"SimpleFlow" optical flow estimation algorithm (GSoC project) declaration in includes, implementation, usage example, test
This commit is contained in:
committed by
Vadim Pisarevsky
parent
2367a195c5
commit
c77d099018
757
modules/video/src/simpleflow.cpp
Normal file
757
modules/video/src/simpleflow.cpp
Normal file
@@ -0,0 +1,757 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "simpleflow.hpp"
|
||||
|
||||
//
|
||||
// 2D dense optical flow algorithm from the following paper:
|
||||
// Michael Tao, Jiamin Bai, Pushmeet Kohli, and Sylvain Paris.
|
||||
// "SimpleFlow: A Non-iterative, Sublinear Optical Flow Algorithm"
|
||||
// Computer Graphics Forum (Eurographics 2012)
|
||||
// http://graphics.berkeley.edu/papers/Tao-SAN-2012-05/
|
||||
//
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
WeightedCrossBilateralFilter::WeightedCrossBilateralFilter(
|
||||
const Mat& _image,
|
||||
int _windowSize,
|
||||
double _sigmaDist,
|
||||
double _sigmaColor)
|
||||
: image(_image),
|
||||
windowSize(_windowSize),
|
||||
sigmaDist(_sigmaDist),
|
||||
sigmaColor(_sigmaColor) {
|
||||
|
||||
expDist.resize(2*windowSize*windowSize+1);
|
||||
const double sigmaDistSqr = 2 * sigmaDist * sigmaDist;
|
||||
for (int i = 0; i <= 2*windowSize*windowSize; ++i) {
|
||||
expDist[i] = exp(-i/sigmaDistSqr);
|
||||
}
|
||||
|
||||
const double sigmaColorSqr = 2 * sigmaColor * sigmaColor;
|
||||
wc.resize(image.rows);
|
||||
for (int row = 0; row < image.rows; ++row) {
|
||||
wc[row].resize(image.cols);
|
||||
for (int col = 0; col < image.cols; ++col) {
|
||||
int beginRow = max(0, row - windowSize);
|
||||
int beginCol = max(0, col - windowSize);
|
||||
int endRow = min(image.rows - 1, row + windowSize);
|
||||
int endCol = min(image.cols - 1, col + windowSize);
|
||||
wc[row][col] = build<double>(endRow - beginRow + 1, endCol - beginCol + 1);
|
||||
|
||||
for (int r = beginRow; r <= endRow; ++r) {
|
||||
for (int c = beginCol; c <= endCol; ++c) {
|
||||
wc[row][col][r - beginRow][c - beginCol] =
|
||||
exp(-dist(image.at<Vec3b>(row, col),
|
||||
image.at<Vec3b>(r, c))
|
||||
/ sigmaColorSqr);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Mat WeightedCrossBilateralFilter::apply(Mat& matrix, Mat& weights) {
|
||||
int rows = matrix.rows;
|
||||
int cols = matrix.cols;
|
||||
|
||||
Mat result = Mat::zeros(rows, cols, CV_64F);
|
||||
for (int row = 0; row < rows; ++row) {
|
||||
for(int col = 0; col < cols; ++col) {
|
||||
result.at<double>(row, col) =
|
||||
convolution(matrix, row, col, weights);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
double WeightedCrossBilateralFilter::convolution(Mat& matrix,
|
||||
int row, int col,
|
||||
Mat& weights) {
|
||||
double result = 0, weightsSum = 0;
|
||||
int beginRow = max(0, row - windowSize);
|
||||
int beginCol = max(0, col - windowSize);
|
||||
int endRow = min(matrix.rows - 1, row + windowSize);
|
||||
int endCol = min(matrix.cols - 1, col + windowSize);
|
||||
for (int r = beginRow; r <= endRow; ++r) {
|
||||
double* ptr = matrix.ptr<double>(r);
|
||||
for (int c = beginCol; c <= endCol; ++c) {
|
||||
const double w = expDist[dist(row, col, r, c)] *
|
||||
wc[row][col][r - beginRow][c - beginCol] *
|
||||
weights.at<double>(r, c);
|
||||
result += ptr[c] * w;
|
||||
weightsSum += w;
|
||||
}
|
||||
}
|
||||
return result / weightsSum;
|
||||
}
|
||||
|
||||
static void removeOcclusions(const Flow& flow,
|
||||
const Flow& flow_inv,
|
||||
double occ_thr,
|
||||
Mat& confidence) {
|
||||
const int rows = flow.u.rows;
|
||||
const int cols = flow.v.cols;
|
||||
int occlusions = 0;
|
||||
for (int r = 0; r < rows; ++r) {
|
||||
for (int c = 0; c < cols; ++c) {
|
||||
if (dist(flow.u.at<double>(r, c), flow.v.at<double>(r, c),
|
||||
-flow_inv.u.at<double>(r, c), -flow_inv.v.at<double>(r, c)) > occ_thr) {
|
||||
confidence.at<double>(r, c) = 0;
|
||||
occlusions++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static Mat wd(int top_shift, int bottom_shift, int left_shift, int right_shift, double sigma) {
|
||||
const double factor = 1.0 / (2.0 * sigma * sigma);
|
||||
Mat d = Mat(top_shift + bottom_shift + 1, right_shift + left_shift + 1, CV_64F);
|
||||
for (int dr = -top_shift, r = 0; dr <= bottom_shift; ++dr, ++r) {
|
||||
for (int dc = -left_shift, c = 0; dc <= right_shift; ++dc, ++c) {
|
||||
d.at<double>(r, c) = -(dr*dr + dc*dc) * factor;
|
||||
}
|
||||
}
|
||||
Mat ed;
|
||||
exp(d, ed);
|
||||
return ed;
|
||||
}
|
||||
|
||||
static Mat wc(const Mat& image, int r0, int c0, int top_shift, int bottom_shift, int left_shift, int right_shift, double sigma) {
|
||||
const double factor = 1.0 / (2.0 * sigma * sigma);
|
||||
Mat d = Mat(top_shift + bottom_shift + 1, right_shift + left_shift + 1, CV_64F);
|
||||
for (int dr = r0-top_shift, r = 0; dr <= r0+bottom_shift; ++dr, ++r) {
|
||||
for (int dc = c0-left_shift, c = 0; dc <= c0+right_shift; ++dc, ++c) {
|
||||
d.at<double>(r, c) = -dist(image.at<Vec3b>(r0, c0), image.at<Vec3b>(dr, dc)) * factor;
|
||||
}
|
||||
}
|
||||
Mat ed;
|
||||
exp(d, ed);
|
||||
return ed;
|
||||
}
|
||||
|
||||
inline static void dist(const Mat& m1, const Mat& m2, Mat& result) {
|
||||
const int rows = m1.rows;
|
||||
const int cols = m1.cols;
|
||||
for (int r = 0; r < rows; ++r) {
|
||||
const Vec3b *m1_row = m1.ptr<Vec3b>(r);
|
||||
const Vec3b *m2_row = m2.ptr<Vec3b>(r);
|
||||
double* row = result.ptr<double>(r);
|
||||
for (int c = 0; c < cols; ++c) {
|
||||
row[c] = dist(m1_row[c], m2_row[c]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void calcOpticalFlowSingleScaleSF(const Mat& prev,
|
||||
const Mat& next,
|
||||
const Mat& mask,
|
||||
Flow& flow,
|
||||
Mat& confidence,
|
||||
int averaging_radius,
|
||||
int max_flow,
|
||||
double sigma_dist,
|
||||
double sigma_color) {
|
||||
const int rows = prev.rows;
|
||||
const int cols = prev.cols;
|
||||
confidence = Mat::zeros(rows, cols, CV_64F);
|
||||
|
||||
for (int r0 = 0; r0 < rows; ++r0) {
|
||||
for (int c0 = 0; c0 < cols; ++c0) {
|
||||
int u0 = floor(flow.u.at<double>(r0, c0) + 0.5);
|
||||
int v0 = floor(flow.v.at<double>(r0, c0) + 0.5);
|
||||
|
||||
const int min_row_shift = -min(r0 + u0, max_flow);
|
||||
const int max_row_shift = min(rows - 1 - (r0 + u0), max_flow);
|
||||
const int min_col_shift = -min(c0 + v0, max_flow);
|
||||
const int max_col_shift = min(cols - 1 - (c0 + v0), max_flow);
|
||||
|
||||
double min_cost = DBL_MAX, best_u = u0, best_v = v0;
|
||||
|
||||
Mat w_full_window;
|
||||
double w_full_window_sum;
|
||||
Mat diff_storage;
|
||||
|
||||
if (r0 - averaging_radius >= 0 &&
|
||||
r0 + averaging_radius < rows &&
|
||||
c0 - averaging_radius >= 0 &&
|
||||
c0 + averaging_radius < cols &&
|
||||
mask.at<uchar>(r0, c0)) {
|
||||
w_full_window = wd(averaging_radius,
|
||||
averaging_radius,
|
||||
averaging_radius,
|
||||
averaging_radius,
|
||||
sigma_dist).mul(
|
||||
wc(prev, r0, c0,
|
||||
averaging_radius,
|
||||
averaging_radius,
|
||||
averaging_radius,
|
||||
averaging_radius,
|
||||
sigma_color));
|
||||
|
||||
w_full_window_sum = sum(w_full_window)[0];
|
||||
diff_storage = Mat::zeros(averaging_radius*2 + 1, averaging_radius*2 + 1, CV_64F);
|
||||
}
|
||||
|
||||
bool first_flow_iteration = true;
|
||||
double sum_e, min_e;
|
||||
|
||||
for (int u = min_row_shift; u <= max_row_shift; ++u) {
|
||||
for (int v = min_col_shift; v <= max_col_shift; ++v) {
|
||||
double e = dist(prev.at<Vec3b>(r0, c0), next.at<Vec3b>(r0 + u0 + u, c0 + v0 + v));
|
||||
if (first_flow_iteration) {
|
||||
sum_e = e;
|
||||
min_e = e;
|
||||
first_flow_iteration = false;
|
||||
} else {
|
||||
sum_e += e;
|
||||
min_e = std::min(min_e, e);
|
||||
}
|
||||
if (!mask.at<uchar>(r0, c0)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const int window_top_shift = min(r0, r0 + u + u0, averaging_radius);
|
||||
const int window_bottom_shift = min(rows - 1 - r0,
|
||||
rows - 1 - (r0 + u + u0),
|
||||
averaging_radius);
|
||||
const int window_left_shift = min(c0, c0 + v + v0, averaging_radius);
|
||||
const int window_right_shift = min(cols - 1 - c0,
|
||||
cols - 1 - (c0 + v + v0),
|
||||
averaging_radius);
|
||||
|
||||
const Range prev_row_range(r0 - window_top_shift, r0 + window_bottom_shift + 1);
|
||||
const Range prev_col_range(c0 - window_left_shift, c0 + window_right_shift + 1);
|
||||
|
||||
const Range next_row_range(r0 + u0 + u - window_top_shift,
|
||||
r0 + u0 + u + window_bottom_shift + 1);
|
||||
const Range next_col_range(c0 + v0 + v - window_left_shift,
|
||||
c0 + v0 + v + window_right_shift + 1);
|
||||
|
||||
Mat diff2;
|
||||
Mat w;
|
||||
double w_sum;
|
||||
if (window_top_shift == averaging_radius &&
|
||||
window_bottom_shift == averaging_radius &&
|
||||
window_left_shift == averaging_radius &&
|
||||
window_right_shift == averaging_radius) {
|
||||
w = w_full_window;
|
||||
w_sum = w_full_window_sum;
|
||||
diff2 = diff_storage;
|
||||
|
||||
dist(prev(prev_row_range, prev_col_range), next(next_row_range, next_col_range), diff2);
|
||||
} else {
|
||||
diff2 = Mat::zeros(window_bottom_shift + window_top_shift + 1,
|
||||
window_right_shift + window_left_shift + 1, CV_64F);
|
||||
|
||||
dist(prev(prev_row_range, prev_col_range), next(next_row_range, next_col_range), diff2);
|
||||
|
||||
w = wd(window_top_shift, window_bottom_shift, window_left_shift, window_right_shift, sigma_dist).mul(
|
||||
wc(prev, r0, c0, window_top_shift, window_bottom_shift, window_left_shift, window_right_shift, sigma_color));
|
||||
w_sum = sum(w)[0];
|
||||
}
|
||||
multiply(diff2, w, diff2);
|
||||
|
||||
const double cost = sum(diff2)[0] / w_sum;
|
||||
if (cost < min_cost) {
|
||||
min_cost = cost;
|
||||
best_u = u + u0;
|
||||
best_v = v + v0;
|
||||
}
|
||||
}
|
||||
}
|
||||
int square = (max_row_shift - min_row_shift + 1) *
|
||||
(max_col_shift - min_col_shift + 1);
|
||||
confidence.at<double>(r0, c0) = (square == 0) ? 0
|
||||
: sum_e / square - min_e;
|
||||
if (mask.at<uchar>(r0, c0)) {
|
||||
flow.u.at<double>(r0, c0) = best_u;
|
||||
flow.v.at<double>(r0, c0) = best_v;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static Flow upscaleOpticalFlow(int new_rows,
|
||||
int new_cols,
|
||||
const Mat& image,
|
||||
const Mat& confidence,
|
||||
const Flow& flow,
|
||||
int averaging_radius,
|
||||
double sigma_dist,
|
||||
double sigma_color) {
|
||||
const int rows = image.rows;
|
||||
const int cols = image.cols;
|
||||
Flow new_flow(new_rows, new_cols);
|
||||
for (int r = 0; r < rows; ++r) {
|
||||
for (int c = 0; c < cols; ++c) {
|
||||
const int window_top_shift = min(r, averaging_radius);
|
||||
const int window_bottom_shift = min(rows - 1 - r, averaging_radius);
|
||||
const int window_left_shift = min(c, averaging_radius);
|
||||
const int window_right_shift = min(cols - 1 - c, averaging_radius);
|
||||
|
||||
const Range row_range(r - window_top_shift, r + window_bottom_shift + 1);
|
||||
const Range col_range(c - window_left_shift, c + window_right_shift + 1);
|
||||
|
||||
const Mat w = confidence(row_range, col_range).mul(
|
||||
wd(window_top_shift, window_bottom_shift, window_left_shift, window_right_shift, sigma_dist)).mul(
|
||||
wc(image, r, c, window_top_shift, window_bottom_shift, window_left_shift, window_right_shift, sigma_color));
|
||||
|
||||
const double w_sum = sum(w)[0];
|
||||
double new_u, new_v;
|
||||
if (fabs(w_sum) < 1e-9) {
|
||||
new_u = flow.u.at<double>(r, c);
|
||||
new_v = flow.v.at<double>(r, c);
|
||||
} else {
|
||||
new_u = sum(flow.u(row_range, col_range).mul(w))[0] / w_sum;
|
||||
new_v = sum(flow.v(row_range, col_range).mul(w))[0] / w_sum;
|
||||
}
|
||||
|
||||
for (int dr = 0; dr <= 1; ++dr) {
|
||||
int nr = 2*r + dr;
|
||||
for (int dc = 0; dc <= 1; ++dc) {
|
||||
int nc = 2*c + dc;
|
||||
if (nr < new_rows && nc < new_cols) {
|
||||
new_flow.u.at<double>(nr, nc) = 2 * new_u;
|
||||
new_flow.v.at<double>(nr, nc) = 2 * new_v;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return new_flow;
|
||||
}
|
||||
|
||||
static Mat calcIrregularityMat(const Flow& flow, int radius) {
|
||||
const int rows = flow.u.rows;
|
||||
const int cols = flow.v.cols;
|
||||
Mat irregularity = Mat::zeros(rows, cols, CV_64F);
|
||||
for (int r = 0; r < rows; ++r) {
|
||||
const int start_row = max(0, r - radius);
|
||||
const int end_row = min(rows - 1, r + radius);
|
||||
for (int c = 0; c < cols; ++c) {
|
||||
const int start_col = max(0, c - radius);
|
||||
const int end_col = min(cols - 1, c + radius);
|
||||
for (int dr = start_row; dr <= end_row; ++dr) {
|
||||
for (int dc = start_col; dc <= end_col; ++dc) {
|
||||
const double diff = dist(flow.u.at<double>(r, c), flow.v.at<double>(r, c),
|
||||
flow.u.at<double>(dr, dc), flow.v.at<double>(dr, dc));
|
||||
if (diff > irregularity.at<double>(r, c)) {
|
||||
irregularity.at<double>(r, c) = diff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return irregularity;
|
||||
}
|
||||
|
||||
static void selectPointsToRecalcFlow(const Flow& flow,
|
||||
int irregularity_metric_radius,
|
||||
int speed_up_thr,
|
||||
int curr_rows,
|
||||
int curr_cols,
|
||||
const Mat& prev_speed_up,
|
||||
Mat& speed_up,
|
||||
Mat& mask) {
|
||||
const int prev_rows = flow.u.rows;
|
||||
const int prev_cols = flow.v.cols;
|
||||
|
||||
Mat is_flow_regular = calcIrregularityMat(flow,
|
||||
irregularity_metric_radius)
|
||||
< speed_up_thr;
|
||||
Mat done = Mat::zeros(prev_rows, prev_cols, CV_8U);
|
||||
speed_up = Mat::zeros(curr_rows, curr_cols, CV_8U);
|
||||
mask = Mat::zeros(curr_rows, curr_cols, CV_8U);
|
||||
|
||||
for (int r = 0; r < is_flow_regular.rows; ++r) {
|
||||
for (int c = 0; c < is_flow_regular.cols; ++c) {
|
||||
if (!done.at<uchar>(r, c)) {
|
||||
if (is_flow_regular.at<uchar>(r, c) &&
|
||||
2*r + 1 < curr_rows && 2*c + 1< curr_cols) {
|
||||
|
||||
bool all_flow_in_region_regular = true;
|
||||
int speed_up_at_this_point = prev_speed_up.at<uchar>(r, c);
|
||||
int step = (1 << speed_up_at_this_point) - 1;
|
||||
int prev_top = r;
|
||||
int prev_bottom = std::min(r + step, prev_rows - 1);
|
||||
int prev_left = c;
|
||||
int prev_right = std::min(c + step, prev_cols - 1);
|
||||
|
||||
for (int rr = prev_top; rr <= prev_bottom; ++rr) {
|
||||
for (int cc = prev_left; cc <= prev_right; ++cc) {
|
||||
done.at<uchar>(rr, cc) = 1;
|
||||
if (!is_flow_regular.at<uchar>(rr, cc)) {
|
||||
all_flow_in_region_regular = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int curr_top = std::min(2 * r, curr_rows - 1);
|
||||
int curr_bottom = std::min(2*(r + step) + 1, curr_rows - 1);
|
||||
int curr_left = std::min(2 * c, curr_cols - 1);
|
||||
int curr_right = std::min(2*(c + step) + 1, curr_cols - 1);
|
||||
|
||||
if (all_flow_in_region_regular &&
|
||||
curr_top != curr_bottom &&
|
||||
curr_left != curr_right) {
|
||||
mask.at<uchar>(curr_top, curr_left) = MASK_TRUE_VALUE;
|
||||
mask.at<uchar>(curr_bottom, curr_left) = MASK_TRUE_VALUE;
|
||||
mask.at<uchar>(curr_top, curr_right) = MASK_TRUE_VALUE;
|
||||
mask.at<uchar>(curr_bottom, curr_right) = MASK_TRUE_VALUE;
|
||||
for (int rr = curr_top; rr <= curr_bottom; ++rr) {
|
||||
for (int cc = curr_left; cc <= curr_right; ++cc) {
|
||||
speed_up.at<uchar>(rr, cc) = speed_up_at_this_point + 1;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (int rr = curr_top; rr <= curr_bottom; ++rr) {
|
||||
for (int cc = curr_left; cc <= curr_right; ++cc) {
|
||||
mask.at<uchar>(rr, cc) = MASK_TRUE_VALUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
done.at<uchar>(r, c) = 1;
|
||||
for (int dr = 0; dr <= 1; ++dr) {
|
||||
int nr = 2*r + dr;
|
||||
for (int dc = 0; dc <= 1; ++dc) {
|
||||
int nc = 2*c + dc;
|
||||
if (nr < curr_rows && nc < curr_cols) {
|
||||
mask.at<uchar>(nr, nc) = MASK_TRUE_VALUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static inline double extrapolateValueInRect(int height, int width,
|
||||
double v11, double v12,
|
||||
double v21, double v22,
|
||||
int r, int c) {
|
||||
if (r == 0 && c == 0) { return v11;}
|
||||
if (r == 0 && c == width) { return v12;}
|
||||
if (r == height && c == 0) { return v21;}
|
||||
if (r == height && c == width) { return v22;}
|
||||
|
||||
double qr = double(r) / height;
|
||||
double pr = 1.0 - qr;
|
||||
double qc = double(c) / width;
|
||||
double pc = 1.0 - qc;
|
||||
|
||||
return v11*pr*pc + v12*pr*qc + v21*qr*pc + v22*qc*qr;
|
||||
}
|
||||
|
||||
static void extrapolateFlow(Flow& flow,
|
||||
const Mat& speed_up) {
|
||||
const int rows = flow.u.rows;
|
||||
const int cols = flow.u.cols;
|
||||
Mat done = Mat::zeros(rows, cols, CV_8U);
|
||||
for (int r = 0; r < rows; ++r) {
|
||||
for (int c = 0; c < cols; ++c) {
|
||||
if (!done.at<uchar>(r, c) && speed_up.at<uchar>(r, c) > 1) {
|
||||
int step = (1 << speed_up.at<uchar>(r, c)) - 1;
|
||||
int top = r;
|
||||
int bottom = std::min(r + step, rows - 1);
|
||||
int left = c;
|
||||
int right = std::min(c + step, cols - 1);
|
||||
|
||||
int height = bottom - top;
|
||||
int width = right - left;
|
||||
for (int rr = top; rr <= bottom; ++rr) {
|
||||
for (int cc = left; cc <= right; ++cc) {
|
||||
done.at<uchar>(rr, cc) = 1;
|
||||
flow.u.at<double>(rr, cc) = extrapolateValueInRect(
|
||||
height, width,
|
||||
flow.u.at<double>(top, left),
|
||||
flow.u.at<double>(top, right),
|
||||
flow.u.at<double>(bottom, left),
|
||||
flow.u.at<double>(bottom, right),
|
||||
rr-top, cc-left);
|
||||
|
||||
flow.v.at<double>(rr, cc) = extrapolateValueInRect(
|
||||
height, width,
|
||||
flow.v.at<double>(top, left),
|
||||
flow.v.at<double>(top, right),
|
||||
flow.v.at<double>(bottom, left),
|
||||
flow.v.at<double>(bottom, right),
|
||||
rr-top, cc-left);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void buildPyramidWithResizeMethod(Mat& src,
|
||||
vector<Mat>& pyramid,
|
||||
int layers,
|
||||
int interpolation_type) {
|
||||
pyramid.push_back(src);
|
||||
for (int i = 1; i <= layers; ++i) {
|
||||
Mat prev = pyramid[i - 1];
|
||||
if (prev.rows <= 1 || prev.cols <= 1) {
|
||||
break;
|
||||
}
|
||||
|
||||
Mat next;
|
||||
resize(prev, next, Size((prev.cols + 1) / 2, (prev.rows + 1) / 2), 0, 0, interpolation_type);
|
||||
pyramid.push_back(next);
|
||||
}
|
||||
}
|
||||
|
||||
static Flow calcOpticalFlowSF(Mat& from,
|
||||
Mat& to,
|
||||
int layers,
|
||||
int averaging_block_size,
|
||||
int max_flow,
|
||||
double sigma_dist,
|
||||
double sigma_color,
|
||||
int postprocess_window,
|
||||
double sigma_dist_fix,
|
||||
double sigma_color_fix,
|
||||
double occ_thr,
|
||||
int upscale_averaging_radius,
|
||||
double upscale_sigma_dist,
|
||||
double upscale_sigma_color,
|
||||
double speed_up_thr) {
|
||||
vector<Mat> pyr_from_images;
|
||||
vector<Mat> pyr_to_images;
|
||||
|
||||
buildPyramidWithResizeMethod(from, pyr_from_images, layers - 1, INTER_CUBIC);
|
||||
buildPyramidWithResizeMethod(to, pyr_to_images, layers - 1, INTER_CUBIC);
|
||||
// buildPyramid(from, pyr_from_images, layers - 1, BORDER_WRAP);
|
||||
// buildPyramid(to, pyr_to_images, layers - 1, BORDER_WRAP);
|
||||
|
||||
if ((int)pyr_from_images.size() != layers) {
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if ((int)pyr_to_images.size() != layers) {
|
||||
exit(1);
|
||||
}
|
||||
|
||||
Mat first_from_image = pyr_from_images[layers - 1];
|
||||
Mat first_to_image = pyr_to_images[layers - 1];
|
||||
|
||||
Mat mask = Mat::ones(first_from_image.rows, first_from_image.cols, CV_8U);
|
||||
Mat mask_inv = Mat::ones(first_from_image.rows, first_from_image.cols, CV_8U);
|
||||
|
||||
Flow flow(first_from_image.rows, first_from_image.cols);
|
||||
Flow flow_inv(first_to_image.rows, first_to_image.cols);
|
||||
|
||||
Mat confidence;
|
||||
Mat confidence_inv;
|
||||
|
||||
calcOpticalFlowSingleScaleSF(first_from_image,
|
||||
first_to_image,
|
||||
mask,
|
||||
flow,
|
||||
confidence,
|
||||
averaging_block_size,
|
||||
max_flow,
|
||||
sigma_dist,
|
||||
sigma_color);
|
||||
|
||||
calcOpticalFlowSingleScaleSF(first_to_image,
|
||||
first_from_image,
|
||||
mask_inv,
|
||||
flow_inv,
|
||||
confidence_inv,
|
||||
averaging_block_size,
|
||||
max_flow,
|
||||
sigma_dist,
|
||||
sigma_color);
|
||||
|
||||
removeOcclusions(flow,
|
||||
flow_inv,
|
||||
occ_thr,
|
||||
confidence);
|
||||
|
||||
removeOcclusions(flow_inv,
|
||||
flow,
|
||||
occ_thr,
|
||||
confidence_inv);
|
||||
|
||||
Mat speed_up = Mat::zeros(first_from_image.rows, first_from_image.cols, CV_8U);
|
||||
Mat speed_up_inv = Mat::zeros(first_from_image.rows, first_from_image.cols, CV_8U);
|
||||
|
||||
for (int curr_layer = layers - 2; curr_layer >= 0; --curr_layer) {
|
||||
const Mat curr_from = pyr_from_images[curr_layer];
|
||||
const Mat curr_to = pyr_to_images[curr_layer];
|
||||
const Mat prev_from = pyr_from_images[curr_layer + 1];
|
||||
const Mat prev_to = pyr_to_images[curr_layer + 1];
|
||||
|
||||
const int curr_rows = curr_from.rows;
|
||||
const int curr_cols = curr_from.cols;
|
||||
|
||||
Mat new_speed_up, new_speed_up_inv;
|
||||
|
||||
selectPointsToRecalcFlow(flow,
|
||||
averaging_block_size,
|
||||
speed_up_thr,
|
||||
curr_rows,
|
||||
curr_cols,
|
||||
speed_up,
|
||||
new_speed_up,
|
||||
mask);
|
||||
|
||||
int points_to_recalculate = sum(mask)[0] / MASK_TRUE_VALUE;
|
||||
|
||||
selectPointsToRecalcFlow(flow_inv,
|
||||
averaging_block_size,
|
||||
speed_up_thr,
|
||||
curr_rows,
|
||||
curr_cols,
|
||||
speed_up_inv,
|
||||
new_speed_up_inv,
|
||||
mask_inv);
|
||||
|
||||
points_to_recalculate = sum(mask_inv)[0] / MASK_TRUE_VALUE;
|
||||
|
||||
speed_up = new_speed_up;
|
||||
speed_up_inv = new_speed_up_inv;
|
||||
|
||||
flow = upscaleOpticalFlow(curr_rows,
|
||||
curr_cols,
|
||||
prev_from,
|
||||
confidence,
|
||||
flow,
|
||||
upscale_averaging_radius,
|
||||
upscale_sigma_dist,
|
||||
upscale_sigma_color);
|
||||
|
||||
flow_inv = upscaleOpticalFlow(curr_rows,
|
||||
curr_cols,
|
||||
prev_to,
|
||||
confidence_inv,
|
||||
flow_inv,
|
||||
upscale_averaging_radius,
|
||||
upscale_sigma_dist,
|
||||
upscale_sigma_color);
|
||||
|
||||
calcOpticalFlowSingleScaleSF(curr_from,
|
||||
curr_to,
|
||||
mask,
|
||||
flow,
|
||||
confidence,
|
||||
averaging_block_size,
|
||||
max_flow,
|
||||
sigma_dist,
|
||||
sigma_color);
|
||||
|
||||
calcOpticalFlowSingleScaleSF(curr_to,
|
||||
curr_from,
|
||||
mask_inv,
|
||||
flow_inv,
|
||||
confidence_inv,
|
||||
averaging_block_size,
|
||||
max_flow,
|
||||
sigma_dist,
|
||||
sigma_color);
|
||||
|
||||
extrapolateFlow(flow, speed_up);
|
||||
extrapolateFlow(flow_inv, speed_up_inv);
|
||||
|
||||
removeOcclusions(flow, flow_inv, occ_thr, confidence);
|
||||
removeOcclusions(flow_inv, flow, occ_thr, confidence_inv);
|
||||
}
|
||||
|
||||
WeightedCrossBilateralFilter filter_postprocess(pyr_from_images[0],
|
||||
postprocess_window,
|
||||
sigma_dist_fix,
|
||||
sigma_color_fix);
|
||||
|
||||
flow.u = filter_postprocess.apply(flow.u, confidence);
|
||||
flow.v = filter_postprocess.apply(flow.v, confidence);
|
||||
|
||||
Mat blured_u, blured_v;
|
||||
GaussianBlur(flow.u, blured_u, Size(3, 3), 5);
|
||||
GaussianBlur(flow.v, blured_v, Size(3, 3), 5);
|
||||
|
||||
return Flow(blured_v, blured_u);
|
||||
}
|
||||
|
||||
void calcOpticalFlowSF(Mat& from,
|
||||
Mat& to,
|
||||
Mat& flowX,
|
||||
Mat& flowY,
|
||||
int layers,
|
||||
int averaging_block_size,
|
||||
int max_flow,
|
||||
double sigma_dist,
|
||||
double sigma_color,
|
||||
int postprocess_window,
|
||||
double sigma_dist_fix,
|
||||
double sigma_color_fix,
|
||||
double occ_thr,
|
||||
int upscale_averaging_radius,
|
||||
double upscale_sigma_dist,
|
||||
double upscale_sigma_color,
|
||||
double speed_up_thr) {
|
||||
|
||||
Flow flow = calcOpticalFlowSF(from, to,
|
||||
layers,
|
||||
averaging_block_size,
|
||||
max_flow,
|
||||
sigma_dist,
|
||||
sigma_color,
|
||||
postprocess_window,
|
||||
sigma_dist_fix,
|
||||
sigma_color_fix,
|
||||
occ_thr,
|
||||
upscale_averaging_radius,
|
||||
upscale_sigma_dist,
|
||||
upscale_sigma_color,
|
||||
speed_up_thr);
|
||||
flowX = flow.u;
|
||||
flowY = flow.v;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
125
modules/video/src/simpleflow.hpp
Normal file
125
modules/video/src/simpleflow.hpp
Normal file
@@ -0,0 +1,125 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_SIMPLEFLOW_H__
|
||||
#define __OPENCV_SIMPLEFLOW_H__
|
||||
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
|
||||
#define MASK_TRUE_VALUE 255
|
||||
#define UNKNOWN_FLOW_THRESH 1e9
|
||||
|
||||
namespace cv {
|
||||
|
||||
struct Flow {
|
||||
Mat u, v;
|
||||
|
||||
Flow() {;}
|
||||
|
||||
Flow(Mat& _u, Mat& _v)
|
||||
: u(_u), v(_v) {;}
|
||||
|
||||
Flow(int rows, int cols) {
|
||||
u = Mat::zeros(rows, cols, CV_64F);
|
||||
v = Mat::zeros(rows, cols, CV_64F);
|
||||
}
|
||||
};
|
||||
|
||||
inline static double dist(const Vec3b& p1, const Vec3b& p2) {
|
||||
return (p1[0] - p2[0]) * (p1[0] - p2[0]) +
|
||||
(p1[1] - p2[1]) * (p1[1] - p2[1]) +
|
||||
(p1[2] - p2[2]) * (p1[2] - p2[2]);
|
||||
}
|
||||
|
||||
inline static double dist(const Point2f& p1, const Point2f& p2) {
|
||||
return (p1.x - p2.x) * (p1.x - p2.x) +
|
||||
(p1.y - p2.y) * (p1.y - p2.y);
|
||||
}
|
||||
|
||||
inline static double dist(double x1, double y1, double x2, double y2) {
|
||||
return (x1 - x2) * (x1 - x2) +
|
||||
(y1 - y2) * (y1 - y2);
|
||||
}
|
||||
|
||||
inline static int dist(int x1, int y1, int x2, int y2) {
|
||||
return (x1 - x2) * (x1 - x2) +
|
||||
(y1 - y2) * (y1 - y2);
|
||||
}
|
||||
|
||||
template<class T>
|
||||
inline static T min(T t1, T t2, T t3) {
|
||||
return (t1 <= t2 && t1 <= t3) ? t1 : min(t2, t3);
|
||||
}
|
||||
|
||||
template<class T>
|
||||
vector<vector<T> > build(int n, int m) {
|
||||
vector<vector<T> > res(n);
|
||||
for (int i = 0; i < n; ++i) {
|
||||
res[i].resize(m, 0);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
class WeightedCrossBilateralFilter {
|
||||
public:
|
||||
WeightedCrossBilateralFilter(const Mat& _image,
|
||||
int _windowSize,
|
||||
double _sigmaDist,
|
||||
double _sigmaColor);
|
||||
|
||||
Mat apply(Mat& matrix, Mat& weights);
|
||||
|
||||
private:
|
||||
double convolution(Mat& matrix, int row, int col, Mat& weights);
|
||||
|
||||
Mat image;
|
||||
int windowSize;
|
||||
double sigmaDist, sigmaColor;
|
||||
|
||||
vector<double> expDist;
|
||||
vector<vector<vector<vector<double> > > > wc;
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user