
|
||||
-------------------------
|
||||
.. c:function:: read(const char* file_name)
|
||||
.. cpp:function:: read(const char* file_name)
|
||||
|
||||
Reads a pre-saved ``RTreeClassifier`` from a file or stream.
|
||||
|
||||
.. c:function:: read(std::istream& is)
|
||||
.. cpp:function:: read(std::istream& is)
|
||||
|
||||
:param file_name: Name of the file that contains randomized tree data.
|
||||
|
||||
@@ -603,11 +603,11 @@ RTreeClassifier::read
|
||||
|
||||
RTreeClassifier::write
|
||||
--------------------------
|
||||
.. c:function:: void write(const char* file_name) const
|
||||
.. cpp:function:: void write(const char* file_name) const
|
||||
|
||||
Writes the current ``RTreeClassifier`` to a file or stream.
|
||||
|
||||
.. c:function:: void write(std::ostream &os) const
|
||||
.. cpp:function:: void write(std::ostream &os) const
|
||||
|
||||
:param file_name: Name of the file where randomized tree data is stored.
|
||||
|
||||
@@ -617,7 +617,7 @@ RTreeClassifier::write
|
||||
|
||||
RTreeClassifier::setQuantization
|
||||
------------------------------------
|
||||
.. c:function:: void setQuantization(int num_quant_bits)
|
||||
.. cpp:function:: void setQuantization(int num_quant_bits)
|
||||
|
||||
Applies quantization to the current randomized tree.
|
||||
|
||||
|
@@ -41,7 +41,7 @@ Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. ::
|
||||
|
||||
BOWTrainer::add
|
||||
-------------------
|
||||
.. c:function:: void BOWTrainer::add( const Mat& descriptors )
|
||||
.. cpp:function:: void BOWTrainer::add( const Mat& descriptors )
|
||||
|
||||
Adds descriptors to a training set. The training set is clustered using ``clustermethod`` to construct the vocabulary.
|
||||
|
||||
@@ -51,7 +51,7 @@ BOWTrainer::add
|
||||
|
||||
BOWTrainer::getDescriptors
|
||||
------------------------------
|
||||
.. c:function:: const vector<Mat>& BOWTrainer::getDescriptors() const
|
||||
.. cpp:function:: const vector<Mat>& BOWTrainer::getDescriptors() const
|
||||
|
||||
Returns a training set of descriptors.
|
||||
|
||||
@@ -59,7 +59,7 @@ BOWTrainer::getDescriptors
|
||||
|
||||
BOWTrainer::descripotorsCount
|
||||
---------------------------------
|
||||
.. c:function:: const vector<Mat>& BOWTrainer::descripotorsCount() const
|
||||
.. cpp:function:: const vector<Mat>& BOWTrainer::descripotorsCount() const
|
||||
|
||||
Returns the count of all descriptors stored in the training set.
|
||||
|
||||
@@ -67,11 +67,11 @@ BOWTrainer::descripotorsCount
|
||||
|
||||
BOWTrainer::cluster
|
||||
-----------------------
|
||||
.. c:function:: Mat BOWTrainer::cluster() const
|
||||
.. cpp:function:: Mat BOWTrainer::cluster() const
|
||||
|
||||
Clusters train descriptors. The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first variant of the method, train descriptors stored in the object are clustered. In the second variant, input descriptors are clustered.
|
||||
|
||||
.. c:function:: Mat BOWTrainer::cluster( const Mat& descriptors ) const
|
||||
.. cpp:function:: Mat BOWTrainer::cluster( const Mat& descriptors ) const
|
||||
|
||||
:param descriptors: Descriptors to cluster. Each row of the ``descriptors`` matrix is a descriptor. Descriptors are not added to the inner train descriptor set.
|
||||
|
||||
@@ -146,7 +146,7 @@ Here is the class declaration ::
|
||||
|
||||
BOWImgDescriptorExtractor::BOWImgDescriptorExtractor
|
||||
--------------------------------------------------------
|
||||
.. c:function:: BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor, const Ptr<DescriptorMatcher>& dmatcher )
|
||||
.. cpp:function:: BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor, const Ptr<DescriptorMatcher>& dmatcher )
|
||||
|
||||
The class constructor.
|
||||
|
||||
@@ -158,7 +158,7 @@ BOWImgDescriptorExtractor::BOWImgDescriptorExtractor
|
||||
|
||||
BOWImgDescriptorExtractor::setVocabulary
|
||||
--------------------------------------------
|
||||
.. c:function:: void BOWImgDescriptorExtractor::setVocabulary( const Mat& vocabulary )
|
||||
.. cpp:function:: void BOWImgDescriptorExtractor::setVocabulary( const Mat& vocabulary )
|
||||
|
||||
Sets a visual vocabulary.
|
||||
|
||||
@@ -168,7 +168,7 @@ BOWImgDescriptorExtractor::setVocabulary
|
||||
|
||||
BOWImgDescriptorExtractor::getVocabulary
|
||||
--------------------------------------------
|
||||
.. c:function:: const Mat& BOWImgDescriptorExtractor::getVocabulary() const
|
||||
.. cpp:function:: const Mat& BOWImgDescriptorExtractor::getVocabulary() const
|
||||
|
||||
Returns the set vocabulary.
|
||||
|
||||
@@ -176,7 +176,7 @@ BOWImgDescriptorExtractor::getVocabulary
|
||||
|
||||
BOWImgDescriptorExtractor::compute
|
||||
--------------------------------------
|
||||
.. c:function:: void BOWImgDescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor, vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 )
|
||||
.. cpp:function:: void BOWImgDescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor, vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 )
|
||||
|
||||
Computes an image descriptor using the set visual vocabulary.
|
||||
|
||||
@@ -194,7 +194,7 @@ BOWImgDescriptorExtractor::compute
|
||||
|
||||
BOWImgDescriptorExtractor::descriptorSize
|
||||
---------------------------------------------
|
||||
.. c:function:: int BOWImgDescriptorExtractor::descriptorSize() const
|
||||
.. cpp:function:: int BOWImgDescriptorExtractor::descriptorSize() const
|
||||
|
||||
Returns an image discriptor size if the vocabulary is set. Otherwise, it returns 0.
|
||||
|
||||
@@ -202,7 +202,7 @@ BOWImgDescriptorExtractor::descriptorSize
|
||||
|
||||
BOWImgDescriptorExtractor::descriptorType
|
||||
---------------------------------------------
|
||||
.. c:function:: int BOWImgDescriptorExtractor::descriptorType() const
|
||||
.. cpp:function:: int BOWImgDescriptorExtractor::descriptorType() const
|
||||
|
||||
Returns an image descriptor type.
|
||||
|
||||
|
Reference in New Issue
Block a user