probably, ultimately fixed the problem of empty clusters in kmeans; added test for singular kmeans cases
This commit is contained in:
parent
d80651d99a
commit
c6a27b3d2f
@ -2489,7 +2489,7 @@ double cv::kmeans( InputArray _data, int K,
|
||||
}
|
||||
int* labels = _labels.ptr<int>();
|
||||
|
||||
Mat centers(K, dims, type), old_centers(K, dims, type);
|
||||
Mat centers(K, dims, type), old_centers(K, dims, type), temp(1, dims, type);
|
||||
vector<int> counters(K);
|
||||
vector<Vec2f> _box(dims);
|
||||
Vec2f* box = &_box[0];
|
||||
@ -2533,7 +2533,7 @@ double cv::kmeans( InputArray _data, int K,
|
||||
for( a = 0; a < attempts; a++ )
|
||||
{
|
||||
double max_center_shift = DBL_MAX;
|
||||
for( iter = 0; iter < criteria.maxCount && max_center_shift > criteria.epsilon; iter++ )
|
||||
for( iter = 0;; )
|
||||
{
|
||||
swap(centers, old_centers);
|
||||
|
||||
@ -2609,7 +2609,11 @@ double cv::kmeans( InputArray _data, int K,
|
||||
double max_dist = 0;
|
||||
int farthest_i = -1;
|
||||
float* new_center = centers.ptr<float>(k);
|
||||
float* old_center = centers.ptr<float>(max_k);
|
||||
float* _old_center = centers.ptr<float>(max_k);
|
||||
float* old_center = temp.ptr<float>();
|
||||
float scale = 1.f/counters[max_k];
|
||||
for( j = 0; j < dims; j++ )
|
||||
old_center[j] = _old_center[j]*scale;
|
||||
|
||||
for( i = 0; i < N; i++ )
|
||||
{
|
||||
@ -2627,6 +2631,7 @@ double cv::kmeans( InputArray _data, int K,
|
||||
|
||||
counters[max_k]--;
|
||||
counters[k]++;
|
||||
labels[farthest_i] = k;
|
||||
sample = data.ptr<float>(farthest_i);
|
||||
|
||||
for( j = 0; j < dims; j++ )
|
||||
@ -2658,6 +2663,9 @@ double cv::kmeans( InputArray _data, int K,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if( ++iter == MAX(criteria.maxCount, 2) || max_center_shift <= criteria.epsilon )
|
||||
break;
|
||||
|
||||
// assign labels
|
||||
compactness = 0;
|
||||
|
@ -2428,5 +2428,57 @@ TEST(Core_SolvePoly, accuracy) { Core_SolvePolyTest test; test.safe_run(); }
|
||||
|
||||
// TODO: eigenvv, invsqrt, cbrt, fastarctan, (round, floor, ceil(?)),
|
||||
|
||||
|
||||
class CV_KMeansSingularTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_KMeansSingularTest() {}
|
||||
~CV_KMeansSingularTest() {}
|
||||
protected:
|
||||
void run(int)
|
||||
{
|
||||
try
|
||||
{
|
||||
RNG& rng = theRNG();
|
||||
const int MAX_DIM=5;
|
||||
int MAX_POINTS = 100;
|
||||
for( int iter = 0; iter < 100; iter++ )
|
||||
{
|
||||
ts->update_context(this, iter, true);
|
||||
int dims = rng.uniform(1, MAX_DIM+1);
|
||||
int N = rng.uniform(1, MAX_POINTS+1);
|
||||
int N0 = rng.uniform(1, N/10+1);
|
||||
int K = rng.uniform(1, N+1);
|
||||
|
||||
Mat data0(N0, dims, CV_32F), labels;
|
||||
rng.fill(data0, RNG::UNIFORM, -1, 1);
|
||||
|
||||
Mat data(N, dims, CV_32F);
|
||||
for( int i = 0; i < N; i++ )
|
||||
data0.row(rng.uniform(0, N0)).copyTo(data.row(i));
|
||||
|
||||
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
|
||||
5, KMEANS_PP_CENTERS);
|
||||
|
||||
Mat hist(K, 1, CV_32S, Scalar(0));
|
||||
for( int i = 0; i < N; i++ )
|
||||
{
|
||||
int l = labels.at<int>(i);
|
||||
CV_Assert( 0 <= l && l < K );
|
||||
hist.at<int>(l)++;
|
||||
}
|
||||
for( int i = 0; i < K; i++ )
|
||||
CV_Assert( hist.at<int>(i) != 0 );
|
||||
}
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST(Core_KMeans, singular) { CV_KMeansSingularTest test; test.safe_run(); }
|
||||
|
||||
/* End of file. */
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user